/** * @file materialF.glsl * * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2007, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ /*[EXTRA_CODE_HERE]*/ #define DIFFUSE_ALPHA_MODE_NONE 0 #define DIFFUSE_ALPHA_MODE_BLEND 1 #define DIFFUSE_ALPHA_MODE_MASK 2 #define DIFFUSE_ALPHA_MODE_EMISSIVE 3 uniform float emissive_brightness; uniform int sun_up_factor; #ifdef WATER_FOG vec4 applyWaterFogView(vec3 pos, vec4 color); #endif vec3 atmosFragLighting(vec3 l, vec3 additive, vec3 atten); vec3 scaleSoftClipFrag(vec3 l); void calcAtmosphericVars(vec3 inPositionEye, vec3 light_dir, float ambFactor, out vec3 sunlit, out vec3 amblit, out vec3 additive, out vec3 atten, bool use_ao); vec3 srgb_to_linear(vec3 cs); vec3 linear_to_srgb(vec3 cs); #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND) #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_color; #else #define frag_color gl_FragColor #endif #ifdef HAS_SUN_SHADOW float sampleDirectionalShadow(vec3 pos, vec3 norm, vec2 pos_screen); #endif uniform samplerCube environmentMap; uniform sampler2D lightFunc; // Inputs uniform vec4 morphFactor; uniform vec3 camPosLocal; uniform mat3 env_mat; uniform vec3 sun_dir; uniform vec3 moon_dir; VARYING vec2 vary_fragcoord; VARYING vec3 vary_position; uniform mat4 proj_mat; uniform mat4 inv_proj; uniform vec2 screen_res; uniform vec4 light_position[8]; uniform vec3 light_direction[8]; uniform vec4 light_attenuation[8]; uniform vec3 light_diffuse[8]; float getAmbientClamp(); vec3 calcPointLightOrSpotLight(vec3 light_col, vec3 npos, vec3 diffuse, vec4 spec, vec3 v, vec3 n, vec4 lp, vec3 ln, float la, float fa, float is_pointlight, inout float glare, float ambiance) { vec3 col = vec3(0); //get light vector vec3 lv = lp.xyz-v; //get distance float dist = length(lv); float da = 1.0; dist /= la; if (dist > 0.0 && la > 0.0) { //normalize light vector lv = normalize(lv); //distance attenuation float dist_atten = clamp(1.0-(dist-1.0*(1.0-fa))/fa, 0.0, 1.0); dist_atten *= dist_atten; dist_atten *= 2.0f; if (dist_atten <= 0.0) { return col; } // spotlight coefficient. float spot = max(dot(-ln, lv), is_pointlight); da *= spot*spot; // GL_SPOT_EXPONENT=2 //angular attenuation da *= dot(n, lv); float lit = 0.0f; float amb_da = ambiance; if (da >= 0) { lit = max(da * dist_atten,0.0); col = lit * light_col * diffuse; amb_da += (da*0.5+0.5) * ambiance; } amb_da += (da*da*0.5 + 0.5) * ambiance; amb_da *= dist_atten; amb_da = min(amb_da, 1.0f - lit); // SL-10969 need to see why these are blown out //col.rgb += amb_da * light_col * diffuse; if (spec.a > 0.0) { //vec3 ref = dot(pos+lv, norm); vec3 h = normalize(lv+npos); float nh = dot(n, h); float nv = dot(n, npos); float vh = dot(npos, h); float sa = nh; float fres = pow(1 - dot(h, npos), 5)*0.4+0.5; float gtdenom = 2 * nh; float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh)); if (nh > 0.0) { float scol = fres*texture2D(lightFunc, vec2(nh, spec.a)).r*gt/(nh*da); vec3 speccol = lit*scol*light_col.rgb*spec.rgb; speccol = clamp(speccol, vec3(0), vec3(1)); col += speccol; float cur_glare = max(speccol.r, speccol.g); cur_glare = max(cur_glare, speccol.b); glare = max(glare, speccol.r); glare += max(cur_glare, 0.0); } } } return max(col, vec3(0.0,0.0,0.0)); } // Q&D approximate RGB-space de-saturation, strength from 0 (no effect) to 1.0 (complete grey-scale) vec3 desat(vec3 color, float strength) { float primary_value = max(color.r, max(color.g, color.b)); vec3 delta = strength * (vec3(primary_value)-color); return color + delta; } #else #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_data[3]; #else #define frag_data gl_FragData #endif #endif uniform sampler2D diffuseMap; #ifdef HAS_NORMAL_MAP uniform sampler2D bumpMap; #endif #ifdef HAS_SPECULAR_MAP uniform sampler2D specularMap; VARYING vec2 vary_texcoord2; #endif uniform float env_intensity; uniform vec4 specular_color; // specular color RGB and specular exponent (glossiness) in alpha #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK) uniform float minimum_alpha; #endif #ifdef HAS_NORMAL_MAP VARYING vec3 vary_mat0; VARYING vec3 vary_mat1; VARYING vec3 vary_mat2; VARYING vec2 vary_texcoord1; #else VARYING vec3 vary_normal; #endif VARYING vec4 vertex_color; VARYING vec2 vary_texcoord0; vec2 encode_normal(vec3 n); void main() { vec2 pos_screen = vary_texcoord0.xy; vec4 diffuse_tap = texture2D(diffuseMap, vary_texcoord0.xy); #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND) vec4 diffuse_srgb = diffuse_tap; vec4 diffuse_linear = vec4(srgb_to_linear(diffuse_srgb.rgb), diffuse_srgb.a); #else vec4 diffuse_linear = diffuse_tap; vec4 diffuse_srgb = vec4(linear_to_srgb(diffuse_linear.rgb), diffuse_linear.a); #endif #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK) if (diffuse_linear.a < minimum_alpha) { discard; } #endif diffuse_linear.rgb *= vertex_color.rgb; diffuse_srgb.rgb *= linear_to_srgb(vertex_color.rgb); #ifdef HAS_SPECULAR_MAP vec4 spec = texture2D(specularMap, vary_texcoord2.xy); spec.rgb *= specular_color.rgb; #else vec4 spec = vec4(specular_color.rgb, 1.0); #endif vec3 norm = vec3(0); float bmap_specular = 1.0; // Non-physical gain, sole purpose to make EEP viewer better match windlight when normal-mapped. float eep_bump_gain = 1.0; #ifdef HAS_NORMAL_MAP eep_bump_gain = 1.75; vec4 bump_sample = texture2D(bumpMap, vary_texcoord1.xy); norm = (bump_sample.xyz * 2) - vec3(1); bmap_specular = bump_sample.w; // convert sampled normal to tangent space normal norm = vec3(dot(norm, vary_mat0), dot(norm, vary_mat1), dot(norm, vary_mat2)); #else norm = vary_normal; #endif norm = normalize(norm); vec2 abnormal = encode_normal(norm); vec4 final_color = vec4(diffuse_linear.rgb, 0.0); #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_EMISSIVE) final_color.a = diffuse_linear.a; final_color.rgb = mix( diffuse_linear.rgb, final_color.rgb*0.5, diffuse_tap.a ); // SL-12171: Fix emissive texture portion being twice as bright. #endif final_color.a = max(final_color.a, emissive_brightness); // Texture // [x] Full Bright (emissive_brightness >= 1.0) // Shininess (specular) // [X] Texture // Environment Intensity = 1 // NOTE: There are two shaders that are used depending on the EI byte value: // EI = 0 fullbright // EI > 0 .. 255 material // When it is passed to us it is normalized. // We can either modify the output environment intensity // OR // adjust the final color via: // final_color *= 0.666666; // We don't remap the environment intensity but adjust the final color to closely simulate what non-EEP is doing. vec4 final_normal = vec4(abnormal, env_intensity, 0.0); vec3 color = vec3(0.0); float al = 1.0; if (emissive_brightness >= 1.0) { #ifdef HAS_SPECULAR_MAP // Note: We actually need to adjust all 4 channels not just .rgb final_color *= 0.666666; #endif color.rgb = final_color.rgb; al = vertex_color.a; } vec4 final_specular = spec; final_specular.a = specular_color.a; #ifdef HAS_SPECULAR_MAP final_specular.a *= bmap_specular; final_normal.z *= spec.a; #endif #if (DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND) if (emissive_brightness >= 1.0) { // fullbright = diffuse texture pass-through, no lighting frag_color = diffuse_srgb; } else { //forward rendering, output just lit RGBA vec3 pos = vary_position; float shadow = 1.0f; #ifdef HAS_SUN_SHADOW shadow = sampleDirectionalShadow(pos.xyz, norm, pos_screen); #endif spec = final_specular; float envIntensity = final_normal.z; vec3 light_dir = (sun_up_factor == 1) ? sun_dir : moon_dir; float bloom = 0.0; vec3 sunlit; vec3 amblit; vec3 additive; vec3 atten; calcAtmosphericVars(pos.xyz, light_dir, 1.0, sunlit, amblit, additive, atten, false); vec3 refnormpersp = normalize(reflect(pos.xyz, norm)); float da = dot(norm, normalize(light_dir)); da = clamp(da, 0.0, 1.0); // No negative light contributions // ambient weight varies from 0.75 at max direct light to 1.0 with sun at grazing angle float ambient = 1.0 - (0.25 * da * da); vec3 sun_contrib = additive + (min(da, shadow) * sunlit); #if !defined(AMBIENT_KILL) color.rgb = amblit; color.rgb *= ambient; #endif #if !defined(SUNLIGHT_KILL) color.rgb += sun_contrib; #endif color.rgb *= diffuse_linear.rgb; // SL-12006 // ad-hoc brighten and de-saturate (normal-mapped only), to match windlight - SL-12638 color.rgb = desat(color.rgb, 0.33 * (eep_bump_gain - 1.0)); color.rgb *= eep_bump_gain; float glare = 0.0; if (spec.a > 0.0) // specular reflection { vec3 npos = -normalize(pos.xyz); vec3 h = normalize(light_dir.xyz+npos); float nh = dot(norm, h); float nv = dot(norm, npos); float vh = dot(npos, h); float sa = nh; float fres = pow(1 - dot(h, npos), 5)*0.4+0.5; float gtdenom = 2 * nh; float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh)); if (nh > 0.0) { float scol = fres*texture2D(lightFunc, vec2(nh, spec.a)).r*gt/(nh*da); vec3 sp = sun_contrib*scol / 16.0f; sp = clamp(sp, vec3(0), vec3(1)); bloom = dot(sp, sp) / 6.0; #if !defined(SUNLIGHT_KILL) color += sp * spec.rgb; #endif } } if (envIntensity > 0.0) { //add environmentmap vec3 env_vec = env_mat * refnormpersp; vec3 reflected_color = textureCube(environmentMap, env_vec).rgb; #if !defined(SUNLIGHT_KILL) color = mix(color.rgb, reflected_color, envIntensity); #endif float cur_glare = max(reflected_color.r, reflected_color.g); cur_glare = max(cur_glare, reflected_color.b); cur_glare *= envIntensity*4.0; glare += cur_glare; } color = atmosFragLighting(color, additive, atten); //convert to linear space before adding local lights color = srgb_to_linear(color); vec3 npos = normalize(-pos.xyz); vec3 light = vec3(0,0,0); #define LIGHT_LOOP(i) light.rgb += calcPointLightOrSpotLight(light_diffuse[i].rgb, npos, diffuse_linear.rgb, final_specular, pos.xyz, norm, light_position[i], light_direction[i].xyz, light_attenuation[i].x, light_attenuation[i].y, light_attenuation[i].z, glare, light_attenuation[i].w ); LIGHT_LOOP(1) LIGHT_LOOP(2) LIGHT_LOOP(3) LIGHT_LOOP(4) LIGHT_LOOP(5) LIGHT_LOOP(6) LIGHT_LOOP(7) glare = min(glare, 1.0); al = max(diffuse_linear.a,glare)*vertex_color.a; #if !defined(LOCAL_LIGHT_KILL) color.rgb += light.rgb; #endif color = scaleSoftClipFrag(color); // (only) post-deferred needs inline gamma correction color.rgb = linear_to_srgb(color.rgb); #ifdef WATER_FOG vec4 temp = applyWaterFogView(pos, vec4(color.rgb, al)); color.rgb = temp.rgb; al = temp.a; #endif frag_color.rgb = color.rgb; frag_color.a = al; } #else // if DIFFUSE_ALPHA_MODE_BLEND ... // deferred path frag_data[0] = final_color; frag_data[1] = final_specular; // XYZ = Specular color. W = Specular exponent. frag_data[2] = final_normal; // XY = Normal. Z = Env. intensity. #endif }