/** * @file class1\windlight\atmosphericsFuncs.glsl * * $LicenseInfo:firstyear=2005&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2019, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ uniform vec4 lightnorm; uniform vec4 sunlight_color; uniform vec4 moonlight_color; uniform int sun_up_factor; uniform vec4 ambient_color; uniform vec4 blue_horizon; uniform vec4 blue_density; uniform float haze_horizon; uniform float haze_density; uniform float cloud_shadow; uniform float density_multiplier; uniform float distance_multiplier; uniform float max_y; uniform vec4 glow; uniform float scene_light_strength; uniform mat3 ssao_effect_mat; uniform int no_atmo; uniform float sun_moon_glow_factor; float getAmbientClamp() { return 1.0f; } // Returns colors in sRGB void calcAtmosphericVars(vec3 inPositionEye, vec3 light_dir, float ambFactor, out vec3 sunlit, out vec3 amblit, out vec3 additive, out vec3 atten, bool use_ao) { vec3 rel_pos = inPositionEye; //(TERRAIN) limit altitude if (abs(rel_pos.y) > max_y) rel_pos *= (max_y / rel_pos.y); vec3 rel_pos_norm = normalize(rel_pos); float rel_pos_len = length(rel_pos); vec4 sunlight = (sun_up_factor == 1) ? sunlight_color : moonlight_color; // sunlight attenuation effect (hue and brightness) due to atmosphere // this is used later for sunlight modulation at various altitudes vec4 light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y); // I had thought blue_density and haze_density should have equal weighting, // but attenuation due to haze_density tends to seem too strong vec4 combined_haze = blue_density + vec4(haze_density); vec4 blue_weight = blue_density / combined_haze; vec4 haze_weight = vec4(haze_density) / combined_haze; //(TERRAIN) compute sunlight from lightnorm y component. Factor is roughly cosecant(sun elevation) (for short rays like terrain) float above_horizon_factor = 1.0 / max(1e-6, lightnorm.y); sunlight *= exp(-light_atten * above_horizon_factor); // for sun [horizon..overhead] this maps to an exp curve [0..1] // main atmospheric scattering line integral float density_dist = rel_pos_len * density_multiplier; // Transparency (-> combined_haze) // ATI Bugfix -- can't store combined_haze*density_dist*distance_multiplier in a variable because the ati // compiler gets confused. combined_haze = exp(-combined_haze * density_dist * distance_multiplier); // final atmosphere attenuation factor atten = combined_haze.rgb; // compute haze glow float haze_glow = dot(rel_pos_norm, lightnorm.xyz); // dampen sun additive contrib when not facing it... // SL-13539: This "if" clause causes an "additive" white artifact at roughly 77 degreees. // if (length(light_dir) > 0.01) haze_glow *= max(0.0f, dot(light_dir, rel_pos_norm)); haze_glow = 1. - haze_glow; // haze_glow is 0 at the sun and increases away from sun haze_glow = max(haze_glow, .001); // set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) haze_glow *= glow.x; // higher glow.x gives dimmer glow (because next step is 1 / "angle") haze_glow = pow(haze_glow, glow.z); // glow.z should be negative, so we're doing a sort of (1 / "angle") function // add "minimum anti-solar illumination" haze_glow += .25; haze_glow *= sun_moon_glow_factor; vec4 amb_color = ambient_color; // increase ambient when there are more clouds vec4 tmpAmbient = amb_color + (vec4(1.) - amb_color) * cloud_shadow * 0.5; /* decrease value and saturation (that in HSV, not HSL) for occluded areas * // for HSV color/geometry used here, see http://gimp-savvy.com/BOOK/index.html?node52.html * // The following line of code performs the equivalent of: * float ambAlpha = tmpAmbient.a; * float ambValue = dot(vec3(tmpAmbient), vec3(0.577)); // projection onto <1/rt(3), 1/rt(3), 1/rt(3)>, the neutral white-black axis * vec3 ambHueSat = vec3(tmpAmbient) - vec3(ambValue); * tmpAmbient = vec4(RenderSSAOEffect.valueFactor * vec3(ambValue) + RenderSSAOEffect.saturationFactor *(1.0 - ambFactor) * ambHueSat, * ambAlpha); */ if (use_ao) { tmpAmbient = vec4(mix(ssao_effect_mat * tmpAmbient.rgb, tmpAmbient.rgb, ambFactor), tmpAmbient.a); } // Similar/Shared Algorithms: // indra\llinventory\llsettingssky.cpp -- LLSettingsSky::calculateLightSettings() // indra\newview\app_settings\shaders\class1\windlight\atmosphericsFuncs.glsl -- calcAtmosphericVars() // haze color vec3 cs = sunlight.rgb * (1. - cloud_shadow); additive = (blue_horizon.rgb * blue_weight.rgb) * (cs + tmpAmbient.rgb) + (haze_horizon * haze_weight.rgb) * (cs * haze_glow + tmpAmbient.rgb); // brightness of surface both sunlight and ambient sunlit = sunlight.rgb * 0.5; amblit = tmpAmbient.rgb * .25; additive *= vec3(1.0 - combined_haze); }