/** * @file WLSkyV.glsl * * $LicenseInfo:firstyear=2005&license=viewerlgpl$ * $/LicenseInfo$ */ // SKY //////////////////////////////////////////////////////////////////////// // The vertex shader for creating the atmospheric sky /////////////////////////////////////////////////////////////////////////////// // Output parameters varying vec4 vary_HazeColor; // Inputs uniform vec3 camPosLocal; uniform vec4 lightnorm; uniform vec4 sunlight_color; uniform vec4 ambient; uniform vec4 blue_horizon; uniform vec4 blue_density; uniform vec4 haze_horizon; uniform vec4 haze_density; uniform vec4 cloud_shadow; uniform vec4 density_multiplier; uniform vec4 max_y; uniform vec4 glow; uniform vec4 cloud_color; uniform vec4 cloud_scale; void main() { // World / view / projection gl_Position = ftransform(); gl_TexCoord[0] = gl_MultiTexCoord0; // Get relative position vec3 P = gl_Vertex.xyz - camPosLocal.xyz + vec3(0,50,0); //vec3 P = gl_Vertex.xyz + vec3(0,50,0); // Set altitude if (P.y > 0.) { P *= (max_y.x / P.y); } else { P *= (-32000. / P.y); } // Can normalize then vec3 Pn = normalize(P); float Plen = length(P); // Initialize temp variables vec4 temp1 = vec4(0.); vec4 temp2 = vec4(0.); vec4 blue_weight; vec4 haze_weight; vec4 sunlight = sunlight_color; vec4 light_atten; // Sunlight attenuation effect (hue and brightness) due to atmosphere // this is used later for sunlight modulation at various altitudes light_atten = (blue_density * 1.0 + haze_density.x * 0.25) * (density_multiplier.x * max_y.x); // Calculate relative weights temp1 = blue_density + haze_density.x; blue_weight = blue_density / temp1; haze_weight = haze_density.x / temp1; // Compute sunlight from P & lightnorm (for long rays like sky) temp2.y = max(0., max(0., Pn.y) * 1.0 + lightnorm.y ); temp2.y = 1. / temp2.y; sunlight *= exp( - light_atten * temp2.y); // Distance temp2.z = Plen * density_multiplier.x; // Transparency (-> temp1) // ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati // compiler gets confused. temp1 = exp(-temp1 * temp2.z); // Compute haze glow temp2.x = dot(Pn, lightnorm.xyz); temp2.x = 1. - temp2.x; // temp2.x is 0 at the sun and increases away from sun temp2.x = max(temp2.x, .001); // Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) temp2.x *= glow.x; // Higher glow.x gives dimmer glow (because next step is 1 / "angle") temp2.x = pow(temp2.x, glow.z); // glow.z should be negative, so we're doing a sort of (1 / "angle") function // Add "minimum anti-solar illumination" temp2.x += .25; // Haze color above cloud vary_HazeColor = ( blue_horizon * blue_weight * (sunlight + ambient) + (haze_horizon.r * haze_weight) * (sunlight * temp2.x + ambient) ); // Increase ambient when there are more clouds vec4 tmpAmbient = ambient; tmpAmbient += (1. - tmpAmbient) * cloud_shadow.x * 0.5; // Dim sunlight by cloud shadow percentage sunlight *= (1. - cloud_shadow.x); // Haze color below cloud vec4 additiveColorBelowCloud = ( blue_horizon * blue_weight * (sunlight + tmpAmbient) + (haze_horizon.r * haze_weight) * (sunlight * temp2.x + tmpAmbient) ); // Final atmosphere additive vary_HazeColor *= (1. - temp1); // Attenuate cloud color by atmosphere temp1 = sqrt(temp1); //less atmos opacity (more transparency) below clouds // At horizon, blend high altitude sky color towards the darker color below the clouds vary_HazeColor += (additiveColorBelowCloud - vary_HazeColor) * (1. - sqrt(temp1)); // won't compile on mac without this being set //vary_AtmosAttenuation = vec3(0.0,0.0,0.0); }