/** * @file class2/deferred/skyF.glsl * * $LicenseInfo:firstyear=2005&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2005, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ uniform mat4 modelview_projection_matrix; // SKY //////////////////////////////////////////////////////////////////////// // The vertex shader for creating the atmospheric sky /////////////////////////////////////////////////////////////////////////////// // Inputs uniform vec3 camPosLocal; uniform vec3 lightnorm; uniform vec3 sunlight_color; uniform vec3 moonlight_color; uniform int sun_up_factor; uniform vec3 ambient_color; uniform vec3 blue_horizon; uniform vec3 blue_density; uniform float haze_horizon; uniform float haze_density; uniform float cloud_shadow; uniform float density_multiplier; uniform float distance_multiplier; uniform float max_y; uniform vec3 glow; uniform float sun_moon_glow_factor; uniform vec3 cloud_color; #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_data[3]; #else #define frag_data gl_FragData #endif VARYING vec3 pos; ///////////////////////////////////////////////////////////////////////// // The fragment shader for the sky ///////////////////////////////////////////////////////////////////////// uniform sampler2D rainbow_map; uniform sampler2D halo_map; uniform float moisture_level; uniform float droplet_radius; uniform float ice_level; vec3 rainbow(float d) { // d is the dot product of view and sun directions, so ranging -1.0..1.0 // 'interesting' values of d are the range -0.75..-0.825, when view is nearly opposite of sun vec // Rainbox texture mode is GL_REPEAT, so tc of -.75 is equiv to 0.25, -0.825 equiv to 0.175. // SL-13629 Rainbow texture has colors within the correct .175...250 range, but order is inverted. // Rather than replace the texture, we mirror and translate the y tc to keep the colors within the // interesting range, but in reversed order: i.e. d = (1 - d) - 1.575 d = clamp(-0.575 - d, 0.0, 1.0); // With the colors in the lower 1/4 of the texture, inverting the coords leaves most of it inaccessible. // So, we can stretch the texcoord above the colors (ie > 0.25) to fill the entire remaining coordinate // space. This improves gradation, reduces banding within the rainbow interior. (1-0.25) / (0.425/0.25) = 4.2857 float interior_coord = max(0.0, d - 0.25) * 4.2857; d = clamp(d, 0.0, 0.25) + interior_coord; float rad = (droplet_radius - 5.0f) / 1024.0f; return pow(texture2D(rainbow_map, vec2(rad, d)).rgb, vec3(1.8)) * moisture_level; } vec3 halo22(float d) { d = clamp(d, 0.1, 1.0); float v = sqrt(clamp(1 - (d * d), 0, 1)); return texture2D(halo_map, vec2(0, v)).rgb * ice_level; } /// Soft clips the light with a gamma correction vec3 scaleSoftClip(vec3 light); void main() { // World / view / projection // Get relative position (offset why?) vec3 rel_pos = pos.xyz - camPosLocal.xyz + vec3(0, 50, 0); // Adj position vector to clamp altitude if (rel_pos.y > 0.) { rel_pos *= (max_y / rel_pos.y); } if (rel_pos.y < 0.) { rel_pos *= (-32000. / rel_pos.y); } // Normalized vec3 rel_pos_norm = normalize(rel_pos); float rel_pos_len = length(rel_pos); // Initialize temp variables vec3 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color; // Sunlight attenuation effect (hue and brightness) due to atmosphere // this is used later for sunlight modulation at various altitudes vec3 light_atten = (blue_density + vec3(haze_density * 0.25)) * (density_multiplier * max_y); // Calculate relative weights vec3 combined_haze = abs(blue_density) + vec3(abs(haze_density)); vec3 blue_weight = blue_density / combined_haze; vec3 haze_weight = haze_density / combined_haze; // Compute sunlight from rel_pos & lightnorm (for long rays like sky) float off_axis = 1.0 / max(1e-6, max(0, rel_pos_norm.y) + lightnorm.y); sunlight *= exp(-light_atten * off_axis); // Distance float density_dist = rel_pos_len * density_multiplier; // Transparency (-> combined_haze) // ATI Bugfix -- can't store combined_haze*density_dist in a variable because the ati // compiler gets confused. combined_haze = exp(-combined_haze * density_dist); // Compute haze glow float haze_glow = dot(rel_pos_norm, lightnorm.xyz); haze_glow = 1. - haze_glow; // haze_glow is 0 at the sun and increases away from sun haze_glow = max(haze_glow, .001); // Set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) haze_glow *= glow.x; // Higher glow.x gives dimmer glow (because next step is 1 / "angle") haze_glow = pow(haze_glow, glow.z); // glow.z should be negative, so we're doing a sort of (1 / "angle") function // Add "minimum anti-solar illumination" // For sun, add to glow. For moon, remove glow entirely. SL-13768 haze_glow = (sun_moon_glow_factor < 1.0) ? 0.0 : (sun_moon_glow_factor * (haze_glow + 0.25)); // Haze color above cloud vec3 color = blue_horizon * blue_weight * (sunlight + ambient_color) + haze_horizon * haze_weight * (sunlight * haze_glow + ambient_color); // Final atmosphere additive color *= (1. - combined_haze); // Increase ambient when there are more clouds // TODO 9/20: DJH what does this do? max(0,(1-ambient)) will change the color vec3 ambient = ambient_color + max(vec3(0), (1. - ambient_color)) * cloud_shadow * 0.5; // Dim sunlight by cloud shadow percentage sunlight *= max(0.0, (1. - cloud_shadow)); // Haze color below cloud vec3 add_below_cloud = blue_horizon * blue_weight * (sunlight + ambient) + haze_horizon * haze_weight * (sunlight * haze_glow + ambient); // Attenuate cloud color by atmosphere combined_haze = sqrt(combined_haze); // less atmos opacity (more transparency) below clouds // At horizon, blend high altitude sky color towards the darker color below the clouds color += (add_below_cloud - color) * (1. - sqrt(combined_haze)); float optic_d = dot(rel_pos_norm, lightnorm.xyz); vec3 halo_22 = halo22(optic_d); color.rgb += rainbow(optic_d); color.rgb += halo_22; color.rgb *= 2.; color.rgb = scaleSoftClip(color.rgb); // Gamma correct for WL (soft clip effect). frag_data[0] = vec4(color.rgb, 1.0); frag_data[1] = vec4(0.0, 0.0, 0.0, 0.0); frag_data[2] = vec4(0.0, 0.0, 0.0, GBUFFER_FLAG_SKIP_ATMOS); // 1.0 in norm.w masks off fog }