/** * @file class1/deferred/aoUtil.glsl * * $LicenseInfo:firstyear=2007&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2007, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ uniform sampler2D noiseMap; uniform sampler2D depthMap; uniform float ssao_radius; uniform float ssao_max_radius; uniform float ssao_factor; uniform float ssao_factor_inv; uniform mat4 inv_proj; uniform vec2 screen_res; vec2 getScreenCoordinateAo(vec2 screenpos) { vec2 sc = screenpos.xy * 2.0; return sc - vec2(1.0, 1.0); } float getDepthAo(vec2 pos_screen) { float depth = texture(depthMap, pos_screen).r; return depth; } vec4 getPositionAo(vec2 pos_screen) { float depth = getDepthAo(pos_screen); vec2 sc = getScreenCoordinateAo(pos_screen); vec4 ndc = vec4(sc.x, sc.y, 2.0*depth-1.0, 1.0); vec4 pos = inv_proj * ndc; pos /= pos.w; pos.w = 1.0; return pos; } vec2 getKern(int i) { vec2 kern[8]; // exponentially (^2) distant occlusion samples spread around origin kern[0] = vec2(-1.0, 0.0) * 0.125*0.125; kern[1] = vec2(1.0, 0.0) * 0.250*0.250; kern[2] = vec2(0.0, 1.0) * 0.375*0.375; kern[3] = vec2(0.0, -1.0) * 0.500*0.500; kern[4] = vec2(0.7071, 0.7071) * 0.625*0.625; kern[5] = vec2(-0.7071, -0.7071) * 0.750*0.750; kern[6] = vec2(-0.7071, 0.7071) * 0.875*0.875; kern[7] = vec2(0.7071, -0.7071) * 1.000*1.000; return kern[i] / screen_res; } //calculate decreases in ambient lighting when crowded out (SSAO) float calcAmbientOcclusion(vec4 pos, vec3 norm, vec2 pos_screen) { float ret = 1.0; vec3 pos_world = pos.xyz; vec2 noise_reflect = texture(noiseMap, pos_screen.xy * (screen_res / 128)).xy; float angle_hidden = 0.0; float points = 0; float scale = min(ssao_radius / -pos_world.z, ssao_max_radius); // it was found that keeping # of samples a constant was the fastest, probably due to compiler optimizations (unrolling?) for (int i = 0; i < 8; i++) { vec2 samppos_screen = pos_screen + scale * reflect(getKern(i), noise_reflect); vec3 samppos_world = getPositionAo(samppos_screen).xyz; vec3 diff = pos_world - samppos_world; float dist2 = dot(diff, diff); // assume each sample corresponds to an occluding sphere with constant radius, constant x-sectional area // --> solid angle shrinking by the square of distance //radius is somewhat arbitrary, can approx with just some constant k * 1 / dist^2 //(k should vary inversely with # of samples, but this is taken care of later) float funky_val = (dot((samppos_world - 0.05*norm - pos_world), norm) > 0.0) ? 1.0 : 0.0; angle_hidden = angle_hidden + funky_val * min(1.0/dist2, ssao_factor_inv); // 'blocked' samples (significantly closer to camera relative to pos_world) are "no data", not "no occlusion" float diffz_val = (diff.z > -1.0) ? 1.0 : 0.0; points = points + diffz_val; } angle_hidden = min(ssao_factor*angle_hidden/points, 1.0); float points_val = (points > 0.0) ? 1.0 : 0.0; ret = (1.0 - (points_val * angle_hidden)); ret = max(ret, 0.0); return min(ret, 1.0); }