/** * @file class3\deferred\multiSpotLightF.glsl * * $LicenseInfo:firstyear=2022&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2022, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #extension GL_ARB_texture_rectangle : enable #extension GL_ARB_shader_texture_lod : enable /*[EXTRA_CODE_HERE]*/ #define DEBUG_PBR_LIGHT_TYPE 0 // Ouput gray if PBR multiSpot lights object #define DEBUG_PBR_SPOT 0 #define DEBUG_PBR_SPOT_DIFFUSE 0 // PBR diffuse lit #define DEBUG_PBR_SPOT_SPECULAR 0 // PBR spec lit #define DEBUG_SPOT_DIFFUSE 0 #define DEBUG_SPOT_NL 0 // monochome area effected by light #define DEBUG_SPOT_SPEC_POS 0 #define DEBUG_SPOT_REFLECTION 0 #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_color; #else #define frag_color gl_FragColor #endif uniform sampler2DRect diffuseRect; uniform sampler2DRect specularRect; uniform sampler2DRect depthMap; uniform sampler2DRect normalMap; uniform sampler2DRect emissiveRect; // PBR linear packed Occlusion, Roughness, Metal. See: pbropaqueF.glsl uniform samplerCube environmentMap; uniform sampler2DRect lightMap; uniform sampler2D noiseMap; uniform sampler2D projectionMap; // rgba uniform sampler2D lightFunc; uniform mat4 proj_mat; //screen space to light space uniform float proj_near; //near clip for projection uniform vec3 proj_p; //plane projection is emitting from (in screen space) uniform vec3 proj_n; uniform float proj_focus; //distance from plane to begin blurring uniform float proj_lod; //(number of mips in proj map) uniform float proj_range; //range between near clip and far clip plane of projection uniform float proj_ambient_lod; uniform float proj_ambiance; uniform float near_clip; uniform float far_clip; uniform vec3 proj_origin; //origin of projection to be used for angular attenuation uniform float sun_wash; uniform int proj_shadow_idx; uniform float shadow_fade; // Light params uniform vec3 center; uniform float size; uniform vec3 color; uniform float falloff; VARYING vec4 vary_fragcoord; uniform vec2 screen_res; uniform mat4 inv_proj; vec3 BRDFLambertian( vec3 reflect0, vec3 reflect90, vec3 c_diff, float specWeight, float vh ); vec3 BRDFSpecularGGX( vec3 reflect0, vec3 reflect90, float alphaRoughness, float specWeight, float vh, float nl, float nv, float nh ); void calcHalfVectors(vec3 lv, vec3 n, vec3 v, out vec3 h, out vec3 l, out float nh, out float nl, out float nv, out float vh, out float lightDist); bool clipProjectedLightVars(vec3 center, vec3 pos, out float dist, out float l_dist, out vec3 lv, out vec4 proj_tc ); vec3 getLightIntensitySpot(vec3 lightColor, float lightRange, float lightDistance, vec3 v); vec4 getNormalEnvIntensityFlags(vec2 screenpos, out vec3 n, out float envIntensity); vec3 getProjectedLightDiffuseColor(float light_distance, vec2 projected_uv ); vec3 getProjectedLightSpecularColor(vec3 pos, vec3 n); vec2 getScreenXY(vec4 clip); void initMaterial( vec3 diffuse, vec3 packedORM, out float alphaRough, out vec3 c_diff, out vec3 reflect0, out vec3 reflect90, out float specWeight ); vec3 srgb_to_linear(vec3 cs); vec4 texture2DLodSpecular(vec2 tc, float lod); vec4 texture2DLodAmbient(sampler2D projectionMap, vec2 tc, float lod) { vec4 ret = texture2DLod(projectionMap, tc, lod); ret.rgb = srgb_to_linear(ret.rgb); vec2 dist = tc-vec2(0.5); float d = dot(dist,dist); ret *= min(clamp((0.25-d)/0.25, 0.0, 1.0), 1.0); return ret; } vec4 getPosition(vec2 pos_screen); void main() { #if defined(LOCAL_LIGHT_KILL) discard; #else vec3 final_color = vec3(0,0,0); vec2 tc = getScreenXY(vary_fragcoord); vec3 pos = getPosition(tc).xyz; vec3 lv; vec4 proj_tc; float dist, l_dist; if (clipProjectedLightVars(center, pos, dist, l_dist, lv, proj_tc)) { discard; } float shadow = 1.0; if (proj_shadow_idx >= 0) { vec4 shd = texture2DRect(lightMap, tc); shadow = (proj_shadow_idx==0)?shd.b:shd.a; shadow += shadow_fade; shadow = clamp(shadow, 0.0, 1.0); } float envIntensity; vec3 n; vec4 norm = getNormalEnvIntensityFlags(tc, n, envIntensity); float dist_atten = 1.0 - (dist + falloff)/(1.0 + falloff); lv = proj_origin-pos.xyz; vec3 h, l, v = -normalize(pos); float nh, nl, nv, vh, lightDist; calcHalfVectors(lv, n, v, h, l, nh, nl, nv, vh, lightDist); vec3 diffuse = texture2DRect(diffuseRect, tc).rgb; vec4 spec = texture2DRect(specularRect, tc); vec3 dlit = vec3(0, 0, 0); vec3 slit = vec3(0, 0, 0); if (GET_GBUFFER_FLAG(GBUFFER_FLAG_HAS_PBR)) { vec3 colorDiffuse = vec3(0); vec3 colorSpec = vec3(0); vec3 colorEmissive = spec.rgb; // PBR sRGB Emissive. See: pbropaqueF.glsl vec3 packedORM = texture2DRect(emissiveRect, tc).rgb; // PBR linear packed Occlusion, Roughness, Metal. See: pbropaqueF.glsl float metal = packedORM.b; // if (proj_tc.x > 0.0 && proj_tc.x < 1.0 // && proj_tc.y > 0.0 && proj_tc.y < 1.0) if (nl > 0.0) { vec3 c_diff, reflect0, reflect90; float alphaRough, specWeight; initMaterial( diffuse, packedORM, alphaRough, c_diff, reflect0, reflect90, specWeight ); dlit = getProjectedLightDiffuseColor( l_dist, proj_tc.xy ); slit = getProjectedLightSpecularColor( pos, n ); // vec3 intensity = getLightIntensitySpot( color, size, lightDist, v ); colorDiffuse = shadow * dlit * nl * dist_atten; colorSpec = shadow * slit * nl * dist_atten; // colorDiffuse *= BRDFLambertian ( reflect0, reflect90, c_diff , specWeight, vh ); // colorSpec *= BRDFSpecularGGX( reflect0, reflect90, alphaRough, specWeight, vh, nl, nv, nh ); #if DEBUG_PBR_SPOT_DIFFUSE colorDiffuse = dlit.rgb; colorSpec = vec3(0); #endif #if DEBUG_PBR_SPOT_SPECULAR colorDiffuse = vec3(0); colorSpec = slit.rgb; #endif #if DEBUG_PBR_SPOT colorDiffuse = dlit; colorSpec = vec3(0); colorDiffuse *= nl; colorDiffuse *= shadow; #endif #if DEBUG_SPOT_SPEC_POS colorDiffuse = pos + ref * dot(pdelta, proj_n)/ds; colorSpec = vec3(0); #endif #if DEBUG_SPOT_REFLECTION colorDiffuse = ref; colorSpec = vec3(0); #endif } #if DEBUG_SPOT_DIFFUSE colorDiffuse = vec3(nl * dist_atten); #endif #if DEBUG_SPOT_NL colorDiffuse = vec3(nl); colorSpec = vec3(0); #endif #if DEBUG_PBR_LIGHT_TYPE colorDiffuse = vec3(0.5); colorSpec = vec3(0); #endif final_color = colorDiffuse + colorSpec; } else { dist_atten *= dist_atten; dist_atten *= 2.0; if (dist_atten <= 0.0) { discard; } float noise = texture2D(noiseMap, tc/128.0).b; if (proj_tc.z > 0.0 && proj_tc.x < 1.0 && proj_tc.y < 1.0 && proj_tc.x > 0.0 && proj_tc.y > 0.0) { float amb_da = proj_ambiance; float lit = 0.0; if (nl > 0.0) { lit = nl * dist_atten * noise; dlit = getProjectedLightDiffuseColor( l_dist, proj_tc.xy ); final_color = dlit*lit*diffuse*shadow; // unshadowed for consistency between forward and deferred? amb_da += (nl*0.5+0.5) /* * (1.0-shadow) */ * proj_ambiance; } //float diff = clamp((proj_range-proj_focus)/proj_range, 0.0, 1.0); vec4 amb_plcol = texture2DLodAmbient(projectionMap, proj_tc.xy, proj_lod); // use unshadowed for consistency between forward and deferred? amb_da += (nl*nl*0.5+0.5) /* * (1.0-shadow) */ * proj_ambiance; amb_da *= dist_atten * noise; amb_da = min(amb_da, 1.0-lit); final_color += amb_da*color.rgb*diffuse.rgb*amb_plcol.rgb*amb_plcol.a; } if (spec.a > 0.0) { dlit *= min(nl*6.0, 1.0) * dist_atten; float fres = pow(1 - vh, 5)*0.4+0.5; float gtdenom = 2 * nh; float gt = max(0, min(gtdenom * nv / vh, gtdenom * nl / vh)); if (nh > 0.0) { float scol = fres*texture2D(lightFunc, vec2(nh, spec.a)).r*gt/(nh*nl); vec3 speccol = dlit*scol*spec.rgb*shadow; speccol = clamp(speccol, vec3(0), vec3(1)); final_color += speccol; } } if (envIntensity > 0.0) { vec3 ref = reflect(normalize(pos), n); //project from point pos in direction ref to plane proj_p, proj_n vec3 pdelta = proj_p-pos; float ds = dot(ref, proj_n); if (ds < 0.0) { vec3 pfinal = pos + ref * dot(pdelta, proj_n)/ds; vec4 stc = (proj_mat * vec4(pfinal.xyz, 1.0)); if (stc.z > 0.0) { stc /= stc.w; if (stc.x < 1.0 && stc.y < 1.0 && stc.x > 0.0 && stc.y > 0.0) { final_color += color.rgb * texture2DLodSpecular(stc.xy, (1 - spec.a) * (proj_lod * 0.6)).rgb * shadow * envIntensity; } } } #if DEBUG_SPOT_SPEC_POS final_color = pos + ref * dot(pdelta, proj_n)/ds; #endif #if DEBUG_SPOT_REFLECTION final_color = ref; #endif } #if DEBUG_SPOT_NL final_color =vec3(nl); #endif #if DEBUG_SPOT_DIFFUSE final_color = vec3(nl * dist_atten * noise); #endif } //not sure why, but this line prevents MATBUG-194 final_color = max(final_color, vec3(0.0)); //output linear frag_color.rgb = final_color; frag_color.a = 0.0; #endif // LOCAL_LIGHT_KILL }