/** * @file multiSpotLightF.glsl * * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2007, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_color; #else #define frag_color gl_FragColor #endif //class 1 -- no shadows #extension GL_ARB_texture_rectangle : enable #extension GL_ARB_shader_texture_lod : enable uniform sampler2DRect diffuseRect; uniform sampler2DRect specularRect; uniform sampler2DRect depthMap; uniform sampler2DRect normalMap; uniform samplerCube environmentMap; uniform sampler2D noiseMap; uniform sampler2D projectionMap; uniform sampler2D lightFunc; uniform mat4 proj_mat; //screen space to light space uniform float proj_near; //near clip for projection uniform vec3 proj_p; //plane projection is emitting from (in screen space) uniform vec3 proj_n; uniform float proj_focus; //distance from plane to begin blurring uniform float proj_lod; //(number of mips in proj map) uniform float proj_range; //range between near clip and far clip plane of projection uniform float proj_ambient_lod; uniform float proj_ambiance; uniform float near_clip; uniform float far_clip; uniform vec3 proj_origin; //origin of projection to be used for angular attenuation uniform float sun_wash; uniform vec3 center; uniform vec3 color; uniform float falloff; uniform float size; VARYING vec4 vary_fragcoord; uniform vec2 screen_res; uniform mat4 inv_proj; vec2 encode_normal(vec3 n) { float f = sqrt(8 * n.z + 8); return n.xy / f + 0.5; } vec3 decode_normal (vec2 enc) { vec2 fenc = enc*4-2; float f = dot(fenc,fenc); float g = sqrt(1-f/4); vec3 n; n.xy = fenc*g; n.z = 1-f/2; return n; } vec3 srgb_to_linear(vec3 cs) { vec3 low_range = cs / vec3(12.92); vec3 high_range = pow((cs+vec3(0.055))/vec3(1.055), vec3(2.4)); bvec3 lte = lessThanEqual(cs,vec3(0.04045)); #ifdef OLD_SELECT vec3 result; result.r = lte.r ? low_range.r : high_range.r; result.g = lte.g ? low_range.g : high_range.g; result.b = lte.b ? low_range.b : high_range.b; return result; #else return mix(high_range, low_range, lte); #endif } vec3 linear_to_srgb(vec3 cl) { cl = clamp(cl, vec3(0), vec3(1)); vec3 low_range = cl * 12.92; vec3 high_range = 1.055 * pow(cl, vec3(0.41666)) - 0.055; bvec3 lt = lessThan(cl,vec3(0.0031308)); #ifdef OLD_SELECT vec3 result; result.r = lt.r ? low_range.r : high_range.r; result.g = lt.g ? low_range.g : high_range.g; result.b = lt.b ? low_range.b : high_range.b; return result; #else return mix(high_range, low_range, lt); #endif } vec4 texture2DLodSpecular(sampler2D projectionMap, vec2 tc, float lod) { vec4 ret = texture2DLod(projectionMap, tc, lod); ret.rgb = srgb_to_linear(ret.rgb); vec2 dist = vec2(0.5) - abs(tc-vec2(0.5)); float det = min(lod/(proj_lod*0.5), 1.0); float d = min(dist.x, dist.y); d *= min(1, d * (proj_lod - lod)); float edge = 0.25*det; ret *= clamp(d/edge, 0.0, 1.0); return ret; } vec4 texture2DLodDiffuse(sampler2D projectionMap, vec2 tc, float lod) { vec4 ret = texture2DLod(projectionMap, tc, lod); ret.rgb = srgb_to_linear(ret.rgb); vec2 dist = vec2(0.5) - abs(tc-vec2(0.5)); float det = min(lod/(proj_lod*0.5), 1.0); float d = min(dist.x, dist.y); float edge = 0.25*det; ret *= clamp(d/edge, 0.0, 1.0); return ret; } vec4 texture2DLodAmbient(sampler2D projectionMap, vec2 tc, float lod) { vec4 ret = texture2DLod(projectionMap, tc, lod); ret.rgb = srgb_to_linear(ret.rgb); vec2 dist = tc-vec2(0.5); float d = dot(dist,dist); ret *= min(clamp((0.25-d)/0.25, 0.0, 1.0), 1.0); return ret; } vec4 getPosition(vec2 pos_screen) { float depth = texture2DRect(depthMap, pos_screen.xy).r; vec2 sc = pos_screen.xy*2.0; sc /= screen_res; sc -= vec2(1.0,1.0); vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); vec4 pos = inv_proj * ndc; pos /= pos.w; pos.w = 1.0; return pos; } void main() { vec4 frag = vary_fragcoord; frag.xyz /= frag.w; frag.xyz = frag.xyz*0.5+0.5; frag.xy *= screen_res; vec3 pos = getPosition(frag.xy).xyz; vec3 lv = center.xyz-pos.xyz; float dist = length(lv); dist /= size; if (dist > 1.0) { discard; } vec3 norm = texture2DRect(normalMap, frag.xy).xyz; float envIntensity = norm.z; norm = decode_normal(norm.xy); norm = normalize(norm); float l_dist = -dot(lv, proj_n); vec4 proj_tc = (proj_mat * vec4(pos.xyz, 1.0)); if (proj_tc.z < 0.0) { discard; } proj_tc.xyz /= proj_tc.w; float fa = falloff+1.0; float dist_atten = min(1.0-(dist-1.0*(1.0-fa))/fa, 1.0); dist_atten *= dist_atten; dist_atten *= 2.0; if (dist_atten <= 0.0) { discard; } lv = proj_origin-pos.xyz; lv = normalize(lv); float da = dot(norm, lv); vec3 col = vec3(0,0,0); vec3 diff_tex = texture2DRect(diffuseRect, frag.xy).rgb; vec3 dlit = vec3(0, 0, 0); float noise = texture2D(noiseMap, frag.xy/128.0).b; if (proj_tc.z > 0.0 && proj_tc.x < 1.0 && proj_tc.y < 1.0 && proj_tc.x > 0.0 && proj_tc.y > 0.0) { float lit = 0.0; float amb_da = proj_ambiance; if (da > 0.0) { float diff = clamp((l_dist-proj_focus)/proj_range, 0.0, 1.0); float lod = diff * proj_lod; vec4 plcol = texture2DLodDiffuse(projectionMap, proj_tc.xy, lod); dlit = color.rgb * plcol.rgb * plcol.a; lit = da * dist_atten * noise; col = dlit*lit*diff_tex; amb_da += (da*0.5)*proj_ambiance; } //float diff = clamp((proj_range-proj_focus)/proj_range, 0.0, 1.0); vec4 amb_plcol = texture2DLodAmbient(projectionMap, proj_tc.xy, proj_lod); amb_da += (da*da*0.5+0.5)*proj_ambiance; amb_da *= dist_atten * noise; amb_da = min(amb_da, 1.0-lit); col += amb_da*color.rgb*diff_tex*amb_plcol.rgb*amb_plcol.a; } vec4 spec = texture2DRect(specularRect, frag.xy); if (spec.a > 0.0) { dlit *= min(da*6.0, 1.0) * dist_atten; vec3 npos = -normalize(pos); //vec3 ref = dot(pos+lv, norm); vec3 h = normalize(lv+npos); float nh = dot(norm, h); float nv = dot(norm, npos); float vh = dot(npos, h); float sa = nh; float fres = pow(1 - dot(h, npos), 5)*0.4+0.5; float gtdenom = 2 * nh; float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh)); if (nh > 0.0) { float scol = fres*texture2D(lightFunc, vec2(nh, spec.a)).r*gt/(nh*da); col += dlit*scol*spec.rgb; //col += spec.rgb; } } if (envIntensity > 0.0) { vec3 ref = reflect(normalize(pos), norm); //project from point pos in direction ref to plane proj_p, proj_n vec3 pdelta = proj_p-pos; float ds = dot(ref, proj_n); if (ds < 0.0) { vec3 pfinal = pos + ref * dot(pdelta, proj_n)/ds; vec4 stc = (proj_mat * vec4(pfinal.xyz, 1.0)); if (stc.z > 0.0) { stc /= stc.w; if (stc.x < 1.0 && stc.y < 1.0 && stc.x > 0.0 && stc.y > 0.0) { col += color.rgb * texture2DLodSpecular(projectionMap, stc.xy, (1 - spec.a) * (proj_lod * 0.6)).rgb * envIntensity; } } } } frag_color.rgb = col; frag_color.a = 0.0; }