/** * @file softenLightF.glsl * * Copyright (c) 2007-$CurrentYear$, Linden Research, Inc. * $License$ */ #extension GL_ARB_texture_rectangle : enable uniform sampler2DRect diffuseRect; uniform sampler2DRect specularRect; uniform sampler2DRect normalMap; uniform sampler2DRect lightMap; uniform sampler2D noiseMap; uniform samplerCube environmentMap; uniform sampler2D lightFunc; uniform vec3 gi_quad; uniform float blur_size; uniform float blur_fidelity; // Inputs uniform vec4 morphFactor; uniform vec3 camPosLocal; //uniform vec4 camPosWorld; uniform vec4 gamma; uniform vec4 lightnorm; uniform vec4 sunlight_color; uniform vec4 ambient; uniform vec4 blue_horizon; uniform vec4 blue_density; uniform vec4 haze_horizon; uniform vec4 haze_density; uniform vec4 cloud_shadow; uniform vec4 density_multiplier; uniform vec4 distance_multiplier; uniform vec4 max_y; uniform vec4 glow; uniform float scene_light_strength; uniform vec3 env_mat[3]; uniform vec4 shadow_clip; uniform mat3 ssao_effect_mat; uniform sampler2DRect depthMap; uniform mat4 inv_proj; uniform vec2 screen_res; varying vec4 vary_light; varying vec2 vary_fragcoord; vec3 vary_PositionEye; vec3 vary_SunlitColor; vec3 vary_AmblitColor; vec3 vary_AdditiveColor; vec3 vary_AtmosAttenuation; uniform float gi_ambiance; vec4 getPosition_d(vec2 pos_screen, float depth) { vec2 sc = pos_screen.xy*2.0; sc /= screen_res; sc -= vec2(1.0,1.0); vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); vec4 pos = inv_proj * ndc; pos /= pos.w; pos.w = 1.0; return pos; } vec4 getPosition(vec2 pos_screen) { //get position in screen space (world units) given window coordinate and depth map float depth = texture2DRect(depthMap, pos_screen.xy).a; return getPosition_d(pos_screen, depth); } vec3 getPositionEye() { return vary_PositionEye; } vec3 getSunlitColor() { return vary_SunlitColor; } vec3 getAmblitColor() { return vary_AmblitColor; } vec3 getAdditiveColor() { return vary_AdditiveColor; } vec3 getAtmosAttenuation() { return vary_AtmosAttenuation; } void setPositionEye(vec3 v) { vary_PositionEye = v; } void setSunlitColor(vec3 v) { vary_SunlitColor = v; } void setAmblitColor(vec3 v) { vary_AmblitColor = v; } void setAdditiveColor(vec3 v) { vary_AdditiveColor = v; } void setAtmosAttenuation(vec3 v) { vary_AtmosAttenuation = v; } void calcAtmospherics(vec3 inPositionEye, float ambFactor) { vec3 P = inPositionEye; setPositionEye(P); //(TERRAIN) limit altitude if (P.y > max_y.x) P *= (max_y.x / P.y); if (P.y < -max_y.x) P *= (-max_y.x / P.y); vec3 tmpLightnorm = lightnorm.xyz; vec3 Pn = normalize(P); float Plen = length(P); vec4 temp1 = vec4(0); vec3 temp2 = vec3(0); vec4 blue_weight; vec4 haze_weight; vec4 sunlight = sunlight_color; vec4 light_atten; //sunlight attenuation effect (hue and brightness) due to atmosphere //this is used later for sunlight modulation at various altitudes light_atten = (blue_density * 1.0 + vec4(haze_density.r) * 0.25) * (density_multiplier.x * max_y.x); //I had thought blue_density and haze_density should have equal weighting, //but attenuation due to haze_density tends to seem too strong temp1 = blue_density + vec4(haze_density.r); blue_weight = blue_density / temp1; haze_weight = vec4(haze_density.r) / temp1; //(TERRAIN) compute sunlight from lightnorm only (for short rays like terrain) temp2.y = max(0.0, tmpLightnorm.y); temp2.y = 1. / temp2.y; sunlight *= exp( - light_atten * temp2.y); // main atmospheric scattering line integral temp2.z = Plen * density_multiplier.x; // Transparency (-> temp1) // ATI Bugfix -- can't store temp1*temp2.z*distance_multiplier.x in a variable because the ati // compiler gets confused. temp1 = exp(-temp1 * temp2.z * distance_multiplier.x); //final atmosphere attenuation factor setAtmosAttenuation(temp1.rgb); //compute haze glow //(can use temp2.x as temp because we haven't used it yet) temp2.x = dot(Pn, tmpLightnorm.xyz); temp2.x = 1. - temp2.x; //temp2.x is 0 at the sun and increases away from sun temp2.x = max(temp2.x, .03); //was glow.y //set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) temp2.x *= glow.x; //higher glow.x gives dimmer glow (because next step is 1 / "angle") temp2.x = pow(temp2.x, glow.z); //glow.z should be negative, so we're doing a sort of (1 / "angle") function //add "minimum anti-solar illumination" temp2.x += .25; //increase ambient when there are more clouds vec4 tmpAmbient = ambient*gi_ambiance + (vec4(1.) - ambient*gi_ambiance) * cloud_shadow.x * 0.5; /* decrease value and saturation (that in HSV, not HSL) for occluded areas * // for HSV color/geometry used here, see http://gimp-savvy.com/BOOK/index.html?node52.html * // The following line of code performs the equivalent of: * float ambAlpha = tmpAmbient.a; * float ambValue = dot(vec3(tmpAmbient), vec3(0.577)); // projection onto <1/rt(3), 1/rt(3), 1/rt(3)>, the neutral white-black axis * vec3 ambHueSat = vec3(tmpAmbient) - vec3(ambValue); * tmpAmbient = vec4(RenderSSAOEffect.valueFactor * vec3(ambValue) + RenderSSAOEffect.saturationFactor *(1.0 - ambFactor) * ambHueSat, ambAlpha); */ tmpAmbient = vec4(mix(ssao_effect_mat * tmpAmbient.rgb, tmpAmbient.rgb, ambFactor), tmpAmbient.a); //haze color setAdditiveColor( vec3(blue_horizon * blue_weight * (sunlight*(1.-cloud_shadow.x) + tmpAmbient) + (haze_horizon.r * haze_weight) * (sunlight*(1.-cloud_shadow.x) * temp2.x + tmpAmbient))); //brightness of surface both sunlight and ambient setSunlitColor(vec3(sunlight * .5)); setAmblitColor(vec3(tmpAmbient * .25)); setAdditiveColor(getAdditiveColor() * vec3(1.0 - temp1)); } vec3 atmosLighting(vec3 light) { light *= getAtmosAttenuation().r; light += getAdditiveColor(); return (2.0 * light); } vec3 atmosTransport(vec3 light) { light *= getAtmosAttenuation().r; light += getAdditiveColor() * 2.0; return light; } vec3 atmosGetDiffuseSunlightColor() { return getSunlitColor(); } vec3 scaleDownLight(vec3 light) { return (light / scene_light_strength ); } vec3 scaleUpLight(vec3 light) { return (light * scene_light_strength); } vec3 atmosAmbient(vec3 light) { return getAmblitColor() + light / 2.0; } vec3 atmosAffectDirectionalLight(float lightIntensity) { return getSunlitColor() * lightIntensity; } vec3 scaleSoftClip(vec3 light) { //soft clip effect: light = 1. - clamp(light, vec3(0.), vec3(1.)); light = 1. - pow(light, gamma.xxx); return light; } void main() { vec2 tc = vary_fragcoord.xy; float depth = texture2DRect(depthMap, tc.xy).a; vec3 pos = getPosition_d(tc, depth).xyz; vec3 norm = texture2DRect(normalMap, tc).xyz*2.0-1.0; //vec3 nz = texture2D(noiseMap, vary_fragcoord.xy/128.0).xyz; float da = max(dot(norm.xyz, vary_light.xyz), 0.0); vec4 diffuse = texture2DRect(diffuseRect, tc); vec4 spec = texture2DRect(specularRect, vary_fragcoord.xy); da = texture2D(lightFunc, vec2(da, 0.0)).a; vec2 scol_ambocc = texture2DRect(lightMap, vary_fragcoord.xy).rg; float scol = max(scol_ambocc.r, diffuse.a); float ambocc = scol_ambocc.g; calcAtmospherics(pos.xyz, ambocc); vec3 col = atmosAmbient(vec3(0)); col += atmosAffectDirectionalLight(max(min(da, scol), diffuse.a)); col *= diffuse.rgb; if (spec.a > 0.0) // specular reflection { // the old infinite-sky shiny reflection // vec3 refnormpersp = normalize(reflect(pos.xyz, norm.xyz)); float sa = dot(refnormpersp, vary_light.xyz); vec3 dumbshiny = vary_SunlitColor*scol*texture2D(lightFunc, vec2(sa, spec.a)).a; /* // screen-space cheap fakey reflection map // vec3 refnorm = normalize(reflect(vec3(0,0,-1), norm.xyz)); depth -= 0.5; // unbias depth // first figure out where we'll make our 2D guess from vec2 ref2d = (0.25 * screen_res.y) * (refnorm.xy) * abs(refnorm.z) / depth; // Offset the guess source a little according to a trivial // checkerboard dither function and spec.a. // This is meant to be similar to sampling a blurred version // of the diffuse map. LOD would be better in that regard. // The goal of the blur is to soften reflections in surfaces // with low shinyness, and also to disguise our lameness. float checkerboard = floor(mod(tc.x+tc.y, 2.0)); // 0.0, 1.0 float checkoffset = (3.0 + (7.0*(1.0-spec.a)))*(checkerboard-0.5); ref2d += vec2(checkoffset, checkoffset); ref2d += tc.xy; // use as offset from destination // Get attributes from the 2D guess point. // We average two samples of diffuse (not of anything else) per // pixel to try to reduce aliasing some more. vec3 refcol = 0.5 * (texture2DRect(diffuseRect, ref2d + vec2(0.0, -checkoffset)).rgb + texture2DRect(diffuseRect, ref2d + vec2(-checkoffset, 0.0)).rgb); float refdepth = texture2DRect(depthMap, ref2d).a; vec3 refpos = getPosition_d(ref2d, refdepth).xyz; float refshad = texture2DRect(lightMap, ref2d).r; vec3 refn = normalize(texture2DRect(normalMap, ref2d).rgb * 2.0 - 1.0); // figure out how appropriate our guess actually was float refapprop = max(0.0, dot(-refnorm, normalize(pos - refpos))); // darken reflections from points which face away from the reflected ray - our guess was a back-face //refapprop *= step(dot(refnorm, refn), 0.0); refapprop = min(refapprop, max(0.0, -dot(refnorm, refn))); // more conservative variant // get appropriate light strength for guess-point. // reflect light direction to increase the illusion that // these are reflections. vec3 reflight = reflect(lightnorm.xyz, norm.xyz); float reflit = min(max(dot(refn, reflight.xyz), 0.0), refshad); // apply sun color to guess-point, dampen according to inappropriateness of guess float refmod = min(refapprop, reflit); vec3 refprod = vary_SunlitColor * refcol.rgb * refmod; vec3 ssshiny = (refprod * spec.a); ssshiny *= 0.3; // dampen it even more */ vec3 ssshiny = vec3(0,0,0); // add the two types of shiny together col += (ssshiny + dumbshiny) * spec.rgb; } col = atmosLighting(col); col = scaleSoftClip(col); gl_FragColor.rgb = col; //gl_FragColor.rgb = gi_col.rgb; gl_FragColor.a = 0.0; //gl_FragColor.rg = scol_ambocc.rg; //gl_FragColor.rgb = texture2DRect(lightMap, vary_fragcoord.xy).rgb; //gl_FragColor.rgb = norm.rgb*0.5+0.5; //gl_FragColor.rgb = vec3(ambocc); //gl_FragColor.rgb = vec3(scol); }