/** * @file materialF.glsl * * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2007, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #define DIFFUSE_ALPHA_MODE_IGNORE 0 #define DIFFUSE_ALPHA_MODE_BLEND 1 #define DIFFUSE_ALPHA_MODE_MASK 2 #define DIFFUSE_ALPHA_MODE_EMISSIVE 3 #if DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_color; #else #define frag_color gl_FragColor #endif #if HAS_SUN_SHADOW uniform sampler2DShadow shadowMap0; uniform sampler2DShadow shadowMap1; uniform sampler2DShadow shadowMap2; uniform sampler2DShadow shadowMap3; uniform mat4 shadow_matrix[6]; uniform vec4 shadow_clip; uniform vec2 shadow_res; uniform float shadow_bias; float pcfShadow(sampler2DShadow shadowMap, vec4 stc) { stc.xyz /= stc.w; stc.z += shadow_bias; stc.x = floor(stc.x*shadow_res.x + fract(stc.y*shadow_res.y*12345))/shadow_res.x; // add some chaotic jitter to X sample pos according to Y to disguise the snapping going on here float cs = shadow2D(shadowMap, stc.xyz).x; float shadow = cs; shadow += shadow2D(shadowMap, stc.xyz+vec3(2.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(1.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(-1.0/shadow_res.x, 1.5/shadow_res.y, 0.0)).x; shadow += shadow2D(shadowMap, stc.xyz+vec3(-2.0/shadow_res.x, -1.5/shadow_res.y, 0.0)).x; return shadow*0.2; } #endif uniform samplerCube environmentMap; uniform sampler2D lightFunc; // Inputs uniform vec4 morphFactor; uniform vec3 camPosLocal; //uniform vec4 camPosWorld; uniform vec4 gamma; uniform vec4 lightnorm; uniform vec4 sunlight_color; uniform vec4 ambient; uniform vec4 blue_horizon; uniform vec4 blue_density; uniform float haze_horizon; uniform float haze_density; uniform float cloud_shadow; uniform float density_multiplier; uniform float distance_multiplier; uniform float max_y; uniform vec4 glow; uniform float scene_light_strength; uniform mat3 env_mat; uniform mat3 ssao_effect_mat; uniform vec3 sun_dir; VARYING vec2 vary_fragcoord; VARYING vec3 vary_position; vec3 vary_PositionEye; vec3 vary_SunlitColor; vec3 vary_AmblitColor; vec3 vary_AdditiveColor; vec3 vary_AtmosAttenuation; uniform mat4 inv_proj; uniform vec2 screen_res; uniform vec4 light_position[8]; uniform vec3 light_direction[8]; uniform vec3 light_attenuation[8]; uniform vec3 light_diffuse[8]; vec3 calcDirectionalLight(vec3 n, vec3 l) { float a = pow(max(dot(n,l),0.0), 0.7); return vec3(a,a,a); } vec3 calcPointLightOrSpotLight(vec3 light_col, vec3 npos, vec3 diffuse, vec4 spec, vec3 v, vec3 n, vec4 lp, vec3 ln, float la, float fa, float is_pointlight) { //get light vector vec3 lv = lp.xyz-v; //get distance float d = dot(lv,lv); float da = 1.0; vec3 col = vec3(0,0,0); if (d > 0.0 && la > 0.0 && fa > 0.0) { //normalize light vector lv = normalize(lv); //distance attenuation float dist2 = d/la; float dist_atten = clamp(1.0-(dist2-1.0*(1.0-fa))/fa, 0.0, 1.0); // spotlight coefficient. float spot = max(dot(-ln, lv), is_pointlight); da *= spot*spot; // GL_SPOT_EXPONENT=2 //angular attenuation da *= max(dot(n, lv), 0.0); float lit = max(da * dist_atten, 0.0); lit = pow(lit, 0.7); col = light_col*lit*diffuse; if (spec.a > 0.0) { //vec3 ref = dot(pos+lv, norm); vec3 h = normalize(lv+npos); float nh = dot(n, h); float nv = dot(n, npos); float vh = dot(npos, h); float sa = nh; float fres = pow(1 - dot(h, npos), 5)*0.4+0.5; float gtdenom = 2 * nh; float gt = max(0, min(gtdenom * nv / vh, gtdenom * da / vh)); if (nh > 0.0) { float scol = fres*texture2D(lightFunc, vec2(nh, spec.a)).r*gt/(nh*da); col += lit*scol*light_col.rgb*spec.rgb; //col += spec.rgb; } } } return max(col, vec3(0.0,0.0,0.0)); } vec3 decode_normal (vec2 enc) { vec2 fenc = enc*4-2; float f = dot(fenc,fenc); float g = sqrt(1-f/4); vec3 n; n.xy = fenc*g; n.z = 1-f/2; return n; } vec4 getPosition_d(vec2 pos_screen, float depth) { vec2 sc = pos_screen.xy*2.0; sc /= screen_res; sc -= vec2(1.0,1.0); vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); vec4 pos = inv_proj * ndc; pos /= pos.w; pos.w = 1.0; return pos; } vec3 getPositionEye() { return vary_PositionEye; } vec3 getSunlitColor() { return vary_SunlitColor; } vec3 getAmblitColor() { return vary_AmblitColor; } vec3 getAdditiveColor() { return vary_AdditiveColor; } vec3 getAtmosAttenuation() { return vary_AtmosAttenuation; } void setPositionEye(vec3 v) { vary_PositionEye = v; } void setSunlitColor(vec3 v) { vary_SunlitColor = v; } void setAmblitColor(vec3 v) { vary_AmblitColor = v; } void setAdditiveColor(vec3 v) { vary_AdditiveColor = v; } void setAtmosAttenuation(vec3 v) { vary_AtmosAttenuation = v; } void calcAtmospherics(vec3 inPositionEye, float ambFactor) { vec3 P = inPositionEye; setPositionEye(P); vec3 tmpLightnorm = lightnorm.xyz; vec3 Pn = normalize(P); float Plen = length(P); vec4 temp1 = vec4(0); vec3 temp2 = vec3(0); vec4 blue_weight; vec4 haze_weight; vec4 sunlight = sunlight_color; vec4 light_atten; //sunlight attenuation effect (hue and brightness) due to atmosphere //this is used later for sunlight modulation at various altitudes light_atten = (blue_density + vec4(haze_density * 0.25)) * (density_multiplier * max_y); //I had thought blue_density and haze_density should have equal weighting, //but attenuation due to haze_density tends to seem too strong temp1 = blue_density + vec4(haze_density); blue_weight = blue_density / temp1; haze_weight = vec4(haze_density) / temp1; //(TERRAIN) compute sunlight from lightnorm only (for short rays like terrain) temp2.y = max(0.0, tmpLightnorm.y); temp2.y = 1. / temp2.y; sunlight *= exp( - light_atten * temp2.y); // main atmospheric scattering line integral temp2.z = Plen * density_multiplier; // Transparency (-> temp1) // ATI Bugfix -- can't store temp1*temp2.z*distance_multiplier in a variable because the ati // compiler gets confused. temp1 = exp(-temp1 * temp2.z * distance_multiplier); //final atmosphere attenuation factor setAtmosAttenuation(temp1.rgb); //compute haze glow //(can use temp2.x as temp because we haven't used it yet) temp2.x = dot(Pn, tmpLightnorm.xyz); temp2.x = 1. - temp2.x; //temp2.x is 0 at the sun and increases away from sun temp2.x = max(temp2.x, .03); //was glow.y //set a minimum "angle" (smaller glow.y allows tighter, brighter hotspot) temp2.x *= glow.x; //higher glow.x gives dimmer glow (because next step is 1 / "angle") temp2.x = pow(temp2.x, glow.z); //glow.z should be negative, so we're doing a sort of (1 / "angle") function //add "minimum anti-solar illumination" temp2.x += .25; //increase ambient when there are more clouds vec4 tmpAmbient = ambient + (vec4(1.) - ambient) * cloud_shadow * 0.5; /* decrease value and saturation (that in HSV, not HSL) for occluded areas * // for HSV color/geometry used here, see http://gimp-savvy.com/BOOK/index.html?node52.html * // The following line of code performs the equivalent of: * float ambAlpha = tmpAmbient.a; * float ambValue = dot(vec3(tmpAmbient), vec3(0.577)); // projection onto <1/rt(3), 1/rt(3), 1/rt(3)>, the neutral white-black axis * vec3 ambHueSat = vec3(tmpAmbient) - vec3(ambValue); * tmpAmbient = vec4(RenderSSAOEffect.valueFactor * vec3(ambValue) + RenderSSAOEffect.saturationFactor *(1.0 - ambFactor) * ambHueSat, ambAlpha); */ tmpAmbient = vec4(mix(ssao_effect_mat * tmpAmbient.rgb, tmpAmbient.rgb, ambFactor), tmpAmbient.a); //haze color setAdditiveColor( vec3(blue_horizon * blue_weight * (sunlight*(1.-cloud_shadow) + tmpAmbient) + (haze_horizon * haze_weight) * (sunlight*(1.-cloud_shadow) * temp2.x + tmpAmbient))); //brightness of surface both sunlight and ambient setSunlitColor(vec3(sunlight * .5)); setAmblitColor(vec3(tmpAmbient * .25)); setAdditiveColor(getAdditiveColor() * vec3(1.0 - temp1)); } vec3 atmosLighting(vec3 light) { light *= getAtmosAttenuation().r; light += getAdditiveColor(); return (2.0 * light); } vec3 atmosTransport(vec3 light) { light *= getAtmosAttenuation().r; light += getAdditiveColor() * 2.0; return light; } vec3 atmosGetDiffuseSunlightColor() { return getSunlitColor(); } vec3 scaleDownLight(vec3 light) { return (light / scene_light_strength ); } vec3 scaleUpLight(vec3 light) { return (light * scene_light_strength); } vec3 atmosAmbient(vec3 light) { return getAmblitColor() + light / 2.0; } vec3 atmosAffectDirectionalLight(float lightIntensity) { return getSunlitColor() * lightIntensity; } vec3 scaleSoftClip(vec3 light) { //soft clip effect: light = 1. - clamp(light, vec3(0.), vec3(1.)); light = 1. - pow(light, gamma.xxx); return light; } #else #ifdef DEFINE_GL_FRAGCOLOR out vec4 frag_data[3]; #else #define frag_data gl_FragData #endif #endif uniform sampler2D diffuseMap; #if HAS_NORMAL_MAP uniform sampler2D bumpMap; #endif #if HAS_SPECULAR_MAP uniform sampler2D specularMap; VARYING vec2 vary_texcoord2; #endif uniform float env_intensity; uniform vec4 specular_color; #if DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK uniform float minimum_alpha; #endif #if HAS_NORMAL_MAP VARYING vec3 vary_mat0; VARYING vec3 vary_mat1; VARYING vec3 vary_mat2; VARYING vec2 vary_texcoord1; #else VARYING vec3 vary_normal; #endif VARYING vec4 vertex_color; VARYING vec2 vary_texcoord0; vec2 encode_normal(vec3 n) { float f = sqrt(8 * n.z + 8); return n.xy / f + 0.5; } void main() { vec4 diffcol = texture2D(diffuseMap, vary_texcoord0.xy); diffcol.rgb *= vertex_color.rgb; #if DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_MASK if (diffcol.a < minimum_alpha) { discard; } #endif #if HAS_SPECULAR_MAP vec4 spec = texture2D(specularMap, vary_texcoord2.xy); #else vec4 spec = specular_color; #endif #if HAS_NORMAL_MAP vec4 norm = texture2D(bumpMap, vary_texcoord1.xy); norm.xyz = norm.xyz * 2 - 1; vec3 tnorm = vec3(dot(norm.xyz,vary_mat0), dot(norm.xyz,vary_mat1), dot(norm.xyz,vary_mat2)); #else vec4 norm = vec4(0,0,0,1.0); vec3 tnorm = vary_normal; #endif vec4 final_color = diffcol; #if DIFFUSE_ALPHA_MODE != DIFFUSE_ALPHA_MODE_EMISSIVE final_color.a = 0; #endif vec4 final_specular = spec; #if HAS_SPECULAR_MAP //final_color.rgb *= 1 - spec.a * env_intensity; final_specular.rgb *= specular_color.rgb; vec4 final_normal = vec4(encode_normal(normalize(tnorm)), spec.a * env_intensity, 0.0); final_specular.a = specular_color.a * norm.a; #else vec4 final_normal = vec4(encode_normal(normalize(tnorm)), env_intensity, 0.0); final_specular.a = specular_color.a; #endif #if DIFFUSE_ALPHA_MODE == DIFFUSE_ALPHA_MODE_BLEND { //forward rendering, output just lit RGBA vec3 pos = vary_position; #if HAS_SUN_SHADOW float shadow = 0.0; vec4 spos = vec4(pos,1.0); if (spos.z > -shadow_clip.w) { vec4 lpos; vec4 near_split = shadow_clip*-0.75; vec4 far_split = shadow_clip*-1.25; vec4 transition_domain = near_split-far_split; float weight = 0.0; if (spos.z < near_split.z) { lpos = shadow_matrix[3]*spos; float w = 1.0; w -= max(spos.z-far_split.z, 0.0)/transition_domain.z; shadow += pcfShadow(shadowMap3, lpos)*w; weight += w; shadow += max((pos.z+shadow_clip.z)/(shadow_clip.z-shadow_clip.w)*2.0-1.0, 0.0); } if (spos.z < near_split.y && spos.z > far_split.z) { lpos = shadow_matrix[2]*spos; float w = 1.0; w -= max(spos.z-far_split.y, 0.0)/transition_domain.y; w -= max(near_split.z-spos.z, 0.0)/transition_domain.z; shadow += pcfShadow(shadowMap2, lpos)*w; weight += w; } if (spos.z < near_split.x && spos.z > far_split.y) { lpos = shadow_matrix[1]*spos; float w = 1.0; w -= max(spos.z-far_split.x, 0.0)/transition_domain.x; w -= max(near_split.y-spos.z, 0.0)/transition_domain.y; shadow += pcfShadow(shadowMap1, lpos)*w; weight += w; } if (spos.z > far_split.x) { lpos = shadow_matrix[0]*spos; float w = 1.0; w -= max(near_split.x-spos.z, 0.0)/transition_domain.x; shadow += pcfShadow(shadowMap0, lpos)*w; weight += w; } shadow /= weight; } else { shadow = 1.0; } #else float shadow = 1.0; #endif vec4 diffuse = final_color; vec3 norm = normalize(tnorm); vec4 spec = final_specular; float envIntensity = final_normal.z; vec3 col; float bloom = 0.0; { calcAtmospherics(pos.xyz, 1.0); float da = max(dot(norm.xyz, sun_dir.xyz), 0.0); da = pow(da, 0.7); col = atmosAmbient(vec3(0)); col += atmosAffectDirectionalLight(max(min(da, shadow), diffuse.a)); col *= diffuse.rgb; if (spec.a > 0.0) // specular reflection { // the old infinite-sky shiny reflection // vec3 refnormpersp = normalize(reflect(pos.xyz, norm.xyz)); float sa = dot(refnormpersp, sun_dir.xyz); vec3 dumbshiny = vary_SunlitColor*shadow*(texture2D(lightFunc, vec2(sa, spec.a)).r); // add the two types of shiny together vec3 spec_contrib = dumbshiny * spec.rgb; bloom = dot(spec_contrib, spec_contrib) / 6; col += spec_contrib; //add environmentmap vec3 env_vec = env_mat * refnormpersp; col = mix(col.rgb, textureCube(environmentMap, env_vec).rgb, max(envIntensity-diffuse.a*2.0, 0.0)); } col = atmosLighting(col); col = scaleSoftClip(col); //col = mix(col.rgb, diffuse.rgb, diffuse.a); } vec3 light_col = vec3(0,0,0); vec3 npos = normalize(-pos.xyz); /*vec3 calcPointLightOrSpotLight( vec3 light_col, vec3 npos, vec3 diffuse, vec4 spec, vec3 v, vec3 n, vec4 lp, vec3 ln, float la, float fa, float is_pointlight) */ /* #ifdef MAC_GEFORCE_HACK #define LIGHT_LOOP(i) \ light_col += calcPointLightOrSpotLight(light_diffuse[i].rgb, npos, diffuse.rgb, final_specular, pos.xyz, norm, light_position[i], light_direction[i], light_attenuation[i].x, light_attenuation[i].y, light_attenuation[i].z); LIGHT_LOOP(1) LIGHT_LOOP(2) LIGHT_LOOP(3) LIGHT_LOOP(4) LIGHT_LOOP(5) LIGHT_LOOP(6) LIGHT_LOOP(7) #else*/ for (int i = 2; i < 8; i++) { light_col += calcPointLightOrSpotLight( light_diffuse[i].rgb, npos, diffuse.rgb, final_specular, pos.xyz, norm, light_position[i], light_direction[i], light_attenuation[i].x, light_attenuation[i].y, light_attenuation[i].z); } //#endif col += light_col; frag_color.rgb = col; } frag_color.a = diffcol.a*vertex_color.a; #else frag_data[0] = final_color; frag_data[1] = final_specular; // XYZ = Specular color. W = Specular exponent. frag_data[2] = final_normal; // XY = Normal. Z = Env. intensity. #endif }