/** * @file class3/deferred/softenLightF.glsl * * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2007, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #define DEBUG_PBR_PACKORM0 0 // Rough=0, Metal=0 #define DEBUG_PBR_PACKORM1 0 // Rough=1, Metal=1 #define DEBUG_PBR_TANGENT1 1 // Tangent = 1,0,0 #define DEBUG_PBR_VERT2CAM1 0 // vertex2camera = 0,0,1 #define DEBUG_PBR_RAW_DIFF 0 // Output: use diffuse in G-Buffer #define DEBUG_PBR_RAW_SPEC 0 // Output: use spec in G-Buffer #define DEBUG_PBR_IRRADIANCE 0 // Output: Diffuse Irradiance #define DEBUG_PBR_DIFFUSE 0 // Output: Radiance Lambertian #define DEBUG_PBR_ORM 0 // Output: Packed Occlusion Roughness Metal #define DEBUG_PBR_ROUGH_PERCEPTUAL 0 // Output: grayscale Perceptual Roughenss #define DEBUG_PBR_ROUGH_ALPHA 0 // Output: grayscale Alpha Roughness #define DEBUG_PBR_METAL 0 // Output: grayscale metal #define DEBUG_PBR_REFLECTANCE 0 // Output: diffuse reflectance #define DEBUG_PBR_BRDF_UV 0 // Output: red green BRDF UV (GGX input) #define DEBUG_PBR_BRDF_SCALE_BIAS 0 // Output: red green BRDF Scale Bias (GGX output) #define DEBUG_PBR_SPEC 0 // Output: Final spec #define DEBUG_PBR_SPEC_REFLECTION 0 // Output: reflection #define DEBUG_PBR_NORMAL 0 // Output: passed in normal. To see raw normal map: set DEBUG_PBR_RAW_DIFF 1, and in pbropaqueF set DEBUG_NORMAL_RAW #define DEBUG_PBR_TANGENT 0 // Output: Tangent #define DEBUG_PBR_BITANGET 0 // Output: Bitangnet #define DEBUG_PBR_V2C_RAW 0 // Output: vertex2camera #define DEBUG_PBR_V2C_REMAP 0 // Output: vertex2camera (remap [-1,1] -> [0,1]) #define DEBUG_PBR_BRDF 0 // Output: Environment BRDF #define DEBUG_PBR_DOT_NV 0 // Output: grayscale dot(Normal ,Vertex2Camera) #define DEBUG_PBR_DOT_TV 0 // Output: grayscale dot(Tangent ,Vertex2Camera) #define DEBUG_PBR_DOT_BV 0 // Output: graysacle dot(Bitangent,Vertex2Camera) #define DEBUG_PBR_FRESNEL 0 // Output: roughness dependent fresnel #define DEBUG_PBR_KSPEC 0 // Output: K spec #define DEBUG_PBR_IOR 0 // Output: grayscale IOR #define DEBUG_PBR_REFLECT0_BASE 0 // Output: black reflect0 default from ior #define DEBUG_PBR_REFLECT0_MIX 0 // Output: diffuse reflect0 calculated from ior #define DEBUG_PBR_FE_GGX 0 // Output: FssEssGGX #define DEBUG_PBR_FE_LAMBERT 0 // Output: FssEssLambert #define DEBUG_PBR_DIFFUSE_K 0 // Output: diffuse FssEssLambert + FmsEms #extension GL_ARB_texture_rectangle : enable #extension GL_ARB_shader_texture_lod : enable #define FLT_MAX 3.402823466e+38 #define REFMAP_COUNT 256 #define REF_SAMPLE_COUNT 64 //maximum number of samples to consider #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_color; #else #define frag_color gl_FragColor #endif uniform sampler2DRect diffuseRect; uniform sampler2DRect specularRect; uniform sampler2DRect normalMap; #if defined(HAS_SUN_SHADOW) || defined(HAS_SSAO) uniform sampler2DRect lightMap; #endif uniform sampler2DRect depthMap; uniform sampler2D lightFunc; uniform float blur_size; uniform float blur_fidelity; // Inputs uniform mat3 env_mat; uniform vec3 sun_dir; uniform vec3 moon_dir; uniform int sun_up_factor; VARYING vec2 vary_fragcoord; uniform mat4 inv_proj; uniform vec2 screen_res; vec3 getNorm(vec2 pos_screen); vec4 getPositionWithDepth(vec2 pos_screen, float depth); void calcAtmosphericVars(vec3 inPositionEye, vec3 light_dir, float ambFactor, out vec3 sunlit, out vec3 amblit, out vec3 additive, out vec3 atten, bool use_ao); float getAmbientClamp(); vec3 atmosFragLighting(vec3 l, vec3 additive, vec3 atten); vec3 scaleSoftClipFrag(vec3 l); vec3 fullbrightAtmosTransportFrag(vec3 light, vec3 additive, vec3 atten); vec3 fullbrightScaleSoftClip(vec3 light); // reflection probe interface void sampleReflectionProbes(inout vec3 ambenv, inout vec3 glossenv, inout vec3 legacyEnv, vec3 pos, vec3 norm, float glossiness, float envIntensity); void applyGlossEnv(inout vec3 color, vec3 glossenv, vec4 spec, vec3 pos, vec3 norm); void applyLegacyEnv(inout vec3 color, vec3 legacyenv, vec4 spec, vec3 pos, vec3 norm, float envIntensity); vec3 linear_to_srgb(vec3 c); vec3 srgb_to_linear(vec3 c); #ifdef WATER_FOG vec4 applyWaterFogView(vec3 pos, vec4 color); #endif uniform vec3 view_dir; // PBR #define getDiffuseLightPBR(n) ambenv #define getSpecularPBR(reflection) glossenv // Approximate Environment BRDF vec2 getGGXApprox( vec2 uv ) { vec2 st = vec2(1.) - uv; float d = (st.x * st.x * 0.5) * (st.y * st.y); float scale = 1.0 - d; float bias = d; return vec2( scale, bias ); } vec2 getGGX( vec2 brdfPoint ) { // TODO: use GGXLUT // texture2D(GGXLUT, brdfPoint).rg; return getGGXApprox( brdfPoint); } vec3 calcBaseReflect0(float ior) { vec3 reflect0 = vec3(pow((ior - 1.0) / (ior + 1.0), 2.0)); return reflect0; } void main() { vec2 tc = vary_fragcoord.xy; float depth = texture2DRect(depthMap, tc.xy).r; vec4 pos = getPositionWithDepth(tc, depth); vec4 norm = texture2DRect(normalMap, tc); float envIntensity = norm.z; norm.xyz = getNorm(tc); vec3 light_dir = (sun_up_factor == 1) ? sun_dir : moon_dir; float da = clamp(dot(norm.xyz, light_dir.xyz), 0.0, 1.0); float light_gamma = 1.0 / 1.3; da = pow(da, light_gamma); vec4 diffuse = texture2DRect(diffuseRect, tc); diffuse.rgb = linear_to_srgb(diffuse.rgb); // SL-14025 vec4 spec = texture2DRect(specularRect, vary_fragcoord.xy); #if defined(HAS_SUN_SHADOW) || defined(HAS_SSAO) vec2 scol_ambocc = texture2DRect(lightMap, vary_fragcoord.xy).rg; scol_ambocc = pow(scol_ambocc, vec2(light_gamma)); float scol = max(scol_ambocc.r, diffuse.a); float ambocc = scol_ambocc.g; #else float scol = 1.0; float ambocc = 1.0; #endif vec3 color = vec3(0); float bloom = 0.0; vec3 sunlit; vec3 amblit; vec3 additive; vec3 atten; calcAtmosphericVars(pos.xyz, light_dir, ambocc, sunlit, amblit, additive, atten, true); //vec3 amb_vec = env_mat * norm.xyz; vec3 ambenv; vec3 glossenv; vec3 legacyenv; sampleReflectionProbes(ambenv, glossenv, legacyenv, pos.xyz, norm.xyz, spec.a, envIntensity); amblit = max(ambenv, amblit); bool hasPBR = GET_GBUFFER_FLAG(GBUFFER_FLAG_HAS_PBR); if (hasPBR) { vec3 colorDiffuse = vec3(0); vec3 colorEmissive = vec3(0); vec3 colorSpec = vec3(0); // vec3 colorClearCoat = vec3(0); // vec3 colorSheen = vec3(0); // vec3 colorTransmission = vec3(0); vec3 packedORM = spec.rgb; // Packed: Occlusion Roughness Metal #if DEBUG_PBR_PACK_ORM0 packedORM = vec3(0,0,0); #endif #if DEBUG_PBR_PACK_ORM1 packedORM = vec3(1,1,1); #endif float IOR = 1.5; // default Index Of Refraction 1.5 (dielectrics) vec3 reflect0 = vec3(0.04); // -> incidence reflectance 0.04 #if HAS_IOR reflect0 = calcBaseReflect0(IOR); #endif #if DEBUG_PBR_REFLECT0_BASE vec3 debug_reflect0 = reflect0; #endif float metal = packedORM.b; vec3 reflect90 = vec3(0); vec3 v = -normalize(pos.xyz); #if DEBUG_PBR_VERT2CAM1 v = vec3(0,0,1); #endif vec3 n = norm.xyz; // vec3 t = texture2DRect(tangentMap, tc).rgb; #if DEBUG_PBR_TANGENT1 vec3 t = vec3(1,0,0); #endif vec3 b = cross( n,t); vec3 reflectVN = normalize(reflect(-v,n)); float dotNV = clamp(dot(n,v),0,1); float dotTV = clamp(dot(t,v),0,1); float dotBV = clamp(dot(b,v),0,1); // Reference: getMetallicRoughnessInfo float perceptualRough = packedORM.g; float alphaRough = perceptualRough * perceptualRough; vec3 colorDiff = mix( diffuse.rgb, vec3(0) , metal); reflect0 = mix( reflect0 , diffuse.rgb, metal); // reflect at 0 degrees reflect90 = vec3(1); // reflect at 90 degrees #if DEBUG_PBR_REFLECTANCE float reflectance = max( max( reflect0.r, reflect0.g ), reflect0.b ); #endif // Common to RadianceGGX and RadianceLambertian float specWeight = 1.0; vec2 brdfPoint = clamp(vec2(dotNV, perceptualRough), vec2(0,0), vec2(1,1)); vec2 vScaleBias = getGGX( brdfPoint); // Environment BRDF: scale and bias applied to reflect0 vec3 fresnelR = max(vec3(1.0 - perceptualRough), reflect0) - reflect0; // roughness dependent fresnel vec3 kSpec = reflect0 + fresnelR*pow(1.0 - dotNV, 5.0); // Reference: getIBLRadianceGGX vec3 reflection = normalize(reflect(-v,n)); vec3 specLight = getSpecularPBR(reflection); #if HAS_IBL kSpec = mix( kSpec, iridescenceFresnel, iridescenceFactor); #endif vec3 FssEssGGX = kSpec*vScaleBias.x + vScaleBias.y; colorSpec += specWeight * specLight * FssEssGGX; // Reference: getIBLRadianceLambertian vec3 irradiance = getDiffuseLightPBR(n); vec3 FssEssLambert = specWeight * kSpec * vScaleBias.x + vScaleBias.y; // NOTE: Very similar to FssEssRadiance but with extra specWeight term float Ems = (1.0 - vScaleBias.x + vScaleBias.y); vec3 avg = specWeight * (reflect0 + (1.0 - reflect0) / 21.0); vec3 AvgEms = avg * Ems; vec3 FmsEms = AvgEms * FssEssLambert / (1.0 - AvgEms); vec3 kDiffuse = colorDiffuse * (1.0 - FssEssLambert + FmsEms); colorDiffuse += (FmsEms + kDiffuse) * irradiance; color.rgb = colorDiffuse + colorEmissive + colorSpec; #if DEBUG_PBR_BRDF_UV color.rgb = vec3(brdfPoint,0.0); #endif #if DEBUG_PBR_BRDF_SCALE_BIAS color.rgb = vec3(vScaleBias,0.0); #endif #if DEBUG_PBR_FRESNEL color.rgb = fresnelR; #endif #if DEBUG_PBR_IOR color.rgb = vec3(IOR); #endif #if DEBUG_PBR_KSPEC color.rgb = kSpec; #endif #if DEBUG_PBR_RAW_DIFF color.rgb = diffuse.rgb; #endif #if DEBUG_PBR_RAW_SPEC color.rgb = spec.rgb; #endif #if DEBUG_PBR_REFLECT0_BASE color.rgb = vec3(debug_reflect0); #endif #if DEBUG_PBR_REFLECT0_MIX color.rgb = vec3(reflect0); #endif #if DEBUG_PBR_REFLECTANCE color.rgb = vec3(reflectance); #endif #if DEBUG_PBR_IRRADIANCE color.rgb = irradiance; #endif #if DEBUG_PBR_DIFFUSE color.rgb = colorDiffuse; #endif #if DEBUG_PBR_DIFFUSE_K color.rgb = kDiffuse; #endif #if DEBUG_PBR_EMISSIVE color.rgb = colorEmissive; #endif #if DEBUG_PBR_METAL color.rgb = vec3(metal); #endif #if DEBUG_PBR_ROUGH_PERCEPTUAL color.rgb = vec3(perceptualRough); #endif #if DEBUG_PBR_ROUGH_ALPHA color.rgb = vec3(alphaRough); #endif #if DEBUG_PBR_SPEC color.rgb = colorSpec; #endif #if DEBUG_PBR_SPEC_REFLECTION color.rgb = specLight; #endif #if DEBUG_PBR_ORM color.rgb = packedORM; #endif #if DEBUG_PBR_NORMAL color.rgb = norm.xyz; #endif #if DEBUG_PBR_TANGENT color.rgb = t; #endif #if DEBUG_PBR_BITANGENT color.rgb = b; #endif #if DEBUG_PBR_V2C_RAW color.rgb = v; #endif #if DEBUG_PBR_V2C_REMAP color.rgb = v*0.5 + vec3(0.5); #endif #if DEBUG_PBR_DOT_NV color.rgb = vec3(dotNV); #endif #if DEBUG_PBR_DOT_TV color.rgb = vec3(dotTV); #endif #if DEBUG_PBR_DOT_BV color.rgb = vec3(dotBV); #endif #if DEBUG_PBR_FE_GGX color.rgb = FssEssGGX; // spec #endif #if DEBUG_PBR_FE_LAMBERT color.rgb = FssEssLambert; // diffuse #endif } else { color.rgb = amblit*ambocc; //float ambient = min(abs(dot(norm.xyz, sun_dir.xyz)), 1.0); //ambient *= 0.5; //ambient *= ambient; //ambient = (1.0 - ambient); //color.rgb *= ambient; vec3 sun_contrib = min(da, scol) * sunlit; color.rgb += sun_contrib; color.rgb = min(color.rgb, vec3(1,1,1)); color.rgb *= diffuse.rgb; vec3 refnormpersp = reflect(pos.xyz, norm.xyz); if (spec.a > 0.0) // specular reflection { float sa = dot(normalize(refnormpersp), light_dir.xyz); vec3 dumbshiny = sunlit * scol * (texture2D(lightFunc, vec2(sa, spec.a)).r); // add the two types of shiny together vec3 spec_contrib = dumbshiny * spec.rgb; bloom = dot(spec_contrib, spec_contrib) / 6; color.rgb += spec_contrib; // add reflection map - EXPERIMENTAL WORK IN PROGRESS applyGlossEnv(color, glossenv, spec, pos.xyz, norm.xyz); } color.rgb = mix(color.rgb, diffuse.rgb, diffuse.a); if (envIntensity > 0.0) { // add environmentmap //fudge darker legacyenv *= 0.5*diffuse.a+0.5;; applyLegacyEnv(color, legacyenv, spec, pos.xyz, norm.xyz, envIntensity); } if (GET_GBUFFER_FLAG(GBUFFER_FLAG_HAS_ATMOS)) { color = mix(atmosFragLighting(color, additive, atten), fullbrightAtmosTransportFrag(color, additive, atten), diffuse.a); color = mix(scaleSoftClipFrag(color), fullbrightScaleSoftClip(color), diffuse.a); } #ifdef WATER_FOG vec4 fogged = applyWaterFogView(pos.xyz, vec4(color, bloom)); color = fogged.rgb; bloom = fogged.a; #endif } // convert to linear as fullscreen lights need to sum in linear colorspace // and will be gamma (re)corrected downstream... //color = vec3(ambocc); //color = ambenv; //color.b = diffuse.a; frag_color.rgb = srgb_to_linear(color.rgb); frag_color.a = bloom; }