/** * @file class2/deferred/skyF.glsl * * $LicenseInfo:firstyear=2005&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2005, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ uniform mat4 modelview_projection_matrix; // SKY //////////////////////////////////////////////////////////////////////// // The vertex shader for creating the atmospheric sky /////////////////////////////////////////////////////////////////////////////// // Inputs uniform vec3 camPosLocal; uniform vec4 lightnorm; uniform vec4 sunlight_color; uniform vec4 moonlight_color; uniform int sun_up_factor; uniform vec4 ambient; uniform vec4 blue_horizon; uniform vec4 blue_density; uniform float haze_horizon; uniform float haze_density; uniform float cloud_shadow; uniform float density_multiplier; uniform float max_y; uniform vec4 glow; uniform float sun_moon_glow_factor; uniform vec4 cloud_color; #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_data[3]; #else #define frag_data gl_FragData #endif VARYING vec3 pos; ///////////////////////////////////////////////////////////////////////// // The fragment shader for the sky ///////////////////////////////////////////////////////////////////////// uniform vec4 gamma; uniform sampler2D rainbow_map; uniform sampler2D halo_map; uniform float moisture_level; uniform float droplet_radius; uniform float ice_level; vec3 rainbow(float d) { d = clamp(d, -1.0, 0.0); float rad = (droplet_radius - 5.0f) / 1024.0f; return pow(texture2D(rainbow_map, vec2(rad, d)).rgb, vec3(1.8)) * moisture_level; } vec3 halo22(float d) { d = clamp(d, 0.1, 1.0); float v = sqrt(clamp(1 - (d * d), 0, 1)); return texture2D(halo_map, vec2(0, v)).rgb * ice_level; } /// Soft clips the light with a gamma correction vec3 scaleSoftClip(vec3 light); void main() { // World / view / projection // Get relative position vec3 P = pos.xyz - camPosLocal.xyz + vec3(0,50,0); // Set altitude if (P.y > 0.) { P *= (max_y / P.y); } else { P *= (-32000. / P.y); } // Can normalize then vec3 Pn = normalize(P); float Plen = length(P); // Initialize temp variables vec4 temp1 = vec4(0.); vec4 temp2 = vec4(0.); vec4 blue_weight; vec4 haze_weight; vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color; vec4 light_atten; // Sunlight attenuation effect (hue and brightness) due to atmosphere // this is used later for sunlight modulation at various altitudes light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y); // Calculate relative weights temp1 = blue_density + haze_density; blue_weight = blue_density / temp1; haze_weight = haze_density / temp1; // Compute sunlight from P & lightnorm (for long rays like sky) temp2.y = max(0., max(0., Pn.y) * 1.0 + lightnorm.y ); temp2.y = 1. / temp2.y; sunlight *= exp( - light_atten * temp2.y); // Distance temp2.z = Plen * density_multiplier; // Transparency (-> temp1) // ATI Bugfix -- can't store temp1*temp2.z in a variable because the ati // compiler gets confused. temp1 = exp(-temp1 * temp2.z); // Compute haze glow temp2.x = dot(Pn, lightnorm.xyz); temp2.x = 1. - temp2.x; // temp2.x is 0 at the sun and increases away from sun temp2.x = max(temp2.x, .001); // Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) temp2.x *= glow.x; // Higher glow.x gives dimmer glow (because next step is 1 / "angle") temp2.x = pow(temp2.x, glow.z); // glow.z should be negative, so we're doing a sort of (1 / "angle") function // Add "minimum anti-solar illumination" temp2.x += .25; temp2.x *= sun_moon_glow_factor; // Haze color above cloud vec4 color = ( blue_horizon * blue_weight * (sunlight + ambient) + (haze_horizon * haze_weight) * (sunlight * temp2.x + ambient) ); // Increase ambient when there are more clouds vec4 tmpAmbient = ambient; tmpAmbient += (1. - tmpAmbient) * cloud_shadow * 0.5; // Dim sunlight by cloud shadow percentage sunlight *= (1. - cloud_shadow); // Haze color below cloud vec4 additiveColorBelowCloud = ( blue_horizon * blue_weight * (sunlight + tmpAmbient) + (haze_horizon * haze_weight) * (sunlight * temp2.x + tmpAmbient) ); // Final atmosphere additive color *= (1. - temp1); // Attenuate cloud color by atmosphere temp1 = sqrt(temp1); //less atmos opacity (more transparency) below clouds // At horizon, blend high altitude sky color towards the darker color below the clouds color += (additiveColorBelowCloud - color) * (1. - sqrt(temp1)); float optic_d = dot(Pn, lightnorm.xyz); vec3 halo_22 = halo22(optic_d); color.rgb += rainbow(optic_d); color.rgb += halo_22; color *= 2.; /// Gamma correct for WL (soft clip effect). frag_data[0] = vec4(scaleSoftClip(color.rgb), 1.0); frag_data[1] = vec4(0.0,0.0,0.0,0.0); frag_data[2] = vec4(0.5,0.5,0.0,1.0); //1.0 in norm.w masks off fog }