/** * @file softenLightF.glsl * * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2007, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #extension GL_ARB_texture_rectangle : enable /*[EXTRA_CODE_HERE]*/ #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_color; #else #define frag_color gl_FragColor #endif uniform sampler2DRect diffuseRect; uniform sampler2DRect specularRect; uniform sampler2DRect normalMap; uniform sampler2DRect lightMap; uniform sampler2DRect depthMap; uniform samplerCube environmentMap; uniform sampler2D lightFunc; uniform float blur_size; uniform float blur_fidelity; // Inputs uniform vec4 morphFactor; uniform vec3 camPosLocal; //uniform vec4 camPosWorld; uniform vec4 gamma; uniform vec4 lightnorm; uniform vec4 sunlight_color; uniform vec4 ambient; uniform vec4 blue_horizon; uniform vec4 blue_density; uniform float haze_horizon; uniform float haze_density; uniform float cloud_shadow; uniform float density_multiplier; uniform float distance_multiplier; uniform float max_y; uniform vec4 glow; uniform float global_gamma; uniform float scene_light_strength; uniform mat3 env_mat; uniform vec4 shadow_clip; uniform mat3 ssao_effect_mat; uniform vec3 sun_dir; VARYING vec2 vary_fragcoord; vec3 vary_PositionEye; vec3 vary_SunlitColor; vec3 vary_AmblitColor; vec3 vary_AdditiveColor; vec3 vary_AtmosAttenuation; uniform mat4 inv_proj; uniform vec2 screen_res; vec3 srgb_to_linear(vec3 cs) { vec3 low_range = cs / vec3(12.92); vec3 high_range = pow((cs+vec3(0.055))/vec3(1.055), vec3(2.4)); bvec3 lte = lessThanEqual(cs,vec3(0.04045)); #ifdef OLD_SELECT vec3 result; result.r = lte.r ? low_range.r : high_range.r; result.g = lte.g ? low_range.g : high_range.g; result.b = lte.b ? low_range.b : high_range.b; return result; #else return mix(high_range, low_range, lte); #endif } vec3 linear_to_srgb(vec3 cl) { cl = clamp(cl, vec3(0), vec3(1)); vec3 low_range = cl * 12.92; vec3 high_range = 1.055 * pow(cl, vec3(0.41666)) - 0.055; bvec3 lt = lessThan(cl,vec3(0.0031308)); #ifdef OLD_SELECT vec3 result; result.r = lt.r ? low_range.r : high_range.r; result.g = lt.g ? low_range.g : high_range.g; result.b = lt.b ? low_range.b : high_range.b; return result; #else return mix(high_range, low_range, lt); #endif } vec2 encode_normal(vec3 n) { float f = sqrt(8 * n.z + 8); return n.xy / f + 0.5; } vec3 decode_normal (vec2 enc) { vec2 fenc = enc*4-2; float f = dot(fenc,fenc); float g = sqrt(1-f/4); vec3 n; n.xy = fenc*g; n.z = 1-f/2; return n; } vec4 getPosition_d(vec2 pos_screen, float depth) { vec2 sc = pos_screen.xy*2.0; sc /= screen_res; sc -= vec2(1.0,1.0); vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); vec4 pos = inv_proj * ndc; pos /= pos.w; pos.w = 1.0; return pos; } vec4 getPosition(vec2 pos_screen) { //get position in screen space (world units) given window coordinate and depth map float depth = texture2DRect(depthMap, pos_screen.xy).r; return getPosition_d(pos_screen, depth); } vec3 getPositionEye() { return vary_PositionEye; } vec3 getSunlitColor() { return vary_SunlitColor; } vec3 getAmblitColor() { return vary_AmblitColor; } vec3 getAdditiveColor() { return vary_AdditiveColor; } vec3 getAtmosAttenuation() { return vary_AtmosAttenuation; } void setPositionEye(vec3 v) { vary_PositionEye = v; } void setSunlitColor(vec3 v) { vary_SunlitColor = v; } void setAmblitColor(vec3 v) { vary_AmblitColor = v; } void setAdditiveColor(vec3 v) { vary_AdditiveColor = v; } void setAtmosAttenuation(vec3 v) { vary_AtmosAttenuation = v; } void calcAtmospherics(vec3 inPositionEye, float ambFactor) { vec3 P = inPositionEye; setPositionEye(P); vec3 tmpLightnorm = lightnorm.xyz; vec3 Pn = normalize(P); float Plen = length(P); vec4 temp1 = vec4(0); vec3 temp2 = vec3(0); vec4 blue_weight; vec4 haze_weight; vec4 sunlight = sunlight_color; vec4 light_atten; //sunlight attenuation effect (hue and brightness) due to atmosphere //this is used later for sunlight modulation at various altitudes light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y); //I had thought blue_density and haze_density should have equal weighting, //but attenuation due to haze_density tends to seem too strong temp1 = blue_density + vec4(haze_density); blue_weight = blue_density / temp1; haze_weight = vec4(haze_density) / temp1; //(TERRAIN) compute sunlight from lightnorm only (for short rays like terrain) temp2.y = max(0.0, tmpLightnorm.y); temp2.y = 1. / temp2.y; sunlight *= exp( - light_atten * temp2.y); // main atmospheric scattering line integral temp2.z = Plen * density_multiplier; // Transparency (-> temp1) // ATI Bugfix -- can't store temp1*temp2.z*distance_multiplier in a variable because the ati // compiler gets confused. temp1 = exp(-temp1 * temp2.z * distance_multiplier); //final atmosphere attenuation factor setAtmosAttenuation(temp1.rgb); //compute haze glow //(can use temp2.x as temp because we haven't used it yet) temp2.x = dot(Pn, tmpLightnorm.xyz); temp2.x = 1. - temp2.x; //temp2.x is 0 at the sun and increases away from sun temp2.x = max(temp2.x, .03); //was glow.y //set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) temp2.x *= glow.x; //higher glow.x gives dimmer glow (because next step is 1 / "angle") temp2.x = pow(temp2.x, glow.z); //glow.z should be negative, so we're doing a sort of (1 / "angle") function //add "minimum anti-solar illumination" temp2.x += .25; //increase ambient when there are more clouds vec4 tmpAmbient = ambient + (vec4(1.) - ambient) * cloud_shadow * 0.5; /* decrease value and saturation (that in HSV, not HSL) for occluded areas * // for HSV color/geometry used here, see http://gimp-savvy.com/BOOK/index.html?node52.html * // The following line of code performs the equivalent of: * float ambAlpha = tmpAmbient.a; * float ambValue = dot(vec3(tmpAmbient), vec3(0.577)); // projection onto <1/rt(3), 1/rt(3), 1/rt(3)>, the neutral white-black axis * vec3 ambHueSat = vec3(tmpAmbient) - vec3(ambValue); * tmpAmbient = vec4(RenderSSAOEffect.valueFactor * vec3(ambValue) + RenderSSAOEffect.saturationFactor *(1.0 - ambFactor) * ambHueSat, ambAlpha); */ tmpAmbient = vec4(mix(ssao_effect_mat * tmpAmbient.rgb, tmpAmbient.rgb, ambFactor), tmpAmbient.a); //haze color setAdditiveColor( vec3(blue_horizon * blue_weight * (sunlight*(1.-cloud_shadow) + tmpAmbient) + (haze_horizon * haze_weight) * (sunlight*(1.-cloud_shadow) * temp2.x + tmpAmbient))); //brightness of surface both sunlight and ambient /*setSunlitColor(pow(vec3(sunlight * .5), vec3(global_gamma)) * global_gamma); setAmblitColor(pow(vec3(tmpAmbient * .25), vec3(global_gamma)) * global_gamma); setAdditiveColor(pow(getAdditiveColor() * vec3(1.0 - temp1), vec3(global_gamma)) * global_gamma);*/ setSunlitColor(vec3(sunlight * .5)); setAmblitColor(vec3(tmpAmbient * .25)); setAdditiveColor(getAdditiveColor() * vec3(1.0 - temp1)); } #ifdef WATER_FOG uniform vec4 waterPlane; uniform vec4 waterFogColor; uniform float waterFogDensity; uniform float waterFogKS; vec4 applyWaterFogDeferred(vec3 pos, vec4 color) { //normalize view vector vec3 view = normalize(pos); float es = -(dot(view, waterPlane.xyz)); //find intersection point with water plane and eye vector //get eye depth float e0 = max(-waterPlane.w, 0.0); vec3 int_v = waterPlane.w > 0.0 ? view * waterPlane.w/es : vec3(0.0, 0.0, 0.0); //get object depth float depth = length(pos - int_v); //get "thickness" of water float l = max(depth, 0.1); float kd = waterFogDensity; float ks = waterFogKS; vec4 kc = waterFogColor; float F = 0.98; float t1 = -kd * pow(F, ks * e0); float t2 = kd + ks * es; float t3 = pow(F, t2*l) - 1.0; float L = min(t1/t2*t3, 1.0); float D = pow(0.98, l*kd); color.rgb = color.rgb * D + kc.rgb * L; color.a = kc.a + color.a; return color; } #endif vec3 atmosLighting(vec3 light) { light *= getAtmosAttenuation().r; light += getAdditiveColor(); return (2.0 * light); } vec3 atmosTransport(vec3 light) { light *= getAtmosAttenuation().r; light += getAdditiveColor() * 2.0; return light; } vec3 fullbrightAtmosTransport(vec3 light) { float brightness = dot(light.rgb, vec3(0.33333)); return mix(atmosTransport(light.rgb), light.rgb + getAdditiveColor().rgb, brightness * brightness); } vec3 atmosGetDiffuseSunlightColor() { return getSunlitColor(); } vec3 scaleDownLight(vec3 light) { return (light / scene_light_strength ); } vec3 scaleUpLight(vec3 light) { return (light * scene_light_strength); } vec3 atmosAmbient(vec3 light) { return getAmblitColor() + light / 2.0; } vec3 atmosAffectDirectionalLight(float lightIntensity) { return getSunlitColor() * lightIntensity; } vec3 scaleSoftClip(vec3 light) { //soft clip effect: light = 1. - clamp(light, vec3(0.), vec3(1.)); light = 1. - pow(light, gamma.xxx); return light; } vec3 fullbrightScaleSoftClip(vec3 light) { //soft clip effect: return light; } void main() { vec2 tc = vary_fragcoord.xy; float depth = texture2DRect(depthMap, tc.xy).r; vec3 pos = getPosition_d(tc, depth).xyz; vec4 norm = texture2DRect(normalMap, tc); float envIntensity = norm.z; norm.xyz = decode_normal(norm.xy); // unpack norm float da = max(dot(norm.xyz, sun_dir.xyz), 0.0); float light_gamma = 1.0/1.3; da = pow(da, light_gamma); vec4 diffuse = texture2DRect(diffuseRect, tc); //convert to gamma space diffuse.rgb = linear_to_srgb(diffuse.rgb); vec3 col; float bloom = 0.0; { vec4 spec = texture2DRect(specularRect, vary_fragcoord.xy); vec2 scol_ambocc = texture2DRect(lightMap, vary_fragcoord.xy).rg; scol_ambocc = pow(scol_ambocc, vec2(light_gamma)); float scol = max(scol_ambocc.r, diffuse.a); float ambocc = scol_ambocc.g; calcAtmospherics(pos.xyz, ambocc); col = atmosAmbient(vec3(0)); float ambient = min(abs(dot(norm.xyz, sun_dir.xyz)), 1.0); ambient *= 0.5; ambient *= ambient; ambient = (1.0-ambient); col.rgb *= ambient; col += atmosAffectDirectionalLight(max(min(da, scol), 0.0)); col *= diffuse.rgb; vec3 refnormpersp = normalize(reflect(pos.xyz, norm.xyz)); if (spec.a > 0.0) // specular reflection { // the old infinite-sky shiny reflection // float sa = dot(refnormpersp, sun_dir.xyz); vec3 dumbshiny = vary_SunlitColor*scol_ambocc.r*(texture2D(lightFunc, vec2(sa, spec.a)).r); // add the two types of shiny together vec3 spec_contrib = dumbshiny * spec.rgb; bloom = dot(spec_contrib, spec_contrib) / 6; col += spec_contrib; } col = mix(col, diffuse.rgb, diffuse.a); if (envIntensity > 0.0) { //add environmentmap vec3 env_vec = env_mat * refnormpersp; vec3 refcol = textureCube(environmentMap, env_vec).rgb; col = mix(col.rgb, refcol, envIntensity); } if (norm.w < 0.5) { col = mix(atmosLighting(col), fullbrightAtmosTransport(col), diffuse.a); col = mix(scaleSoftClip(col), fullbrightScaleSoftClip(col), diffuse.a); } #ifdef WATER_FOG vec4 fogged = applyWaterFogDeferred(pos,vec4(col, bloom)); col = fogged.rgb; bloom = fogged.a; #endif col = srgb_to_linear(col); //col = vec3(1,0,1); //col.g = envIntensity; } frag_color.rgb = col; frag_color.a = bloom; }