/** * @file materialF.glsl * * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2007, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ /*[EXTRA_CODE_HERE]*/ //class1/deferred/materialF.glsl // This shader is used for both writing opaque/masked content to the gbuffer and writing blended content to the framebuffer during the alpha pass. #define DIFFUSE_ALPHA_MODE_NONE 0 #define DIFFUSE_ALPHA_MODE_BLEND 1 #define DIFFUSE_ALPHA_MODE_MASK 2 #define DIFFUSE_ALPHA_MODE_EMISSIVE 3 uniform float emissive_brightness; // fullbright flag, 1.0 == fullbright, 0.0 otherwise uniform int sun_up_factor; vec4 applySkyAndWaterFog(vec3 pos, vec3 additive, vec3 atten, vec4 color); vec3 scaleSoftClipFragLinear(vec3 l); void calcAtmosphericVarsLinear(vec3 inPositionEye, vec3 norm, vec3 light_dir, out vec3 sunlit, out vec3 amblit, out vec3 atten, out vec3 additive); void calcHalfVectors(vec3 lv, vec3 n, vec3 v, out vec3 h, out vec3 l, out float nh, out float nl, out float nv, out float vh, out float lightDist); vec3 srgb_to_linear(vec3 cs); vec3 linear_to_srgb(vec3 cs); uniform mat4 modelview_matrix; uniform mat3 normal_matrix; in vec3 vary_position; void mirrorClip(vec3 pos); #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND) out vec4 frag_color; #ifdef HAS_SUN_SHADOW float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen); #endif void sampleReflectionProbesLegacy(out vec3 ambenv, out vec3 glossenv, out vec3 legacyenv, vec2 tc, vec3 pos, vec3 norm, float glossiness, float envIntensity, bool transparent, vec3 amblit_linear); void applyGlossEnv(inout vec3 color, vec3 glossenv, vec4 spec, vec3 pos, vec3 norm); void applyLegacyEnv(inout vec3 color, vec3 legacyenv, vec4 spec, vec3 pos, vec3 norm, float envIntensity); uniform samplerCube environmentMap; uniform sampler2D lightFunc; // Inputs uniform vec4 morphFactor; uniform vec3 camPosLocal; uniform mat3 env_mat; uniform float is_mirror; uniform vec3 sun_dir; uniform vec3 moon_dir; uniform mat4 proj_mat; uniform mat4 inv_proj; uniform vec2 screen_res; uniform vec4 light_position[8]; uniform vec3 light_direction[8]; uniform vec4 light_attenuation[8]; uniform vec3 light_diffuse[8]; float getAmbientClamp(); void waterClip(vec3 pos); vec3 calcPointLightOrSpotLight(vec3 light_col, vec3 npos, vec3 diffuse, vec4 spec, vec3 v, vec3 n, vec4 lp, vec3 ln, float la, float fa, float is_pointlight, inout float glare, float ambiance) { // SL-14895 inverted attenuation work-around // This routine is tweaked to match deferred lighting, but previously used an inverted la value. To reconstruct // that previous value now that the inversion is corrected, we reverse the calculations in LLPipeline::setupHWLights() // to recover the `adjusted_radius` value previously being sent as la. float falloff_factor = (12.0 * fa) - 9.0; float inverted_la = falloff_factor / la; // Yes, it makes me want to cry as well. DJH vec3 col = vec3(0); //get light vector vec3 lv = lp.xyz - v; //get distance float dist = length(lv); float da = 1.0; dist /= inverted_la; if (dist > 0.0 && inverted_la > 0.0) { //normalize light vector lv = normalize(lv); //distance attenuation float dist_atten = clamp(1.0 - (dist - 1.0*(1.0 - fa)) / fa, 0.0, 1.0); dist_atten *= dist_atten; dist_atten *= 2.0f; if (dist_atten <= 0.0) { return col; } // spotlight coefficient. float spot = max(dot(-ln, lv), is_pointlight); da *= spot*spot; // GL_SPOT_EXPONENT=2 //angular attenuation da *= dot(n, lv); float lit = 0.0f; float amb_da = ambiance; if (da >= 0) { lit = max(da * dist_atten, 0.0); col = lit * light_col * diffuse; amb_da += (da*0.5 + 0.5) * ambiance; } amb_da += (da*da*0.5 + 0.5) * ambiance; amb_da *= dist_atten; amb_da = min(amb_da, 1.0f - lit); // SL-10969 need to see why these are blown out //col.rgb += amb_da * light_col * diffuse; if (spec.a > 0.0) { //vec3 ref = dot(pos+lv, norm); vec3 h = normalize(lv + npos); float nh = dot(n, h); float nv = dot(n, npos); float vh = dot(npos, h); float sa = nh; float fres = pow(1 - dot(h, npos), 5)*0.4 + 0.5; float gtdenom = 2 * nh; float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh)); if (nh > 0.0) { float scol = fres*texture(lightFunc, vec2(nh, spec.a)).r*gt / (nh*da); vec3 speccol = lit*scol*light_col.rgb*spec.rgb; speccol = clamp(speccol, vec3(0), vec3(1)); col += speccol; float cur_glare = max(speccol.r, speccol.g); cur_glare = max(cur_glare, speccol.b); glare = max(glare, speccol.r); glare += max(cur_glare, 0.0); } } } return max(col, vec3(0.0, 0.0, 0.0)); } #else out vec4 frag_data[4]; #endif uniform sampler2D diffuseMap; //always in sRGB space #ifdef HAS_NORMAL_MAP uniform sampler2D bumpMap; #endif #ifdef HAS_SPECULAR_MAP uniform sampler2D specularMap; in vec2 vary_texcoord2; #endif uniform float env_intensity; uniform vec4 specular_color; // specular color RGB and specular exponent (glossiness) in alpha #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK) uniform float minimum_alpha; #endif #ifdef HAS_NORMAL_MAP in vec3 vary_normal; in vec3 vary_tangent; flat in float vary_sign; in vec2 vary_texcoord1; #else in vec3 vary_normal; #endif in vec4 vertex_color; in vec2 vary_texcoord0; // get the transformed normal and apply glossiness component from normal map vec3 getNormal(inout float glossiness) { #ifdef HAS_NORMAL_MAP vec4 vNt = texture(bumpMap, vary_texcoord1.xy); glossiness *= vNt.a; vNt.xyz = vNt.xyz * 2 - 1; float sign = vary_sign; vec3 vN = vary_normal; vec3 vT = vary_tangent.xyz; vec3 vB = sign * cross(vN, vT); vec3 tnorm = normalize( vNt.x * vT + vNt.y * vB + vNt.z * vN ); return tnorm; #else return normalize(vary_normal); #endif } vec4 getSpecular() { #ifdef HAS_SPECULAR_MAP vec4 spec = texture(specularMap, vary_texcoord2.xy); spec.rgb *= specular_color.rgb; #else vec4 spec = vec4(specular_color.rgb, 1.0); #endif return spec; } void alphaMask(float alpha) { #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK) // Comparing floats cast from 8-bit values, produces acne right at the 8-bit transition points float bias = 0.001953125; // 1/512, or half an 8-bit quantization if (alpha < minimum_alpha-bias) { discard; } #endif } void waterClip() { #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND) waterClip(vary_position.xyz); #endif } float getEmissive(vec4 diffcol) { #if (DIFFUSE_ALPHA_MODE != DIFFUSE_ALPHA_MODE_EMISSIVE) return emissive_brightness; #else return max(diffcol.a, emissive_brightness); #endif } float getShadow(vec3 pos, vec3 norm) { #ifdef HAS_SUN_SHADOW #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND) return sampleDirectionalShadow(pos, norm, vary_texcoord0.xy); #else return 1.; #endif #else return 1.; #endif } void main() { mirrorClip(vary_position); waterClip(); // diffcol == diffuse map combined with vertex color vec4 diffcol = texture(diffuseMap, vary_texcoord0.xy); diffcol.rgb *= vertex_color.rgb; alphaMask(diffcol.a); // spec == specular map combined with specular color vec4 spec = getSpecular(); float env = env_intensity * spec.a; float glossiness = specular_color.a; vec3 norm = getNormal(glossiness); float emissive = getEmissive(diffcol); #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND) //forward rendering, output lit linear color diffcol.rgb = srgb_to_linear(diffcol.rgb); spec.rgb = srgb_to_linear(spec.rgb); spec.a = glossiness; // pack glossiness into spec alpha for lighting functions vec3 pos = vary_position; float shadow = getShadow(pos, norm); vec4 diffuse = diffcol; vec3 color = vec3(0,0,0); vec3 light_dir = (sun_up_factor == 1) ? sun_dir : moon_dir; float bloom = 0.0; vec3 sunlit; vec3 amblit; vec3 additive; vec3 atten; calcAtmosphericVarsLinear(pos.xyz, norm.xyz, light_dir, sunlit, amblit, additive, atten); vec3 sunlit_linear = srgb_to_linear(sunlit); vec3 amblit_linear = amblit; vec3 ambenv; vec3 glossenv; vec3 legacyenv; sampleReflectionProbesLegacy(ambenv, glossenv, legacyenv, pos.xy*0.5+0.5, pos.xyz, norm.xyz, glossiness, env, true, amblit_linear); color = ambenv; float da = clamp(dot(norm.xyz, light_dir.xyz), 0.0, 1.0); vec3 sun_contrib = min(da, shadow) * sunlit_linear; color.rgb += sun_contrib; color *= diffcol.rgb; vec3 refnormpersp = reflect(pos.xyz, norm.xyz); float glare = 0.0; if (glossiness > 0.0) { vec3 lv = light_dir.xyz; vec3 h, l, v = -normalize(pos.xyz); float nh, nl, nv, vh, lightDist; vec3 n = norm.xyz; calcHalfVectors(lv, n, v, h, l, nh, nl, nv, vh, lightDist); if (nl > 0.0 && nh > 0.0) { float lit = min(nl*6.0, 1.0); float sa = nh; float fres = pow(1 - vh, 5) * 0.4+0.5; float gtdenom = 2 * nh; float gt = max(0,(min(gtdenom * nv / vh, gtdenom * nl / vh))); float scol = shadow*fres*texture(lightFunc, vec2(nh, glossiness)).r*gt/(nh*nl); color.rgb += lit*scol*sunlit_linear.rgb*spec.rgb; } // add radiance map applyGlossEnv(color, glossenv, spec, pos.xyz, norm.xyz); } color = mix(color.rgb, diffcol.rgb, emissive); if (env > 0.0) { // add environmentmap applyLegacyEnv(color, legacyenv, spec, pos.xyz, norm.xyz, env); float cur_glare = max(max(legacyenv.r, legacyenv.g), legacyenv.b); cur_glare = clamp(cur_glare, 0, 1); cur_glare *= env; glare += cur_glare; } vec3 npos = normalize(-pos.xyz); vec3 light = vec3(0, 0, 0); #define LIGHT_LOOP(i) light.rgb += calcPointLightOrSpotLight(light_diffuse[i].rgb, npos, diffuse.rgb, spec, pos.xyz, norm.xyz, light_position[i], light_direction[i].xyz, light_attenuation[i].x, light_attenuation[i].y, light_attenuation[i].z, glare, light_attenuation[i].w ); LIGHT_LOOP(1) LIGHT_LOOP(2) LIGHT_LOOP(3) LIGHT_LOOP(4) LIGHT_LOOP(5) LIGHT_LOOP(6) LIGHT_LOOP(7) color += light; color.rgb = applySkyAndWaterFog(pos.xyz, additive, atten, vec4(color, 1.0)).rgb; glare *= 1.0-emissive; glare = min(glare, 1.0); float al = max(diffcol.a, glare) * vertex_color.a; frag_color = max(vec4(color, al), vec4(0)); #else // mode is not DIFFUSE_ALPHA_MODE_BLEND, encode to gbuffer // deferred path // See: C++: addDeferredAttachment(), shader: softenLightF.glsl float flag = GBUFFER_FLAG_HAS_ATMOS; frag_data[0] = max(vec4(diffcol.rgb, emissive), vec4(0)); // gbuffer is sRGB for legacy materials frag_data[1] = max(vec4(spec.rgb, glossiness), vec4(0)); // XYZ = Specular color. W = Specular exponent. frag_data[2] = vec4(norm, flag); // XY = Normal. Z = Env. intensity. W = 1 skip atmos (mask off fog) frag_data[3] = vec4(env, 0, 0, 0); #endif }