/** * @file sunLightSSAOF.glsl * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2007, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #extension GL_ARB_texture_rectangle : enable #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_color; #else #define frag_color gl_FragColor #endif //class 2 -- shadows and SSAO uniform sampler2DRect depthMap; uniform sampler2DRect normalMap; uniform sampler2DShadow shadowMap0; uniform sampler2DShadow shadowMap1; uniform sampler2DShadow shadowMap2; uniform sampler2DShadow shadowMap3; uniform sampler2DShadow shadowMap4; uniform sampler2DShadow shadowMap5; uniform sampler2D noiseMap; // Inputs uniform mat4 shadow_matrix[6]; uniform vec4 shadow_clip; uniform float ssao_radius; uniform float ssao_max_radius; uniform float ssao_factor; uniform float ssao_factor_inv; VARYING vec2 vary_fragcoord; uniform mat4 inv_proj; uniform vec2 screen_res; uniform vec2 proj_shadow_res; uniform vec3 sun_dir; uniform vec2 shadow_res; uniform float shadow_bias; uniform float shadow_offset; uniform float spot_shadow_bias; uniform float spot_shadow_offset; #ifdef SINGLE_FP_ONLY vec2 encode_normal(vec3 n) { vec2 sn; sn.xy = (n.xy * vec2(0.5f,0.5f)) + vec2(0.5f,0.5f); return sn; } vec3 decode_normal (vec2 enc) { vec3 n; n.xy = (enc.xy * vec2(2.0f,2.0f)) - vec2(1.0f,1.0f); n.z = sqrt(1.0f - dot(n.xy,n.xy)); return n; } #else vec2 encode_normal(vec3 n) { float f = sqrt(8 * n.z + 8); return n.xy / f + 0.5; } vec3 decode_normal (vec2 enc) { vec2 fenc = enc*4-2; float f = dot(fenc,fenc); float g = sqrt(1-f/4); vec3 n; n.xy = fenc*g; n.z = 1-f/2; return n; } #endif vec4 getPosition(vec2 pos_screen) { float depth = texture2DRect(depthMap, pos_screen.xy).r; vec2 sc = pos_screen.xy*2.0; sc /= screen_res; sc -= vec2(1.0,1.0); vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); vec4 pos = inv_proj * ndc; pos /= pos.w; pos.w = 1.0; return pos; } vec2 getKern(int i) { vec2 kern[8]; // exponentially (^2) distant occlusion samples spread around origin kern[0] = vec2(-1.0, 0.0) * 0.125*0.125; kern[1] = vec2(1.0, 0.0) * 0.250*0.250; kern[2] = vec2(0.0, 1.0) * 0.375*0.375; kern[3] = vec2(0.0, -1.0) * 0.500*0.500; kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625; kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750; kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875; kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000; return kern[i]; } //calculate decreases in ambient lighting when crowded out (SSAO) float calcAmbientOcclusion(vec4 pos, vec3 norm) { float ret = 1.0; vec2 pos_screen = vary_fragcoord.xy; vec3 pos_world = pos.xyz; vec2 noise_reflect = texture2D(noiseMap, vary_fragcoord.xy/128.0).xy; float angle_hidden = 0.0; float points = 0; float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?) for (int i = 0; i < 8; i++) { vec2 samppos_screen = pos_screen + scale * reflect(getKern(i), noise_reflect); vec3 samppos_world = getPosition(samppos_screen).xyz; vec3 diff = pos_world - samppos_world; float dist2 = dot(diff, diff); // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area // --> solid angle shrinking by the square of distance //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 //(k should vary inversely with # of samples, but this is taken care of later) float funky_val = (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) ? 1.0 : 0.0; angle_hidden = angle_hidden + funky_val * min(1.0/dist2, ssao_factor_inv); // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion" float diffz_val = (diff.z > -1.0) ? 1.0 : 0.0; points = points + diffz_val; } angle_hidden = min(ssao_factor*angle_hidden/points, 1.0); float points_val = (points > 0.0) ? 1.0 : 0.0; ret = (1.0 - (points_val * angle_hidden)); ret = max(ret, 0.0); return min(ret, 1.0); } float pcfShadow(sampler2DShadow shadowMap, vec4 stc, float scl, vec2 pos_screen) { stc.xyz /= stc.w; stc.z += shadow_bias; stc.x = floor(stc.x*shadow_res.x + fract(pos_screen.y*0.666666666))/shadow_res.x; float cs = shadow2D(shadowMap, stc.xyz).x; float shadow = cs; shadow += shadow2D(shadowMap, stc.xyz+vec3(2.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(1.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(-1.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(-2.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; return shadow*0.2; } float pcfSpotShadow(sampler2DShadow shadowMap, vec4 stc, float scl, vec2 pos_screen) { stc.xyz /= stc.w; stc.z += spot_shadow_bias*scl; stc.x = floor(proj_shadow_res.x * stc.x + fract(pos_screen.y*0.666666666)) / proj_shadow_res.x; // snap float cs = shadow2D(shadowMap, stc.xyz).x; float shadow = cs; vec2 off = 1.0/proj_shadow_res; off.y *= 1.5; shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x*2.0, off.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x, -off.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x, off.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x*2.0, -off.y, 0.0)).x; return shadow*0.2; } void main() { vec2 pos_screen = vary_fragcoord.xy; //try doing an unproject here vec4 pos = getPosition(pos_screen); vec3 norm = texture2DRect(normalMap, pos_screen).xyz; norm = decode_normal(norm.xy); // unpack norm /*if (pos.z == 0.0) // do nothing for sky *FIX: REMOVE THIS IF/WHEN THE POSITION MAP IS BEING USED AS A STENCIL { frag_color = vec4(0.0); // doesn't matter return; }*/ float shadow = 0.0; float dp_directional_light = max(0.0, dot(norm, sun_dir.xyz)); vec3 shadow_pos = pos.xyz; vec3 offset = sun_dir.xyz * (1.0-dp_directional_light); vec4 spos = vec4(shadow_pos+offset*shadow_offset, 1.0); if (spos.z > -shadow_clip.w) { if (dp_directional_light == 0.0) { // if we know this point is facing away from the sun then we know it's in shadow without having to do a squirrelly shadow-map lookup shadow = 0.0; } else { vec4 lpos; vec4 near_split = shadow_clip*-0.75; vec4 far_split = shadow_clip*-1.25; vec4 transition_domain = near_split-far_split; float weight = 0.0; if (spos.z < near_split.z) { lpos = shadow_matrix[3]*spos; float w = 1.0; w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; shadow += pcfShadow(shadowMap3, lpos, 0.25, pos_screen)*w; weight += w; shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); } if (spos.z < near_split.y && spos.z > far_split.z) { lpos = shadow_matrix[2]*spos; float w = 1.0; w -= max(spos.z-far_split.y, 0.0)/transition_domain.y; w -= max(near_split.z-spos.z, 0.0)/transition_domain.z; shadow += pcfShadow(shadowMap2, lpos, 0.5, pos_screen)*w; weight += w; } if (spos.z < near_split.x && spos.z > far_split.y) { lpos = shadow_matrix[1]*spos; float w = 1.0; w -= max(spos.z-far_split.x, 0.0)/transition_domain.x; w -= max(near_split.y-spos.z, 0.0)/transition_domain.y; shadow += pcfShadow(shadowMap1, lpos, 0.75, pos_screen)*w; weight += w; } if (spos.z > far_split.x) { lpos = shadow_matrix[0]*spos; float w = 1.0; w -= max(near_split.x-spos.z, 0.0)/transition_domain.x; shadow += pcfShadow(shadowMap0, lpos, 1.0, pos_screen)*w; weight += w; } shadow /= weight; // take the most-shadowed value out of these two: // * the blurred sun shadow in the light (shadow) map // * an unblurred dot product between the sun and this norm // the goal is to err on the side of most-shadow to fill-in shadow holes and reduce artifacting shadow = min(shadow, dp_directional_light); //lpos.xy /= lpos.w*32.0; //if (fract(lpos.x) < 0.1 || fract(lpos.y) < 0.1) //{ // shadow = 0.0; //} } } else { // more distant than the shadow map covers shadow = 1.0; } frag_color[0] = shadow; frag_color[1] = calcAmbientOcclusion(pos, norm); spos = vec4(shadow_pos+norm*spot_shadow_offset, 1.0); //spotlight shadow 1 vec4 lpos = shadow_matrix[4]*spos; frag_color[2] = pcfSpotShadow(shadowMap4, lpos, 0.8, pos_screen); //spotlight shadow 2 lpos = shadow_matrix[5]*spos; frag_color[3] = pcfSpotShadow(shadowMap5, lpos, 0.8, pos_screen); //frag_color.rgb = pos.xyz; //frag_color.b = shadow; }