/** * @file class1/deferred/shadowUtil.glsl * * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2007, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ uniform sampler2DRect normalMap; uniform sampler2DRect depthMap; uniform sampler2DShadow shadowMap0; uniform sampler2DShadow shadowMap1; uniform sampler2DShadow shadowMap2; uniform sampler2DShadow shadowMap3; uniform sampler2DShadow shadowMap4; uniform sampler2DShadow shadowMap5; uniform vec3 sun_dir; uniform vec3 moon_dir; uniform vec2 shadow_res; uniform vec2 proj_shadow_res; uniform mat4 shadow_matrix[6]; uniform vec4 shadow_clip; uniform float shadow_bias; uniform float spot_shadow_bias; uniform float spot_shadow_offset; uniform mat4 inv_proj; uniform vec2 screen_res; int sun_up_factor; float pcfShadow(sampler2DShadow shadowMap, vec4 stc, float bias_mul, vec2 pos_screen, vec3 light_dir) { stc.xyz /= stc.w; float offset = max(0.75, light_dir.z); stc.z += offset * shadow_bias * bias_mul; stc.x = floor(stc.x*shadow_res.x + fract(stc.y*pos_screen.y*3.14159))/shadow_res.x; // add some chaotic jitter to X sample pos according to Y to disguise the snapping going on here float cs = shadow2D(shadowMap, stc.xyz).x; float shadow = cs * 4.0; shadow += shadow2D(shadowMap, stc.xyz+vec3(2.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(1.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(-1.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(-2.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; return shadow*0.125; } float pcfSpotShadow(sampler2DShadow shadowMap, vec4 stc, float bias_scale, vec2 pos_screen) { stc.xyz /= stc.w; stc.z += spot_shadow_bias * bias_scale; stc.x = floor(proj_shadow_res.x * stc.x + fract(pos_screen.y*0.666666666)) / proj_shadow_res.x; // snap float cs = shadow2D(shadowMap, stc.xyz).x; float shadow = cs; vec2 off = 1.0/proj_shadow_res; off.y *= 1.5; shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x*2.0, off.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(off.x, -off.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x, off.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(-off.x*2.0, -off.y, 0.0)).x; return shadow*0.2; } float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen) { vec3 light_dir = (sun_up_factor == 1) ? sun_dir : moon_dir; float dp_sun = max(0.0, dot(sun_dir.xyz, norm)); float dp_moon = max(0.0, dot(moon_dir.xyz, norm)); float dp_directional_light = max(dp_sun,dp_moon); dp_directional_light = clamp(dp_directional_light, 0.0, 1.0); vec3 shadow_pos = pos.xyz; float shadow = 0.0f; vec4 spos = vec4(shadow_pos,1.0); // if we know this point is facing away from the sun then we know it's in shadow without having to do a squirrelly shadow-map lookup if (dp_directional_light <= 0.0) { return 0.0; } if (spos.z > -shadow_clip.w) { vec4 lpos; vec4 near_split = shadow_clip*-0.75; vec4 far_split = shadow_clip*-1.25; vec4 transition_domain = near_split-far_split; float weight = 0.0; if (spos.z < near_split.z) { lpos = shadow_matrix[3]*spos; float w = 1.0; w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; shadow += pcfShadow(shadowMap3, lpos, 0.5, pos_screen, light_dir)*w; weight += w; shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); } if (spos.z < near_split.y && spos.z > far_split.z) { lpos = shadow_matrix[2]*spos; float w = 1.0; w -= max(spos.z-far_split.y, 0.0)/transition_domain.y; w -= max(near_split.z-spos.z, 0.0)/transition_domain.z; shadow += pcfShadow(shadowMap2, lpos, 0.75, pos_screen, light_dir)*w; weight += w; } if (spos.z < near_split.x && spos.z > far_split.y) { lpos = shadow_matrix[1]*spos; float w = 1.0; w -= max(spos.z-far_split.x, 0.0)/transition_domain.x; w -= max(near_split.y-spos.z, 0.0)/transition_domain.y; shadow += pcfShadow(shadowMap1, lpos, 0.88, pos_screen, light_dir)*w; weight += w; } if (spos.z > far_split.x) { lpos = shadow_matrix[0]*spos; float w = 1.0; w -= max(near_split.x-spos.z, 0.0)/transition_domain.x; shadow += pcfShadow(shadowMap0, lpos, 1.0, pos_screen, light_dir)*w; weight += w; } shadow /= weight; } shadow = min(dp_directional_light, shadow); return shadow; } float sampleSpotShadow(vec3 pos, vec3 norm, int index, vec2 pos_screen) { float shadow = 0.0f; pos += norm * spot_shadow_offset; vec4 spos = vec4(pos,1.0); if (spos.z > -shadow_clip.w) { vec4 lpos; vec4 near_split = shadow_clip*-0.75; vec4 far_split = shadow_clip*-1.25; vec4 transition_domain = near_split-far_split; float weight = 0.0; { float w = 1.0; w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; if (index == 0) { lpos = shadow_matrix[4]*spos; shadow += pcfSpotShadow(shadowMap4, lpos, 0.8, spos.xy)*w; } else { lpos = shadow_matrix[5]*spos; shadow += pcfSpotShadow(shadowMap5, lpos, 0.8, spos.xy)*w; } weight += w; shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); } shadow /= weight; } return shadow; }