/** * @file class1/deferred/genbrdflut.glsl * * $LicenseInfo:firstyear=2022&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2022, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ /* Taken from Sascha Willem's Vulkan GLTF refernce implementation MIT License Copyright (c) 2018 Sascha Willems Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ /*[EXTRA_CODE_HERE]*/ VARYING vec2 vary_uv; out vec4 outColor; #define NUM_SAMPLES 1024 const float PI = 3.1415926536; // Based omn http://byteblacksmith.com/improvements-to-the-canonical-one-liner-glsl-rand-for-opengl-es-2-0/ float random(vec2 co) { float a = 12.9898; float b = 78.233; float c = 43758.5453; float dt= dot(co.xy ,vec2(a,b)); float sn= mod(dt,3.14); return fract(sin(sn) * c); } vec2 hammersley2d(uint i, uint N) { // Radical inverse based on http://holger.dammertz.org/stuff/notes_HammersleyOnHemisphere.html uint bits = (i << 16u) | (i >> 16u); bits = ((bits & 0x55555555u) << 1u) | ((bits & 0xAAAAAAAAu) >> 1u); bits = ((bits & 0x33333333u) << 2u) | ((bits & 0xCCCCCCCCu) >> 2u); bits = ((bits & 0x0F0F0F0Fu) << 4u) | ((bits & 0xF0F0F0F0u) >> 4u); bits = ((bits & 0x00FF00FFu) << 8u) | ((bits & 0xFF00FF00u) >> 8u); float rdi = float(bits) * 2.3283064365386963e-10; return vec2(float(i) /float(N), rdi); } // Based on http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_slides.pdf vec3 importanceSample_GGX(vec2 Xi, float roughness, vec3 normal) { // Maps a 2D point to a hemisphere with spread based on roughness float alpha = roughness * roughness; float phi = 2.0 * PI * Xi.x + random(normal.xz) * 0.1; float cosTheta = sqrt((1.0 - Xi.y) / (1.0 + (alpha*alpha - 1.0) * Xi.y)); float sinTheta = sqrt(1.0 - cosTheta * cosTheta); vec3 H = vec3(sinTheta * cos(phi), sinTheta * sin(phi), cosTheta); // Tangent space vec3 up = abs(normal.z) < 0.999 ? vec3(0.0, 0.0, 1.0) : vec3(1.0, 0.0, 0.0); vec3 tangentX = normalize(cross(up, normal)); vec3 tangentY = normalize(cross(normal, tangentX)); // Convert to world Space return normalize(tangentX * H.x + tangentY * H.y + normal * H.z); } // Geometric Shadowing function float G_SchlicksmithGGX(float dotNL, float dotNV, float roughness) { float k = (roughness * roughness) / 2.0; float GL = dotNL / (dotNL * (1.0 - k) + k); float GV = dotNV / (dotNV * (1.0 - k) + k); return GL * GV; } vec2 BRDF(float NoV, float roughness) { // Normal always points along z-axis for the 2D lookup const vec3 N = vec3(0.0, 0.0, 1.0); vec3 V = vec3(sqrt(1.0 - NoV*NoV), 0.0, NoV); vec2 LUT = vec2(0.0); for(uint i = 0u; i < NUM_SAMPLES; i++) { vec2 Xi = hammersley2d(i, NUM_SAMPLES); vec3 H = importanceSample_GGX(Xi, roughness, N); vec3 L = 2.0 * dot(V, H) * H - V; float dotNL = max(dot(N, L), 0.0); float dotNV = max(dot(N, V), 0.0); float dotVH = max(dot(V, H), 0.0); float dotNH = max(dot(H, N), 0.0); if (dotNL > 0.0) { float G = G_SchlicksmithGGX(dotNL, dotNV, roughness); float G_Vis = (G * dotVH) / (dotNH * dotNV); float Fc = pow(1.0 - dotVH, 5.0); LUT += vec2((1.0 - Fc) * G_Vis, Fc * G_Vis); } } return LUT / float(NUM_SAMPLES); } void main() { outColor = vec4(BRDF(vary_uv.s, 1.0-vary_uv.t), 0.0, 1.0); }