/** * @file materialF.glsl * * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2007, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ /*[EXTRA_CODE_HERE]*/ #define DIFFUSE_ALPHA_MODE_IGNORE 0 #define DIFFUSE_ALPHA_MODE_BLEND 1 #define DIFFUSE_ALPHA_MODE_MASK 2 #define DIFFUSE_ALPHA_MODE_EMISSIVE 3 uniform float emissive_brightness; uniform float display_gamma; uniform int sun_up_factor; #ifdef WATER_FOG vec4 applyWaterFogView(vec3 pos, vec4 color); #endif vec3 atmosFragLighting(vec3 l, vec3 additive, vec3 atten); vec3 scaleSoftClipFrag(vec3 l); void calcAtmosphericVars(vec3 inPositionEye, float ambFactor, out vec3 sunlit, out vec3 amblit, out vec3 additive, out vec3 atten); vec3 srgb_to_linear(vec3 cs); vec3 linear_to_srgb(vec3 cs); #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND) #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_color; #else #define frag_color gl_FragColor #endif #ifdef HAS_SUN_SHADOW float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen); #endif uniform samplerCube environmentMap; uniform sampler2D lightFunc; // Inputs uniform vec4 morphFactor; uniform vec3 camPosLocal; //uniform vec4 camPosWorld; uniform vec4 gamma; uniform mat3 env_mat; uniform mat3 ssao_effect_mat; uniform vec3 sun_dir; uniform vec3 moon_dir; VARYING vec2 vary_fragcoord; VARYING vec3 vary_position; uniform mat4 proj_mat; uniform mat4 inv_proj; uniform vec2 screen_res; uniform vec4 light_position[8]; uniform vec3 light_direction[8]; uniform vec4 light_attenuation[8]; uniform vec3 light_diffuse[8]; float getAmbientClamp(); vec3 calcPointLightOrSpotLight(vec3 light_col, vec3 npos, vec3 diffuse, vec4 spec, vec3 v, vec3 n, vec4 lp, vec3 ln, float la, float fa, float is_pointlight, inout float glare, float ambiance) { //get light vector vec3 lv = lp.xyz-v; //get distance float d = length(lv); float da = 1.0; vec3 col = vec3(0,0,0); vec4 proj_tc = proj_mat * lp; if (proj_tc.z < 0 || proj_tc.z > 1 || proj_tc.x < 0 || proj_tc.x > 1 || proj_tc.y < 0 || proj_tc.y > 1) { return col; } if (d > 0.0) { //normalize light vector lv = normalize(lv); //distance attenuation float dist = (la > 0) ? d/la : 1.0f; fa += 1.0f; float dist_atten = ( fa > 0) ? clamp(1.0-(dist-1.0*(1.0-fa))/fa, 0.0, 1.0) : 1.0f; dist_atten *= dist_atten; dist_atten *= 2.2f; if (dist_atten <= 0) { return col; } // spotlight coefficient. float spot = max(dot(-ln, lv), is_pointlight); //angular attenuation da = dot(n, lv); da = clamp(da, 0.0, 1.0); da *= spot*spot; // GL_SPOT_EXPONENT=2 float lit = max(da * dist_atten, 0.0); float amb_da = ambiance; if (da > 0) { col = light_col*lit*diffuse; amb_da += (da*0.5 + 0.5) * ambiance; amb_da += (da*da*0.5+0.5) * ambiance; } amb_da *= dist_atten; amb_da = min(amb_da, 1.0f - lit); col.rgb += amb_da * 0.25 * light_col * diffuse; if (spec.a > 0.0) { //vec3 ref = dot(pos+lv, norm); vec3 h = normalize(lv+npos); float nh = dot(n, h); float nv = dot(n, npos); float vh = dot(npos, h); float sa = nh; float fres = pow(1 - dot(h, npos), 5)*0.4+0.5; float gtdenom = 2 * nh; float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh)); if (nh > 0.0) { float scol = fres*texture2D(lightFunc, vec2(nh, spec.a)).r*gt/(nh*da); vec3 speccol = lit*scol*light_col.rgb*spec.rgb; speccol = clamp(speccol, vec3(0), vec3(1)); col += speccol; float cur_glare = max(speccol.r, speccol.g); cur_glare = max(cur_glare, speccol.b); glare = max(glare, speccol.r); glare += max(cur_glare, 0.0); } } } return max(col, vec3(0.0,0.0,0.0)); } #else #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_data[3]; #else #define frag_data gl_FragData #endif #endif uniform sampler2D diffuseMap; #ifdef HAS_NORMAL_MAP uniform sampler2D bumpMap; #endif #ifdef HAS_SPECULAR_MAP uniform sampler2D specularMap; VARYING vec2 vary_texcoord2; #endif uniform float env_intensity; uniform vec4 specular_color; // specular color RGB and specular exponent (glossiness) in alpha #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK) uniform float minimum_alpha; #endif #ifdef HAS_NORMAL_MAP VARYING vec3 vary_mat0; VARYING vec3 vary_mat1; VARYING vec3 vary_mat2; VARYING vec2 vary_texcoord1; #else VARYING vec3 vary_normal; #endif VARYING vec4 vertex_color; VARYING vec2 vary_texcoord0; vec2 encode_normal(vec3 n); void main() { vec2 pos_screen = vary_texcoord0.xy; vec4 diffuse_linear = texture2D(diffuseMap, vary_texcoord0.xy); vec4 diffuse_srgb = vec4(linear_to_srgb(diffuse_linear.rgb), diffuse_linear.a); #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK) if (diffuse_linear.a < minimum_alpha) { discard; } #endif diffuse_linear.rgb *= vertex_color.rgb; #ifdef HAS_SPECULAR_MAP vec4 spec = texture2D(specularMap, vary_texcoord2.xy); spec.rgb *= specular_color.rgb; #else vec4 spec = vec4(specular_color.rgb, 1.0); #endif vec4 norm = vec4(0,0,0,1.0); vec3 tnorm; #ifdef HAS_NORMAL_MAP norm = texture2D(bumpMap, vary_texcoord1.xy); norm.xyz = norm.xyz * 2 - 1; // tangent space norm tnorm = vec3(dot(norm.xyz,vary_mat0), dot(norm.xyz,vary_mat1), dot(norm.xyz,vary_mat2)); #else tnorm = vary_normal; #endif norm.xyz = tnorm; norm.xyz = normalize(norm.xyz); vec2 abnormal = encode_normal(norm.xyz); vec4 final_color = diffuse_linear; #if (DIFFUSE_ALPHA_MODE != DIFFUSE_ALPHA_MODE_EMISSIVE) final_color.a = emissive_brightness; #else final_color.a = max(final_color.a, emissive_brightness); #endif vec4 final_specular = spec; final_specular.a = specular_color.a; #ifdef HAS_SPECULAR_MAP final_specular.a *= norm.a; #endif vec4 final_normal = vec4(encode_normal(normalize(tnorm)), env_intensity, 0.0); #ifdef HAS_SPECULAR_MAP final_normal.z *= spec.a; #endif #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND) //forward rendering, output just lit RGBA vec3 pos = vary_position; float shadow = 1.0f; #ifdef HAS_SUN_SHADOW shadow = sampleDirectionalShadow(pos.xyz, norm.xyz, pos_screen); #endif spec = final_specular; float envIntensity = final_normal.z; vec3 color = vec3(0.0); float bloom = 0.0; vec3 sunlit; vec3 amblit; vec3 additive; vec3 atten; calcAtmosphericVars(pos.xyz, 1.0, sunlit, amblit, additive, atten); vec3 refnormpersp = normalize(reflect(pos.xyz, norm.xyz)); vec3 light_dir = (sun_up_factor == 1) ? sun_dir : moon_dir; float da = dot(normalize(norm.xyz), normalize(light_dir.xyz)); da = clamp(da, -1.0, 1.0); float final_da = da; final_da = clamp(final_da, 0.0, 1.0); float ambient = da; ambient *= 0.5; ambient *= ambient; ambient = min(getAmbientClamp(), 1.0 - ambient); vec3 sun_contrib = min(final_da, shadow) * sunlit; color.rgb = amblit; color.rgb *= ambient; vec3 post_ambient = color.rgb; color.rgb += sun_contrib; vec3 post_sunlight = color.rgb; color.rgb *= diffuse_linear.rgb; vec3 post_diffuse = color.rgb; float glare = 0.0; if (spec.a > 0.0) // specular reflection { vec3 npos = -normalize(pos.xyz); //vec3 ref = dot(pos+lv, norm); vec3 h = normalize(light_dir.xyz+npos); float nh = dot(norm.xyz, h); float nv = dot(norm.xyz, npos); float vh = dot(npos, h); float sa = nh; float fres = pow(1 - dot(h, npos), 5)*0.4+0.5; float gtdenom = 2 * nh; float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh)); if (nh > 0.0) { float scol = fres*texture2D(lightFunc, vec2(nh, spec.a)).r*gt/(nh*da); vec3 sp = sun_contrib*scol / 16.0f; sp = clamp(sp, vec3(0), vec3(1)); bloom = dot(sp, sp) / 6.0; color += sp * spec.rgb; } } vec3 post_spec = color.rgb; if (envIntensity > 0.0) { //add environmentmap vec3 env_vec = env_mat * refnormpersp; vec3 reflected_color = textureCube(environmentMap, env_vec).rgb; color = mix(color.rgb, reflected_color, envIntensity); float cur_glare = max(reflected_color.r, reflected_color.g); cur_glare = max(cur_glare, reflected_color.b); cur_glare *= envIntensity*4.0; glare += cur_glare; } vec3 post_env = color.rgb; color = atmosFragLighting(color, additive, atten); color = scaleSoftClipFrag(color); vec3 post_atmo = color.rgb; //convert to linear space before adding local lights color = srgb_to_linear(color); vec3 npos = normalize(-pos.xyz); vec3 light = vec3(0,0,0); #define LIGHT_LOOP(i) light.rgb += calcPointLightOrSpotLight(light_diffuse[i].rgb, npos, diffuse_linear.rgb, final_specular, pos.xyz, norm.xyz, light_position[i], light_direction[i].xyz, light_attenuation[i].x, light_attenuation[i].y, light_attenuation[i].z, glare, light_attenuation[i].w); LIGHT_LOOP(1) LIGHT_LOOP(2) LIGHT_LOOP(3) LIGHT_LOOP(4) LIGHT_LOOP(5) LIGHT_LOOP(6) LIGHT_LOOP(7) glare = min(glare, 1.0); float al = max(diffuse_linear.a,glare)*vertex_color.a; color.rgb += light.rgb; // (only) post-deferred needs inline gamma correction color.rgb = linear_to_srgb(color.rgb); //color.rgb = amblit; //color.rgb = vec3(ambient); //color.rgb = sunlit; //color.rgb = post_ambient; //color.rgb = vec3(final_da); //color.rgb = sun_contrib; //color.rgb = post_sunlight; //color.rgb = diffuse_srgb.rgb; //color.rgb = post_diffuse; //color.rgb = post_spec; //color.rgb = post_env; //color.rgb = post_atmo; #ifdef WATER_FOG vec4 temp = applyWaterFogView(pos, vec4(color.rgb, al)); color.rgb = temp.rgb; al = temp.a; #endif frag_color.rgb = color.rgb; frag_color.a = al; #else // deferred path frag_data[0] = final_color; frag_data[1] = final_specular; // XYZ = Specular color. W = Specular exponent. frag_data[2] = final_normal; // XY = Normal. Z = Env. intensity. #endif }