/** * @file sunLightSSAOF.glsl * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2007, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #extension GL_ARB_texture_rectangle : enable #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_color; #else #define frag_color gl_FragColor #endif //class 1 -- no shadow, SSAO only uniform sampler2DRect depthMap; uniform sampler2DRect normalMap; uniform sampler2D noiseMap; // Inputs uniform float ssao_radius; uniform float ssao_max_radius; uniform float ssao_factor; uniform float ssao_factor_inv; VARYING vec2 vary_fragcoord; uniform mat4 inv_proj; uniform vec2 screen_res; #ifdef SINGLE_FP_ONLY vec2 encode_normal(vec3 n) { vec2 sn; sn.xy = (n.xy * vec2(0.5f,0.5f)) + vec2(0.5f,0.5f); return sn; } vec3 decode_normal (vec2 enc) { vec3 n; n.xy = (enc.xy * vec2(2.0f,2.0f)) - vec2(1.0f,1.0f); n.z = sqrt(1.0f - dot(n.xy,n.xy)); return n; } #else vec2 encode_normal(vec3 n) { float f = sqrt(8 * n.z + 8); return n.xy / f + 0.5; } vec3 decode_normal (vec2 enc) { vec2 fenc = enc*4-2; float f = dot(fenc,fenc); float g = sqrt(1-f/4); vec3 n; n.xy = fenc*g; n.z = 1-f/2; return n; } #endif vec4 getPosition(vec2 pos_screen) { float depth = texture2DRect(depthMap, pos_screen.xy).r; vec2 sc = pos_screen.xy*2.0; sc /= screen_res; sc -= vec2(1.0,1.0); vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); vec4 pos = inv_proj * ndc; pos /= pos.w; pos.w = 1.0; return pos; } //calculate decreases in ambient lighting when crowded out (SSAO) float calcAmbientOcclusion(vec4 pos, vec3 norm) { float ret = 1.0; vec2 kern[8]; // exponentially (^2) distant occlusion samples spread around origin kern[0] = vec2(-1.0, 0.0) * 0.125*0.125; kern[1] = vec2(1.0, 0.0) * 0.250*0.250; kern[2] = vec2(0.0, 1.0) * 0.375*0.375; kern[3] = vec2(0.0, -1.0) * 0.500*0.500; kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625; kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750; kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875; kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000; vec2 pos_screen = vary_fragcoord.xy; vec3 pos_world = pos.xyz; vec2 noise_reflect = texture2D(noiseMap, vary_fragcoord.xy/128.0).xy; float angle_hidden = 0.0; int points = 0; float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations unrolling?) for (int i = 0; i < 8; i++) { vec2 samppos_screen = pos_screen + scale * reflect(kern[i], noise_reflect); vec3 samppos_world = getPosition(samppos_screen).xyz; vec3 diff = pos_world - samppos_world; float dist2 = dot(diff, diff); // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area // --> solid angle shrinking by the square of distance //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 //(k should vary inversely with # of samples, but this is taken care of later) angle_hidden = angle_hidden + float(dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) * min(1.0/dist2, ssao_factor_inv); // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion" points = points + int(diff.z > -1.0); } angle_hidden = min(ssao_factor*angle_hidden/float(points), 1.0); ret = (1.0 - (float(points != 0) * angle_hidden)); return min(ret, 1.0); } void main() { vec2 pos_screen = vary_fragcoord.xy; //try doing an unproject here vec4 pos = getPosition(pos_screen); vec3 norm = texture2DRect(normalMap, pos_screen).xyz; norm = decode_normal(norm.xy); frag_color[0] = 1.0; frag_color[1] = calcAmbientOcclusion(pos, norm); frag_color[2] = 1.0; frag_color[3] = 1.0; }