/** * @file class3/deferred/cloudsF.glsl * * $LicenseInfo:firstyear=2005&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2005, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_color; #else #define frag_color gl_FragColor #endif uniform sampler2D diffuseMap; VARYING vec4 pos; VARYING float target_pos_x; VARYING float vary_CloudDensity; VARYING vec2 vary_texcoord0; VARYING vec2 vary_texcoord1; VARYING vec2 vary_texcoord2; VARYING vec2 vary_texcoord3; uniform sampler2D cloud_noise_texture; uniform sampler2D cloud_noise_texture_next; uniform float blend_factor; uniform vec4 cloud_pos_density1; uniform vec4 cloud_pos_density2; uniform vec4 sunlight_color; uniform vec4 cloud_color; uniform float cloud_shadow; uniform float cloud_scale; uniform float cloud_variance; uniform vec3 ambient; uniform vec3 camPosLocal; uniform vec3 sun_dir; uniform float sun_size; uniform float far_z; vec4 cloudNoise(vec2 uv) { vec4 a = texture2D(cloud_noise_texture, uv); vec4 b = texture2D(cloud_noise_texture_next, uv); vec4 cloud_noise_sample = mix(a, b, blend_factor); return normalize(cloud_noise_sample); } vec4 computeMoments(float depth, float alpha); void main() { if (cloud_scale >= 0.001) { // Set variables vec2 uv1 = vary_texcoord0.xy; vec2 uv2 = vary_texcoord1.xy; vec2 uv3 = vary_texcoord2.xy; float cloudDensity = 2.0 * (cloud_shadow - 0.25); vec2 uv4 = vary_texcoord3.xy; vec2 disturbance = vec2(cloudNoise(uv1 / 8.0f).x, cloudNoise((uv3 + uv1) / 16.0f).x) * cloud_variance * (1.0f - cloud_scale * 0.25f); vec2 disturbance2 = vec2(cloudNoise((uv1 + uv3) / 4.0f).x, cloudNoise((uv4 + uv2) / 8.0f).x) * cloud_variance * (1.0f - cloud_scale * 0.25f); // Offset texture coords uv1 += cloud_pos_density1.xy + (disturbance * 0.02); //large texture, visible density uv2 += cloud_pos_density1.xy; //large texture, self shadow uv3 += cloud_pos_density2.xy; //small texture, visible density uv4 += cloud_pos_density2.xy; //small texture, self shadow float density_variance = min(1.0, (disturbance.x* 2.0 + disturbance.y* 2.0 + disturbance2.x + disturbance2.y)); cloudDensity *= 1.0 - (density_variance * density_variance); // Compute alpha1, the main cloud opacity float alpha1 = (cloudNoise(uv1).x - 0.5) + (cloudNoise(uv3).x - 0.5) * cloud_pos_density2.z; alpha1 = min(max(alpha1 + cloudDensity, 0.) * 10 * cloud_pos_density1.z, 1.); // And smooth alpha1 = 1. - alpha1 * alpha1; alpha1 = 1. - alpha1 * alpha1; if (alpha1 < 0.001f) { discard; } // Compute alpha2, for self shadowing effect // (1 - alpha2) will later be used as percentage of incoming sunlight float alpha2 = (cloudNoise(uv2).x - 0.5); alpha2 = min(max(alpha2 + cloudDensity, 0.) * 2.5 * cloud_pos_density1.z, 1.); // And smooth alpha2 = 1. - alpha2; alpha2 = 1. - alpha2 * alpha2; frag_color = computeMoments(length(pos), alpha1); } else { frag_color = vec4(0); } }