/** * @file class1\windlight\atmosphericsFuncs.glsl * * $LicenseInfo:firstyear=2005&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2019, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ uniform vec4 lightnorm; uniform vec4 sunlight_color; uniform vec4 moonlight_color; uniform int sun_up_factor; uniform vec4 ambient_color; uniform vec4 blue_horizon; uniform vec4 blue_density; uniform float haze_horizon; uniform float haze_density; uniform float cloud_shadow; uniform float density_multiplier; uniform float distance_multiplier; uniform float max_y; uniform vec4 glow; uniform float scene_light_strength; uniform mat3 ssao_effect_mat; uniform int no_atmo; uniform float sun_moon_glow_factor; float getAmbientClamp() { return 1.0f; } void calcAtmosphericVars(vec3 inPositionEye, vec3 light_dir, float ambFactor, out vec3 sunlit, out vec3 amblit, out vec3 additive, out vec3 atten, bool use_ao) { vec3 P = inPositionEye; //(TERRAIN) limit altitude if (P.y > max_y) P *= (max_y / P.y); if (P.y < -max_y) P *= (-max_y / P.y); vec3 tmpLightnorm = lightnorm.xyz; vec3 Pn = normalize(P); float Plen = length(P); vec4 temp1 = vec4(0); vec3 temp2 = vec3(0); vec4 blue_weight; vec4 haze_weight; vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color; vec4 light_atten; float dens_mul = density_multiplier; float dist_mul = distance_multiplier; //sunlight attenuation effect (hue and brightness) due to atmosphere //this is used later for sunlight modulation at various altitudes light_atten = (blue_density + vec4(haze_density * 0.25)) * (dens_mul * max_y); //I had thought blue_density and haze_density should have equal weighting, //but attenuation due to haze_density tends to seem too strong temp1 = blue_density + vec4(haze_density); blue_weight = blue_density / temp1; haze_weight = vec4(haze_density) / temp1; //(TERRAIN) compute sunlight from lightnorm only (for short rays like terrain) temp2.y = max(0.0, tmpLightnorm.y); if (abs(temp2.y) > 0.000001f) { temp2.y = 1. / abs(temp2.y); } temp2.y = max(0.0000001f, temp2.y); sunlight *= exp(-light_atten * temp2.y); // main atmospheric scattering line integral temp2.z = Plen * dens_mul; // Transparency (-> temp1) // ATI Bugfix -- can't store temp1*temp2.z*dist_mul in a variable because the ati // compiler gets confused. temp1 = exp(-temp1 * temp2.z * dist_mul); //final atmosphere attenuation factor atten = temp1.rgb; //compute haze glow //(can use temp2.x as temp because we haven't used it yet) temp2.x = dot(Pn, tmpLightnorm.xyz); // dampen sun additive contrib when not facing it... if (length(light_dir) > 0.01) { temp2.x *= max(0.0f, dot(light_dir, Pn)); } temp2.x = 1. - temp2.x; //temp2.x is 0 at the sun and increases away from sun temp2.x = max(temp2.x, .001); //was glow.y //set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) temp2.x *= glow.x; //higher glow.x gives dimmer glow (because next step is 1 / "angle") temp2.x = pow(temp2.x, glow.z); //glow.z should be negative, so we're doing a sort of (1 / "angle") function //add "minimum anti-solar illumination" temp2.x += .25; temp2.x *= sun_moon_glow_factor; vec4 amb_color = ambient_color; //increase ambient when there are more clouds vec4 tmpAmbient = amb_color + (vec4(1.) - amb_color) * cloud_shadow * 0.5; /* decrease value and saturation (that in HSV, not HSL) for occluded areas * // for HSV color/geometry used here, see http://gimp-savvy.com/BOOK/index.html?node52.html * // The following line of code performs the equivalent of: * float ambAlpha = tmpAmbient.a; * float ambValue = dot(vec3(tmpAmbient), vec3(0.577)); // projection onto <1/rt(3), 1/rt(3), 1/rt(3)>, the neutral white-black axis * vec3 ambHueSat = vec3(tmpAmbient) - vec3(ambValue); * tmpAmbient = vec4(RenderSSAOEffect.valueFactor * vec3(ambValue) + RenderSSAOEffect.saturationFactor *(1.0 - ambFactor) * ambHueSat, ambAlpha); */ if (use_ao) { tmpAmbient = vec4(mix(ssao_effect_mat * tmpAmbient.rgb, tmpAmbient.rgb, ambFactor), tmpAmbient.a); } //haze color additive = vec3(blue_horizon * blue_weight * (sunlight*(1.-cloud_shadow) + tmpAmbient) + (haze_horizon * haze_weight) * (sunlight*(1.-cloud_shadow) * temp2.x + tmpAmbient)); //brightness of surface both sunlight and ambient sunlit = sunlight.rgb * 0.5; amblit = tmpAmbient.rgb * .25; additive *= vec3(1.0 - temp1); }