/** * @file CASF.glsl * * $LicenseInfo:firstyear=2024&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2024, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ /*[EXTRA_CODE_HERE]*/ #ifndef A_CPU #define A_GPU #define A_GLSL #define CAS_BETTER_DIAGONALS #define CAS_SLOW out vec4 frag_color; in vec2 vary_fragcoord; uniform sampler2D diffuseRect; uniform vec2 out_screen_res; uniform uvec4 cas_param_0; uniform uvec4 cas_param_1; vec3 srgb_to_linear(vec3 cs); vec3 linear_to_srgb(vec3 cl); #endif #ifndef SHADER_PORTABILITY //============================================================================================================================== // // [A] SHADER PORTABILITY 1.20210629 // //============================================================================================================================== // FidelityFX Super Resolution Sample // // Copyright (c) 2021 Advanced Micro Devices, Inc. All rights reserved. // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files(the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and / or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions : // The above copyright notice and this permission notice shall be included in // all copies or substantial portions of the Software. // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN // THE SOFTWARE. //------------------------------------------------------------------------------------------------------------------------------ // MIT LICENSE // =========== // Copyright (c) 2014 Michal Drobot (for concepts used in "FLOAT APPROXIMATIONS"). // ----------- // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // ----------- // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // ----------- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. //------------------------------------------------------------------------------------------------------------------------------ #define A_2PI 6.28318530718 #ifdef A_CPU // Supporting user defined overrides. #ifndef A_RESTRICT #define A_RESTRICT __restrict #endif //------------------------------------------------------------------------------------------------------------------------------ #ifndef A_STATIC #define A_STATIC static #endif //------------------------------------------------------------------------------------------------------------------------------ // Same types across CPU and GPU. // Predicate uses 32-bit integer (C friendly bool). typedef uint32_t AP1; typedef float AF1; typedef double AD1; typedef uint8_t AB1; typedef uint16_t AW1; typedef uint32_t AU1; typedef uint64_t AL1; typedef int8_t ASB1; typedef int16_t ASW1; typedef int32_t ASU1; typedef int64_t ASL1; //------------------------------------------------------------------------------------------------------------------------------ #define AD1_(a) ((AD1)(a)) #define AF1_(a) ((AF1)(a)) #define AL1_(a) ((AL1)(a)) #define AU1_(a) ((AU1)(a)) //------------------------------------------------------------------------------------------------------------------------------ #define ASL1_(a) ((ASL1)(a)) #define ASU1_(a) ((ASU1)(a)) //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AU1 AU1_AF1(AF1 a){union{AF1 f;AU1 u;}bits;bits.f=a;return bits.u;} //------------------------------------------------------------------------------------------------------------------------------ #define A_TRUE 1 #define A_FALSE 0 //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // CPU/GPU PORTING // //------------------------------------------------------------------------------------------------------------------------------ // Get CPU and GPU to share all setup code, without duplicate code paths. // This uses a lower-case prefix for special vector constructs. // - In C restrict pointers are used. // - In the shading language, in/inout/out arguments are used. // This depends on the ability to access a vector value in both languages via array syntax (aka color[2]). //============================================================================================================================== //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY //============================================================================================================================== #define retAD2 AD1 *A_RESTRICT #define retAD3 AD1 *A_RESTRICT #define retAD4 AD1 *A_RESTRICT #define retAF2 AF1 *A_RESTRICT #define retAF3 AF1 *A_RESTRICT #define retAF4 AF1 *A_RESTRICT #define retAL2 AL1 *A_RESTRICT #define retAL3 AL1 *A_RESTRICT #define retAL4 AL1 *A_RESTRICT #define retAU2 AU1 *A_RESTRICT #define retAU3 AU1 *A_RESTRICT #define retAU4 AU1 *A_RESTRICT //------------------------------------------------------------------------------------------------------------------------------ #define inAD2 AD1 *A_RESTRICT #define inAD3 AD1 *A_RESTRICT #define inAD4 AD1 *A_RESTRICT #define inAF2 AF1 *A_RESTRICT #define inAF3 AF1 *A_RESTRICT #define inAF4 AF1 *A_RESTRICT #define inAL2 AL1 *A_RESTRICT #define inAL3 AL1 *A_RESTRICT #define inAL4 AL1 *A_RESTRICT #define inAU2 AU1 *A_RESTRICT #define inAU3 AU1 *A_RESTRICT #define inAU4 AU1 *A_RESTRICT //------------------------------------------------------------------------------------------------------------------------------ #define inoutAD2 AD1 *A_RESTRICT #define inoutAD3 AD1 *A_RESTRICT #define inoutAD4 AD1 *A_RESTRICT #define inoutAF2 AF1 *A_RESTRICT #define inoutAF3 AF1 *A_RESTRICT #define inoutAF4 AF1 *A_RESTRICT #define inoutAL2 AL1 *A_RESTRICT #define inoutAL3 AL1 *A_RESTRICT #define inoutAL4 AL1 *A_RESTRICT #define inoutAU2 AU1 *A_RESTRICT #define inoutAU3 AU1 *A_RESTRICT #define inoutAU4 AU1 *A_RESTRICT //------------------------------------------------------------------------------------------------------------------------------ #define outAD2 AD1 *A_RESTRICT #define outAD3 AD1 *A_RESTRICT #define outAD4 AD1 *A_RESTRICT #define outAF2 AF1 *A_RESTRICT #define outAF3 AF1 *A_RESTRICT #define outAF4 AF1 *A_RESTRICT #define outAL2 AL1 *A_RESTRICT #define outAL3 AL1 *A_RESTRICT #define outAL4 AL1 *A_RESTRICT #define outAU2 AU1 *A_RESTRICT #define outAU3 AU1 *A_RESTRICT #define outAU4 AU1 *A_RESTRICT //------------------------------------------------------------------------------------------------------------------------------ #define varAD2(x) AD1 x[2] #define varAD3(x) AD1 x[3] #define varAD4(x) AD1 x[4] #define varAF2(x) AF1 x[2] #define varAF3(x) AF1 x[3] #define varAF4(x) AF1 x[4] #define varAL2(x) AL1 x[2] #define varAL3(x) AL1 x[3] #define varAL4(x) AL1 x[4] #define varAU2(x) AU1 x[2] #define varAU3(x) AU1 x[3] #define varAU4(x) AU1 x[4] //------------------------------------------------------------------------------------------------------------------------------ #define initAD2(x,y) {x,y} #define initAD3(x,y,z) {x,y,z} #define initAD4(x,y,z,w) {x,y,z,w} #define initAF2(x,y) {x,y} #define initAF3(x,y,z) {x,y,z} #define initAF4(x,y,z,w) {x,y,z,w} #define initAL2(x,y) {x,y} #define initAL3(x,y,z) {x,y,z} #define initAL4(x,y,z,w) {x,y,z,w} #define initAU2(x,y) {x,y} #define initAU3(x,y,z) {x,y,z} #define initAU4(x,y,z,w) {x,y,z,w} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // SCALAR RETURN OPS //------------------------------------------------------------------------------------------------------------------------------ // TODO // ==== // - Replace transcendentals with manual versions. //============================================================================================================================== #ifdef A_GCC A_STATIC AD1 AAbsD1(AD1 a){return __builtin_fabs(a);} A_STATIC AF1 AAbsF1(AF1 a){return __builtin_fabsf(a);} A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(__builtin_abs(ASU1_(a)));} A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(__builtin_llabs(ASL1_(a)));} #else A_STATIC AD1 AAbsD1(AD1 a){return fabs(a);} A_STATIC AF1 AAbsF1(AF1 a){return fabsf(a);} A_STATIC AU1 AAbsSU1(AU1 a){return AU1_(abs(ASU1_(a)));} A_STATIC AL1 AAbsSL1(AL1 a){return AL1_(labs((long)ASL1_(a)));} #endif //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_GCC A_STATIC AD1 ACosD1(AD1 a){return __builtin_cos(a);} A_STATIC AF1 ACosF1(AF1 a){return __builtin_cosf(a);} #else A_STATIC AD1 ACosD1(AD1 a){return cos(a);} A_STATIC AF1 ACosF1(AF1 a){return cosf(a);} #endif //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 ADotD2(inAD2 a,inAD2 b){return a[0]*b[0]+a[1]*b[1];} A_STATIC AD1 ADotD3(inAD3 a,inAD3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];} A_STATIC AD1 ADotD4(inAD4 a,inAD4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];} A_STATIC AF1 ADotF2(inAF2 a,inAF2 b){return a[0]*b[0]+a[1]*b[1];} A_STATIC AF1 ADotF3(inAF3 a,inAF3 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2];} A_STATIC AF1 ADotF4(inAF4 a,inAF4 b){return a[0]*b[0]+a[1]*b[1]+a[2]*b[2]+a[3]*b[3];} //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_GCC A_STATIC AD1 AExp2D1(AD1 a){return __builtin_exp2(a);} A_STATIC AF1 AExp2F1(AF1 a){return __builtin_exp2f(a);} #else A_STATIC AD1 AExp2D1(AD1 a){return exp2(a);} A_STATIC AF1 AExp2F1(AF1 a){return exp2f(a);} #endif //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_GCC A_STATIC AD1 AFloorD1(AD1 a){return __builtin_floor(a);} A_STATIC AF1 AFloorF1(AF1 a){return __builtin_floorf(a);} #else A_STATIC AD1 AFloorD1(AD1 a){return floor(a);} A_STATIC AF1 AFloorF1(AF1 a){return floorf(a);} #endif //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 ALerpD1(AD1 a,AD1 b,AD1 c){return b*c+(-a*c+a);} A_STATIC AF1 ALerpF1(AF1 a,AF1 b,AF1 c){return b*c+(-a*c+a);} //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_GCC A_STATIC AD1 ALog2D1(AD1 a){return __builtin_log2(a);} A_STATIC AF1 ALog2F1(AF1 a){return __builtin_log2f(a);} #else A_STATIC AD1 ALog2D1(AD1 a){return log2(a);} A_STATIC AF1 ALog2F1(AF1 a){return log2f(a);} #endif //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 AMaxD1(AD1 a,AD1 b){return a>b?a:b;} A_STATIC AF1 AMaxF1(AF1 a,AF1 b){return a>b?a:b;} A_STATIC AL1 AMaxL1(AL1 a,AL1 b){return a>b?a:b;} A_STATIC AU1 AMaxU1(AU1 a,AU1 b){return a>b?a:b;} //------------------------------------------------------------------------------------------------------------------------------ // These follow the convention that A integer types don't have signage, until they are operated on. A_STATIC AL1 AMaxSL1(AL1 a,AL1 b){return (ASL1_(a)>ASL1_(b))?a:b;} A_STATIC AU1 AMaxSU1(AU1 a,AU1 b){return (ASU1_(a)>ASU1_(b))?a:b;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 AMinD1(AD1 a,AD1 b){return a>ASL1_(b));} A_STATIC AU1 AShrSU1(AU1 a,AU1 b){return AU1_(ASU1_(a)>>ASU1_(b));} //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_GCC A_STATIC AD1 ASinD1(AD1 a){return __builtin_sin(a);} A_STATIC AF1 ASinF1(AF1 a){return __builtin_sinf(a);} #else A_STATIC AD1 ASinD1(AD1 a){return sin(a);} A_STATIC AF1 ASinF1(AF1 a){return sinf(a);} #endif //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_GCC A_STATIC AD1 ASqrtD1(AD1 a){return __builtin_sqrt(a);} A_STATIC AF1 ASqrtF1(AF1 a){return __builtin_sqrtf(a);} #else A_STATIC AD1 ASqrtD1(AD1 a){return sqrt(a);} A_STATIC AF1 ASqrtF1(AF1 a){return sqrtf(a);} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // SCALAR RETURN OPS - DEPENDENT //============================================================================================================================== A_STATIC AD1 AClampD1(AD1 x,AD1 n,AD1 m){return AMaxD1(n,AMinD1(x,m));} A_STATIC AF1 AClampF1(AF1 x,AF1 n,AF1 m){return AMaxF1(n,AMinF1(x,m));} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 AFractD1(AD1 a){return a-AFloorD1(a);} A_STATIC AF1 AFractF1(AF1 a){return a-AFloorF1(a);} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 APowD1(AD1 a,AD1 b){return AExp2D1(b*ALog2D1(a));} A_STATIC AF1 APowF1(AF1 a,AF1 b){return AExp2F1(b*ALog2F1(a));} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 ARsqD1(AD1 a){return ARcpD1(ASqrtD1(a));} A_STATIC AF1 ARsqF1(AF1 a){return ARcpF1(ASqrtF1(a));} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC AD1 ASatD1(AD1 a){return AMinD1(1.0,AMaxD1(0.0,a));} A_STATIC AF1 ASatF1(AF1 a){return AMinF1(1.0f,AMaxF1(0.0f,a));} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // VECTOR OPS //------------------------------------------------------------------------------------------------------------------------------ // These are added as needed for production or prototyping, so not necessarily a complete set. // They follow a convention of taking in a destination and also returning the destination value to increase utility. //============================================================================================================================== A_STATIC retAD2 opAAbsD2(outAD2 d,inAD2 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);return d;} A_STATIC retAD3 opAAbsD3(outAD3 d,inAD3 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);return d;} A_STATIC retAD4 opAAbsD4(outAD4 d,inAD4 a){d[0]=AAbsD1(a[0]);d[1]=AAbsD1(a[1]);d[2]=AAbsD1(a[2]);d[3]=AAbsD1(a[3]);return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAAbsF2(outAF2 d,inAF2 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);return d;} A_STATIC retAF3 opAAbsF3(outAF3 d,inAF3 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);return d;} A_STATIC retAF4 opAAbsF4(outAF4 d,inAF4 a){d[0]=AAbsF1(a[0]);d[1]=AAbsF1(a[1]);d[2]=AAbsF1(a[2]);d[3]=AAbsF1(a[3]);return d;} //============================================================================================================================== A_STATIC retAD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;} A_STATIC retAD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;} A_STATIC retAD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];return d;} A_STATIC retAF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];return d;} A_STATIC retAF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]+b[0];d[1]=a[1]+b[1];d[2]=a[2]+b[2];d[3]=a[3]+b[3];return d;} //============================================================================================================================== A_STATIC retAD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;} A_STATIC retAD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;} A_STATIC retAD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;return d;} A_STATIC retAF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;return d;} A_STATIC retAF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]+b;d[1]=a[1]+b;d[2]=a[2]+b;d[3]=a[3]+b;return d;} //============================================================================================================================== A_STATIC retAD2 opACpyD2(outAD2 d,inAD2 a){d[0]=a[0];d[1]=a[1];return d;} A_STATIC retAD3 opACpyD3(outAD3 d,inAD3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;} A_STATIC retAD4 opACpyD4(outAD4 d,inAD4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opACpyF2(outAF2 d,inAF2 a){d[0]=a[0];d[1]=a[1];return d;} A_STATIC retAF3 opACpyF3(outAF3 d,inAF3 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];return d;} A_STATIC retAF4 opACpyF4(outAF4 d,inAF4 a){d[0]=a[0];d[1]=a[1];d[2]=a[2];d[3]=a[3];return d;} //============================================================================================================================== A_STATIC retAD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);return d;} A_STATIC retAD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);return d;} A_STATIC retAD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d[0]=ALerpD1(a[0],b[0],c[0]);d[1]=ALerpD1(a[1],b[1],c[1]);d[2]=ALerpD1(a[2],b[2],c[2]);d[3]=ALerpD1(a[3],b[3],c[3]);return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);return d;} A_STATIC retAF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);return d;} A_STATIC retAF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d[0]=ALerpF1(a[0],b[0],c[0]);d[1]=ALerpF1(a[1],b[1],c[1]);d[2]=ALerpF1(a[2],b[2],c[2]);d[3]=ALerpF1(a[3],b[3],c[3]);return d;} //============================================================================================================================== A_STATIC retAD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);return d;} A_STATIC retAD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);return d;} A_STATIC retAD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d[0]=ALerpD1(a[0],b[0],c);d[1]=ALerpD1(a[1],b[1],c);d[2]=ALerpD1(a[2],b[2],c);d[3]=ALerpD1(a[3],b[3],c);return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);return d;} A_STATIC retAF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);return d;} A_STATIC retAF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d[0]=ALerpF1(a[0],b[0],c);d[1]=ALerpF1(a[1],b[1],c);d[2]=ALerpF1(a[2],b[2],c);d[3]=ALerpF1(a[3],b[3],c);return d;} //============================================================================================================================== A_STATIC retAD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);return d;} A_STATIC retAD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);return d;} A_STATIC retAD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMaxD1(a[0],b[0]);d[1]=AMaxD1(a[1],b[1]);d[2]=AMaxD1(a[2],b[2]);d[3]=AMaxD1(a[3],b[3]);return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);return d;} A_STATIC retAF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);return d;} A_STATIC retAF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMaxF1(a[0],b[0]);d[1]=AMaxF1(a[1],b[1]);d[2]=AMaxF1(a[2],b[2]);d[3]=AMaxF1(a[3],b[3]);return d;} //============================================================================================================================== A_STATIC retAD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);return d;} A_STATIC retAD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);return d;} A_STATIC retAD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d[0]=AMinD1(a[0],b[0]);d[1]=AMinD1(a[1],b[1]);d[2]=AMinD1(a[2],b[2]);d[3]=AMinD1(a[3],b[3]);return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);return d;} A_STATIC retAF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);return d;} A_STATIC retAF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d[0]=AMinF1(a[0],b[0]);d[1]=AMinF1(a[1],b[1]);d[2]=AMinF1(a[2],b[2]);d[3]=AMinF1(a[3],b[3]);return d;} //============================================================================================================================== A_STATIC retAD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;} A_STATIC retAD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;} A_STATIC retAD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];return d;} A_STATIC retAF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];return d;} A_STATIC retAF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d[0]=a[0]*b[0];d[1]=a[1]*b[1];d[2]=a[2]*b[2];d[3]=a[3]*b[3];return d;} //============================================================================================================================== A_STATIC retAD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;} A_STATIC retAD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;} A_STATIC retAD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;return d;} A_STATIC retAF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;return d;} A_STATIC retAF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d[0]=a[0]*b;d[1]=a[1]*b;d[2]=a[2]*b;d[3]=a[3]*b;return d;} //============================================================================================================================== A_STATIC retAD2 opANegD2(outAD2 d,inAD2 a){d[0]=-a[0];d[1]=-a[1];return d;} A_STATIC retAD3 opANegD3(outAD3 d,inAD3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;} A_STATIC retAD4 opANegD4(outAD4 d,inAD4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opANegF2(outAF2 d,inAF2 a){d[0]=-a[0];d[1]=-a[1];return d;} A_STATIC retAF3 opANegF3(outAF3 d,inAF3 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];return d;} A_STATIC retAF4 opANegF4(outAF4 d,inAF4 a){d[0]=-a[0];d[1]=-a[1];d[2]=-a[2];d[3]=-a[3];return d;} //============================================================================================================================== A_STATIC retAD2 opARcpD2(outAD2 d,inAD2 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);return d;} A_STATIC retAD3 opARcpD3(outAD3 d,inAD3 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);return d;} A_STATIC retAD4 opARcpD4(outAD4 d,inAD4 a){d[0]=ARcpD1(a[0]);d[1]=ARcpD1(a[1]);d[2]=ARcpD1(a[2]);d[3]=ARcpD1(a[3]);return d;} //------------------------------------------------------------------------------------------------------------------------------ A_STATIC retAF2 opARcpF2(outAF2 d,inAF2 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);return d;} A_STATIC retAF3 opARcpF3(outAF3 d,inAF3 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);return d;} A_STATIC retAF4 opARcpF4(outAF4 d,inAF4 a){d[0]=ARcpF1(a[0]);d[1]=ARcpF1(a[1]);d[2]=ARcpF1(a[2]);d[3]=ARcpF1(a[3]);return d;} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // HALF FLOAT PACKING //============================================================================================================================== // Convert float to half (in lower 16-bits of output). // Same fast technique as documented here: ftp://ftp.fox-toolkit.org/pub/fasthalffloatconversion.pdf // Supports denormals. // Conversion rules are to make computations possibly "safer" on the GPU, // -INF & -NaN -> -65504 // +INF & +NaN -> +65504 A_STATIC AU1 AU1_AH1_AF1(AF1 f){ static AW1 base[512]={ 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000, 0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0000,0x0001,0x0002,0x0004,0x0008,0x0010,0x0020,0x0040,0x0080,0x0100, 0x0200,0x0400,0x0800,0x0c00,0x1000,0x1400,0x1800,0x1c00,0x2000,0x2400,0x2800,0x2c00,0x3000,0x3400,0x3800,0x3c00, 0x4000,0x4400,0x4800,0x4c00,0x5000,0x5400,0x5800,0x5c00,0x6000,0x6400,0x6800,0x6c00,0x7000,0x7400,0x7800,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff,0x7bff, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000, 0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8000,0x8001,0x8002,0x8004,0x8008,0x8010,0x8020,0x8040,0x8080,0x8100, 0x8200,0x8400,0x8800,0x8c00,0x9000,0x9400,0x9800,0x9c00,0xa000,0xa400,0xa800,0xac00,0xb000,0xb400,0xb800,0xbc00, 0xc000,0xc400,0xc800,0xcc00,0xd000,0xd400,0xd800,0xdc00,0xe000,0xe400,0xe800,0xec00,0xf000,0xf400,0xf800,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff, 0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff,0xfbff}; static AB1 shift[512]={ 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f, 0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d, 0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x17,0x16,0x15,0x14,0x13,0x12,0x11,0x10,0x0f, 0x0e,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d, 0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x0d,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18, 0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18,0x18}; union{AF1 f;AU1 u;}bits;bits.f=f;AU1 u=bits.u;AU1 i=u>>23;return (AU1)(base[i])+((u&0x7fffff)>>shift[i]);} //------------------------------------------------------------------------------------------------------------------------------ // Used to output packed constant. A_STATIC AU1 AU1_AH2_AF2(inAF2 a){return AU1_AH1_AF1(a[0])+(AU1_AH1_AF1(a[1])<<16);} #endif //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // GLSL //============================================================================================================================== #if defined(A_GLSL) && defined(A_GPU) #ifndef A_SKIP_EXT #ifdef A_LONG #extension GL_ARB_gpu_shader_int64:require #extension GL_NV_shader_atomic_int64:require #endif //------------------------------------------------------------------------------------------------------------------------------ #ifdef A_WAVE #extension GL_KHR_shader_subgroup_arithmetic:require #extension GL_KHR_shader_subgroup_ballot:require #extension GL_KHR_shader_subgroup_quad:require #extension GL_KHR_shader_subgroup_shuffle:require #endif #endif //============================================================================================================================== #define AP1 bool #define AP2 bvec2 #define AP3 bvec3 #define AP4 bvec4 //------------------------------------------------------------------------------------------------------------------------------ #define AF1 float #define AF2 vec2 #define AF3 vec3 #define AF4 vec4 //------------------------------------------------------------------------------------------------------------------------------ #define AU1 uint #define AU2 uvec2 #define AU3 uvec3 #define AU4 uvec4 //------------------------------------------------------------------------------------------------------------------------------ #define ASU1 int #define ASU2 ivec2 #define ASU3 ivec3 #define ASU4 ivec4 //============================================================================================================================== #define AF1_AU1(x) uintBitsToFloat(AU1(x)) #define AF2_AU2(x) uintBitsToFloat(AU2(x)) #define AF3_AU3(x) uintBitsToFloat(AU3(x)) #define AF4_AU4(x) uintBitsToFloat(AU4(x)) //------------------------------------------------------------------------------------------------------------------------------ #define AU1_AF1(x) floatBitsToUint(AF1(x)) #define AU2_AF2(x) floatBitsToUint(AF2(x)) #define AU3_AF3(x) floatBitsToUint(AF3(x)) #define AU4_AF4(x) floatBitsToUint(AF4(x)) //============================================================================================================================== AF1 AF1_x(AF1 a){return AF1(a);} AF2 AF2_x(AF1 a){return AF2(a,a);} AF3 AF3_x(AF1 a){return AF3(a,a,a);} AF4 AF4_x(AF1 a){return AF4(a,a,a,a);} #define AF1_(a) AF1_x(AF1(a)) #define AF2_(a) AF2_x(AF1(a)) #define AF3_(a) AF3_x(AF1(a)) #define AF4_(a) AF4_x(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ AU1 AU1_x(AU1 a){return AU1(a);} AU2 AU2_x(AU1 a){return AU2(a,a);} AU3 AU3_x(AU1 a){return AU3(a,a,a);} AU4 AU4_x(AU1 a){return AU4(a,a,a,a);} #define AU1_(a) AU1_x(AU1(a)) #define AU2_(a) AU2_x(AU1(a)) #define AU3_(a) AU3_x(AU1(a)) #define AU4_(a) AU4_x(AU1(a)) //============================================================================================================================== AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));} AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));} AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));} AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));} //------------------------------------------------------------------------------------------------------------------------------ AU1 ABfe(AU1 src,AU1 off,AU1 bits){return bitfieldExtract(src,ASU1(off),ASU1(bits));} AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));} // Proxy for V_BFI_B32 where the 'mask' is set as 'bits', 'mask=(1<>ASU1(b));} AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));} AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));} AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // GLSL BYTE //============================================================================================================================== #ifdef A_BYTE #define AB1 uint8_t #define AB2 u8vec2 #define AB3 u8vec3 #define AB4 u8vec4 //------------------------------------------------------------------------------------------------------------------------------ #define ASB1 int8_t #define ASB2 i8vec2 #define ASB3 i8vec3 #define ASB4 i8vec4 //------------------------------------------------------------------------------------------------------------------------------ AB1 AB1_x(AB1 a){return AB1(a);} AB2 AB2_x(AB1 a){return AB2(a,a);} AB3 AB3_x(AB1 a){return AB3(a,a,a);} AB4 AB4_x(AB1 a){return AB4(a,a,a,a);} #define AB1_(a) AB1_x(AB1(a)) #define AB2_(a) AB2_x(AB1(a)) #define AB3_(a) AB3_x(AB1(a)) #define AB4_(a) AB4_x(AB1(a)) #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // GLSL DOUBLE //============================================================================================================================== #ifdef A_DUBL #define AD1 double #define AD2 dvec2 #define AD3 dvec3 #define AD4 dvec4 //------------------------------------------------------------------------------------------------------------------------------ AD1 AD1_x(AD1 a){return AD1(a);} AD2 AD2_x(AD1 a){return AD2(a,a);} AD3 AD3_x(AD1 a){return AD3(a,a,a);} AD4 AD4_x(AD1 a){return AD4(a,a,a,a);} #define AD1_(a) AD1_x(AD1(a)) #define AD2_(a) AD2_x(AD1(a)) #define AD3_(a) AD3_x(AD1(a)) #define AD4_(a) AD4_x(AD1(a)) //============================================================================================================================== AD1 AFractD1(AD1 x){return fract(x);} AD2 AFractD2(AD2 x){return fract(x);} AD3 AFractD3(AD3 x){return fract(x);} AD4 AFractD4(AD4 x){return fract(x);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return mix(x,y,a);} AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return mix(x,y,a);} AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return mix(x,y,a);} AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return mix(x,y,a);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ARcpD1(AD1 x){return AD1_(1.0)/x;} AD2 ARcpD2(AD2 x){return AD2_(1.0)/x;} AD3 ARcpD3(AD3 x){return AD3_(1.0)/x;} AD4 ARcpD4(AD4 x){return AD4_(1.0)/x;} //------------------------------------------------------------------------------------------------------------------------------ AD1 ARsqD1(AD1 x){return AD1_(1.0)/sqrt(x);} AD2 ARsqD2(AD2 x){return AD2_(1.0)/sqrt(x);} AD3 ARsqD3(AD3 x){return AD3_(1.0)/sqrt(x);} AD4 ARsqD4(AD4 x){return AD4_(1.0)/sqrt(x);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ASatD1(AD1 x){return clamp(x,AD1_(0.0),AD1_(1.0));} AD2 ASatD2(AD2 x){return clamp(x,AD2_(0.0),AD2_(1.0));} AD3 ASatD3(AD3 x){return clamp(x,AD3_(0.0),AD3_(1.0));} AD4 ASatD4(AD4 x){return clamp(x,AD4_(0.0),AD4_(1.0));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // GLSL LONG //============================================================================================================================== #ifdef A_LONG #define AL1 uint64_t #define AL2 u64vec2 #define AL3 u64vec3 #define AL4 u64vec4 //------------------------------------------------------------------------------------------------------------------------------ #define ASL1 int64_t #define ASL2 i64vec2 #define ASL3 i64vec3 #define ASL4 i64vec4 //------------------------------------------------------------------------------------------------------------------------------ #define AL1_AU2(x) packUint2x32(AU2(x)) #define AU2_AL1(x) unpackUint2x32(AL1(x)) //------------------------------------------------------------------------------------------------------------------------------ AL1 AL1_x(AL1 a){return AL1(a);} AL2 AL2_x(AL1 a){return AL2(a,a);} AL3 AL3_x(AL1 a){return AL3(a,a,a);} AL4 AL4_x(AL1 a){return AL4(a,a,a,a);} #define AL1_(a) AL1_x(AL1(a)) #define AL2_(a) AL2_x(AL1(a)) #define AL3_(a) AL3_x(AL1(a)) #define AL4_(a) AL4_x(AL1(a)) //============================================================================================================================== AL1 AAbsSL1(AL1 a){return AL1(abs(ASL1(a)));} AL2 AAbsSL2(AL2 a){return AL2(abs(ASL2(a)));} AL3 AAbsSL3(AL3 a){return AL3(abs(ASL3(a)));} AL4 AAbsSL4(AL4 a){return AL4(abs(ASL4(a)));} //------------------------------------------------------------------------------------------------------------------------------ AL1 AMaxSL1(AL1 a,AL1 b){return AL1(max(ASU1(a),ASU1(b)));} AL2 AMaxSL2(AL2 a,AL2 b){return AL2(max(ASU2(a),ASU2(b)));} AL3 AMaxSL3(AL3 a,AL3 b){return AL3(max(ASU3(a),ASU3(b)));} AL4 AMaxSL4(AL4 a,AL4 b){return AL4(max(ASU4(a),ASU4(b)));} //------------------------------------------------------------------------------------------------------------------------------ AL1 AMinSL1(AL1 a,AL1 b){return AL1(min(ASU1(a),ASU1(b)));} AL2 AMinSL2(AL2 a,AL2 b){return AL2(min(ASU2(a),ASU2(b)));} AL3 AMinSL3(AL3 a,AL3 b){return AL3(min(ASU3(a),ASU3(b)));} AL4 AMinSL4(AL4 a,AL4 b){return AL4(min(ASU4(a),ASU4(b)));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // WAVE OPERATIONS //============================================================================================================================== #ifdef A_WAVE // Where 'x' must be a compile time literal. AF1 AWaveXorF1(AF1 v,AU1 x){return subgroupShuffleXor(v,x);} AF2 AWaveXorF2(AF2 v,AU1 x){return subgroupShuffleXor(v,x);} AF3 AWaveXorF3(AF3 v,AU1 x){return subgroupShuffleXor(v,x);} AF4 AWaveXorF4(AF4 v,AU1 x){return subgroupShuffleXor(v,x);} AU1 AWaveXorU1(AU1 v,AU1 x){return subgroupShuffleXor(v,x);} AU2 AWaveXorU2(AU2 v,AU1 x){return subgroupShuffleXor(v,x);} AU3 AWaveXorU3(AU3 v,AU1 x){return subgroupShuffleXor(v,x);} AU4 AWaveXorU4(AU4 v,AU1 x){return subgroupShuffleXor(v,x);} #endif //============================================================================================================================== #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // // HLSL // // //============================================================================================================================== #if defined(A_HLSL) && defined(A_GPU) #ifdef A_HLSL_6_2 #define AP1 bool #define AP2 bool2 #define AP3 bool3 #define AP4 bool4 //------------------------------------------------------------------------------------------------------------------------------ #define AF1 float32_t #define AF2 float32_t2 #define AF3 float32_t3 #define AF4 float32_t4 //------------------------------------------------------------------------------------------------------------------------------ #define AU1 uint32_t #define AU2 uint32_t2 #define AU3 uint32_t3 #define AU4 uint32_t4 //------------------------------------------------------------------------------------------------------------------------------ #define ASU1 int32_t #define ASU2 int32_t2 #define ASU3 int32_t3 #define ASU4 int32_t4 #else #define AP1 bool #define AP2 bool2 #define AP3 bool3 #define AP4 bool4 //------------------------------------------------------------------------------------------------------------------------------ #define AF1 float #define AF2 float2 #define AF3 float3 #define AF4 float4 //------------------------------------------------------------------------------------------------------------------------------ #define AU1 uint #define AU2 uint2 #define AU3 uint3 #define AU4 uint4 //------------------------------------------------------------------------------------------------------------------------------ #define ASU1 int #define ASU2 int2 #define ASU3 int3 #define ASU4 int4 #endif //============================================================================================================================== #define AF1_AU1(x) asfloat(AU1(x)) #define AF2_AU2(x) asfloat(AU2(x)) #define AF3_AU3(x) asfloat(AU3(x)) #define AF4_AU4(x) asfloat(AU4(x)) //------------------------------------------------------------------------------------------------------------------------------ #define AU1_AF1(x) asuint(AF1(x)) #define AU2_AF2(x) asuint(AF2(x)) #define AU3_AF3(x) asuint(AF3(x)) #define AU4_AF4(x) asuint(AF4(x)) //------------------------------------------------------------------------------------------------------------------------------ AU1 AU1_AH1_AF1_x(AF1 a){return f32tof16(a);} #define AU1_AH1_AF1(a) AU1_AH1_AF1_x(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ AU1 AU1_AH2_AF2_x(AF2 a){return f32tof16(a.x)|(f32tof16(a.y)<<16);} #define AU1_AH2_AF2(a) AU1_AH2_AF2_x(AF2(a)) #define AU1_AB4Unorm_AF4(x) D3DCOLORtoUBYTE4(AF4(x)) //------------------------------------------------------------------------------------------------------------------------------ AF2 AF2_AH2_AU1_x(AU1 x){return AF2(f16tof32(x&0xFFFF),f16tof32(x>>16));} #define AF2_AH2_AU1(x) AF2_AH2_AU1_x(AU1(x)) //============================================================================================================================== AF1 AF1_x(AF1 a){return AF1(a);} AF2 AF2_x(AF1 a){return AF2(a,a);} AF3 AF3_x(AF1 a){return AF3(a,a,a);} AF4 AF4_x(AF1 a){return AF4(a,a,a,a);} #define AF1_(a) AF1_x(AF1(a)) #define AF2_(a) AF2_x(AF1(a)) #define AF3_(a) AF3_x(AF1(a)) #define AF4_(a) AF4_x(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ AU1 AU1_x(AU1 a){return AU1(a);} AU2 AU2_x(AU1 a){return AU2(a,a);} AU3 AU3_x(AU1 a){return AU3(a,a,a);} AU4 AU4_x(AU1 a){return AU4(a,a,a,a);} #define AU1_(a) AU1_x(AU1(a)) #define AU2_(a) AU2_x(AU1(a)) #define AU3_(a) AU3_x(AU1(a)) #define AU4_(a) AU4_x(AU1(a)) //============================================================================================================================== AU1 AAbsSU1(AU1 a){return AU1(abs(ASU1(a)));} AU2 AAbsSU2(AU2 a){return AU2(abs(ASU2(a)));} AU3 AAbsSU3(AU3 a){return AU3(abs(ASU3(a)));} AU4 AAbsSU4(AU4 a){return AU4(abs(ASU4(a)));} //------------------------------------------------------------------------------------------------------------------------------ AU1 ABfe(AU1 src,AU1 off,AU1 bits){AU1 mask=(1u<>off)&mask;} AU1 ABfi(AU1 src,AU1 ins,AU1 mask){return (ins&mask)|(src&(~mask));} AU1 ABfiM(AU1 src,AU1 ins,AU1 bits){AU1 mask=(1u<>ASU1(b));} AU2 AShrSU2(AU2 a,AU2 b){return AU2(ASU2(a)>>ASU2(b));} AU3 AShrSU3(AU3 a,AU3 b){return AU3(ASU3(a)>>ASU3(b));} AU4 AShrSU4(AU4 a,AU4 b){return AU4(ASU4(a)>>ASU4(b));} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // HLSL BYTE //============================================================================================================================== #ifdef A_BYTE #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // HLSL DOUBLE //============================================================================================================================== #ifdef A_DUBL #ifdef A_HLSL_6_2 #define AD1 float64_t #define AD2 float64_t2 #define AD3 float64_t3 #define AD4 float64_t4 #else #define AD1 double #define AD2 double2 #define AD3 double3 #define AD4 double4 #endif //------------------------------------------------------------------------------------------------------------------------------ AD1 AD1_x(AD1 a){return AD1(a);} AD2 AD2_x(AD1 a){return AD2(a,a);} AD3 AD3_x(AD1 a){return AD3(a,a,a);} AD4 AD4_x(AD1 a){return AD4(a,a,a,a);} #define AD1_(a) AD1_x(AD1(a)) #define AD2_(a) AD2_x(AD1(a)) #define AD3_(a) AD3_x(AD1(a)) #define AD4_(a) AD4_x(AD1(a)) //============================================================================================================================== AD1 AFractD1(AD1 a){return a-floor(a);} AD2 AFractD2(AD2 a){return a-floor(a);} AD3 AFractD3(AD3 a){return a-floor(a);} AD4 AFractD4(AD4 a){return a-floor(a);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ALerpD1(AD1 x,AD1 y,AD1 a){return lerp(x,y,a);} AD2 ALerpD2(AD2 x,AD2 y,AD2 a){return lerp(x,y,a);} AD3 ALerpD3(AD3 x,AD3 y,AD3 a){return lerp(x,y,a);} AD4 ALerpD4(AD4 x,AD4 y,AD4 a){return lerp(x,y,a);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ARcpD1(AD1 x){return rcp(x);} AD2 ARcpD2(AD2 x){return rcp(x);} AD3 ARcpD3(AD3 x){return rcp(x);} AD4 ARcpD4(AD4 x){return rcp(x);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ARsqD1(AD1 x){return rsqrt(x);} AD2 ARsqD2(AD2 x){return rsqrt(x);} AD3 ARsqD3(AD3 x){return rsqrt(x);} AD4 ARsqD4(AD4 x){return rsqrt(x);} //------------------------------------------------------------------------------------------------------------------------------ AD1 ASatD1(AD1 x){return saturate(x);} AD2 ASatD2(AD2 x){return saturate(x);} AD3 ASatD3(AD3 x){return saturate(x);} AD4 ASatD4(AD4 x){return saturate(x);} #endif //============================================================================================================================== // HLSL WAVE //============================================================================================================================== #ifdef A_WAVE // Where 'x' must be a compile time literal. AF1 AWaveXorF1(AF1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AF2 AWaveXorF2(AF2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AF3 AWaveXorF3(AF3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AF4 AWaveXorF4(AF4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AU1 AWaveXorU1(AU1 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AU2 AWaveXorU1(AU2 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AU3 AWaveXorU1(AU3 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} AU4 AWaveXorU1(AU4 v,AU1 x){return WaveReadLaneAt(v,WaveGetLaneIndex()^x);} #endif //============================================================================================================================== #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // // GPU COMMON // // //============================================================================================================================== #ifdef A_GPU // Negative and positive infinity. #define A_INFP_F AF1_AU1(0x7f800000u) #define A_INFN_F AF1_AU1(0xff800000u) //------------------------------------------------------------------------------------------------------------------------------ // Copy sign from 's' to positive 'd'. AF1 ACpySgnF1(AF1 d,AF1 s){return AF1_AU1(AU1_AF1(d)|(AU1_AF1(s)&AU1_(0x80000000u)));} AF2 ACpySgnF2(AF2 d,AF2 s){return AF2_AU2(AU2_AF2(d)|(AU2_AF2(s)&AU2_(0x80000000u)));} AF3 ACpySgnF3(AF3 d,AF3 s){return AF3_AU3(AU3_AF3(d)|(AU3_AF3(s)&AU3_(0x80000000u)));} AF4 ACpySgnF4(AF4 d,AF4 s){return AF4_AU4(AU4_AF4(d)|(AU4_AF4(s)&AU4_(0x80000000u)));} //------------------------------------------------------------------------------------------------------------------------------ // Single operation to return (useful to create a mask to use in lerp for branch free logic), // m=NaN := 0 // m>=0 := 0 // m<0 := 1 // Uses the following useful floating point logic, // saturate(+a*(-INF)==-INF) := 0 // saturate( 0*(-INF)== NaN) := 0 // saturate(-a*(-INF)==+INF) := 1 AF1 ASignedF1(AF1 m){return ASatF1(m*AF1_(A_INFN_F));} AF2 ASignedF2(AF2 m){return ASatF2(m*AF2_(A_INFN_F));} AF3 ASignedF3(AF3 m){return ASatF3(m*AF3_(A_INFN_F));} AF4 ASignedF4(AF4 m){return ASatF4(m*AF4_(A_INFN_F));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AGtZeroF1(AF1 m){return ASatF1(m*AF1_(A_INFP_F));} AF2 AGtZeroF2(AF2 m){return ASatF2(m*AF2_(A_INFP_F));} AF3 AGtZeroF3(AF3 m){return ASatF3(m*AF3_(A_INFP_F));} AF4 AGtZeroF4(AF4 m){return ASatF4(m*AF4_(A_INFP_F));} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // [FIS] FLOAT INTEGER SORTABLE //------------------------------------------------------------------------------------------------------------------------------ // Float to integer sortable. // - If sign bit=0, flip the sign bit (positives). // - If sign bit=1, flip all bits (negatives). // Integer sortable to float. // - If sign bit=1, flip the sign bit (positives). // - If sign bit=0, flip all bits (negatives). // Has nice side effects. // - Larger integers are more positive values. // - Float zero is mapped to center of integers (so clear to integer zero is a nice default for atomic max usage). // Burns 3 ops for conversion {shift,or,xor}. //============================================================================================================================== AU1 AFisToU1(AU1 x){return x^(( AShrSU1(x,AU1_(31)))|AU1_(0x80000000));} AU1 AFisFromU1(AU1 x){return x^((~AShrSU1(x,AU1_(31)))|AU1_(0x80000000));} //------------------------------------------------------------------------------------------------------------------------------ // Just adjust high 16-bit value (useful when upper part of 32-bit word is a 16-bit float value). AU1 AFisToHiU1(AU1 x){return x^(( AShrSU1(x,AU1_(15)))|AU1_(0x80000000));} AU1 AFisFromHiU1(AU1 x){return x^((~AShrSU1(x,AU1_(15)))|AU1_(0x80000000));} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // [BUC] BYTE UNSIGNED CONVERSION //------------------------------------------------------------------------------------------------------------------------------ // Designed to use the optimal conversion, enables the scaling to possibly be factored into other computation. // Works on a range of {0 to A_BUC_<32,16>}, for <32-bit, and 16-bit> respectively. //------------------------------------------------------------------------------------------------------------------------------ // OPCODE NOTES // ============ // GCN does not do UNORM or SNORM for bytes in opcodes. // - V_CVT_F32_UBYTE{0,1,2,3} - Unsigned byte to float. // - V_CVT_PKACC_U8_F32 - Float to unsigned byte (does bit-field insert into 32-bit integer). // V_PERM_B32 does byte packing with ability to zero fill bytes as well. // - Can pull out byte values from two sources, and zero fill upper 8-bits of packed hi and lo. //------------------------------------------------------------------------------------------------------------------------------ // BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U1() - Designed for V_CVT_F32_UBYTE* and V_CVT_PKACCUM_U8_F32 ops. // ==== ===== // 0 : 0 // 1 : 1 // ... // 255 : 255 // : 256 (just outside the encoding range) //------------------------------------------------------------------------------------------------------------------------------ // BYTE : FLOAT - ABuc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32. // ==== ===== // 0 : 0 // 1 : 1/512 // 2 : 1/256 // ... // 64 : 1/8 // 128 : 1/4 // 255 : 255/512 // : 1/2 (just outside the encoding range) //------------------------------------------------------------------------------------------------------------------------------ // OPTIMAL IMPLEMENTATIONS ON AMD ARCHITECTURES // ============================================ // r=ABuc0FromU1(i) // V_CVT_F32_UBYTE0 r,i // -------------------------------------------- // r=ABuc0ToU1(d,i) // V_CVT_PKACCUM_U8_F32 r,i,0,d // -------------------------------------------- // d=ABuc0FromU2(i) // Where 'k0' is an SGPR with 0x0E0A // Where 'k1' is an SGPR with {32768.0} packed into the lower 16-bits // V_PERM_B32 d,i.x,i.y,k0 // V_PK_FMA_F16 d,d,k1.x,0 // -------------------------------------------- // r=ABuc0ToU2(d,i) // Where 'k0' is an SGPR with {1.0/32768.0} packed into the lower 16-bits // Where 'k1' is an SGPR with 0x???? // Where 'k2' is an SGPR with 0x???? // V_PK_FMA_F16 i,i,k0.x,0 // V_PERM_B32 r.x,i,i,k1 // V_PERM_B32 r.y,i,i,k2 //============================================================================================================================== // Peak range for 32-bit and 16-bit operations. #define A_BUC_32 (255.0) #define A_BUC_16 (255.0/512.0) //============================================================================================================================== #if 1 // Designed to be one V_CVT_PKACCUM_U8_F32. // The extra min is required to pattern match to V_CVT_PKACCUM_U8_F32. AU1 ABuc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i),255u) )&(0x000000ffu));} AU1 ABuc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i),255u)<< 8)&(0x0000ff00u));} AU1 ABuc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i),255u)<<16)&(0x00ff0000u));} AU1 ABuc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i),255u)<<24)&(0xff000000u));} //------------------------------------------------------------------------------------------------------------------------------ // Designed to be one V_CVT_F32_UBYTE*. AF1 ABuc0FromU1(AU1 i){return AF1((i )&255u);} AF1 ABuc1FromU1(AU1 i){return AF1((i>> 8)&255u);} AF1 ABuc2FromU1(AU1 i){return AF1((i>>16)&255u);} AF1 ABuc3FromU1(AU1 i){return AF1((i>>24)&255u);} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // [BSC] BYTE SIGNED CONVERSION //------------------------------------------------------------------------------------------------------------------------------ // Similar to [BUC]. // Works on a range of {-/+ A_BSC_<32,16>}, for <32-bit, and 16-bit> respectively. //------------------------------------------------------------------------------------------------------------------------------ // ENCODING (without zero-based encoding) // ======== // 0 = unused (can be used to mean something else) // 1 = lowest value // 128 = exact zero center (zero based encoding // 255 = highest value //------------------------------------------------------------------------------------------------------------------------------ // Zero-based [Zb] flips the MSB bit of the byte (making 128 "exact zero" actually zero). // This is useful if there is a desire for cleared values to decode as zero. //------------------------------------------------------------------------------------------------------------------------------ // BYTE : FLOAT - ABsc{0,1,2,3}{To,From}U2() - Designed for 16-bit denormal tricks and V_PERM_B32. // ==== ===== // 0 : -127/512 (unused) // 1 : -126/512 // 2 : -125/512 // ... // 128 : 0 // ... // 255 : 127/512 // : 1/4 (just outside the encoding range) //============================================================================================================================== // Peak range for 32-bit and 16-bit operations. #define A_BSC_32 (127.0) #define A_BSC_16 (127.0/512.0) //============================================================================================================================== #if 1 AU1 ABsc0ToU1(AU1 d,AF1 i){return (d&0xffffff00u)|((min(AU1(i+128.0),255u) )&(0x000000ffu));} AU1 ABsc1ToU1(AU1 d,AF1 i){return (d&0xffff00ffu)|((min(AU1(i+128.0),255u)<< 8)&(0x0000ff00u));} AU1 ABsc2ToU1(AU1 d,AF1 i){return (d&0xff00ffffu)|((min(AU1(i+128.0),255u)<<16)&(0x00ff0000u));} AU1 ABsc3ToU1(AU1 d,AF1 i){return (d&0x00ffffffu)|((min(AU1(i+128.0),255u)<<24)&(0xff000000u));} //------------------------------------------------------------------------------------------------------------------------------ AU1 ABsc0ToZbU1(AU1 d,AF1 i){return ((d&0xffffff00u)|((min(AU1(trunc(i)+128.0),255u) )&(0x000000ffu)))^0x00000080u;} AU1 ABsc1ToZbU1(AU1 d,AF1 i){return ((d&0xffff00ffu)|((min(AU1(trunc(i)+128.0),255u)<< 8)&(0x0000ff00u)))^0x00008000u;} AU1 ABsc2ToZbU1(AU1 d,AF1 i){return ((d&0xff00ffffu)|((min(AU1(trunc(i)+128.0),255u)<<16)&(0x00ff0000u)))^0x00800000u;} AU1 ABsc3ToZbU1(AU1 d,AF1 i){return ((d&0x00ffffffu)|((min(AU1(trunc(i)+128.0),255u)<<24)&(0xff000000u)))^0x80000000u;} //------------------------------------------------------------------------------------------------------------------------------ AF1 ABsc0FromU1(AU1 i){return AF1((i )&255u)-128.0;} AF1 ABsc1FromU1(AU1 i){return AF1((i>> 8)&255u)-128.0;} AF1 ABsc2FromU1(AU1 i){return AF1((i>>16)&255u)-128.0;} AF1 ABsc3FromU1(AU1 i){return AF1((i>>24)&255u)-128.0;} //------------------------------------------------------------------------------------------------------------------------------ AF1 ABsc0FromZbU1(AU1 i){return AF1(((i )&255u)^0x80u)-128.0;} AF1 ABsc1FromZbU1(AU1 i){return AF1(((i>> 8)&255u)^0x80u)-128.0;} AF1 ABsc2FromZbU1(AU1 i){return AF1(((i>>16)&255u)^0x80u)-128.0;} AF1 ABsc3FromZbU1(AU1 i){return AF1(((i>>24)&255u)^0x80u)-128.0;} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // FLOAT APPROXIMATIONS //------------------------------------------------------------------------------------------------------------------------------ // Michal Drobot has an excellent presentation on these: "Low Level Optimizations For GCN", // - Idea dates back to SGI, then to Quake 3, etc. // - https://michaldrobot.files.wordpress.com/2014/05/gcn_alu_opt_digitaldragons2014.pdf // - sqrt(x)=rsqrt(x)*x // - rcp(x)=rsqrt(x)*rsqrt(x) for positive x // - https://github.com/michaldrobot/ShaderFastLibs/blob/master/ShaderFastMathLib.h //------------------------------------------------------------------------------------------------------------------------------ // These below are from perhaps less complete searching for optimal. // Used FP16 normal range for testing with +4096 32-bit step size for sampling error. // So these match up well with the half approximations. //============================================================================================================================== AF1 APrxLoSqrtF1(AF1 a){return AF1_AU1((AU1_AF1(a)>>AU1_(1))+AU1_(0x1fbc4639));} AF1 APrxLoRcpF1(AF1 a){return AF1_AU1(AU1_(0x7ef07ebb)-AU1_AF1(a));} AF1 APrxMedRcpF1(AF1 a){AF1 b=AF1_AU1(AU1_(0x7ef19fff)-AU1_AF1(a));return b*(-b*a+AF1_(2.0));} AF1 APrxLoRsqF1(AF1 a){return AF1_AU1(AU1_(0x5f347d74)-(AU1_AF1(a)>>AU1_(1)));} //------------------------------------------------------------------------------------------------------------------------------ AF2 APrxLoSqrtF2(AF2 a){return AF2_AU2((AU2_AF2(a)>>AU2_(1))+AU2_(0x1fbc4639));} AF2 APrxLoRcpF2(AF2 a){return AF2_AU2(AU2_(0x7ef07ebb)-AU2_AF2(a));} AF2 APrxMedRcpF2(AF2 a){AF2 b=AF2_AU2(AU2_(0x7ef19fff)-AU2_AF2(a));return b*(-b*a+AF2_(2.0));} AF2 APrxLoRsqF2(AF2 a){return AF2_AU2(AU2_(0x5f347d74)-(AU2_AF2(a)>>AU2_(1)));} //------------------------------------------------------------------------------------------------------------------------------ AF3 APrxLoSqrtF3(AF3 a){return AF3_AU3((AU3_AF3(a)>>AU3_(1))+AU3_(0x1fbc4639));} AF3 APrxLoRcpF3(AF3 a){return AF3_AU3(AU3_(0x7ef07ebb)-AU3_AF3(a));} AF3 APrxMedRcpF3(AF3 a){AF3 b=AF3_AU3(AU3_(0x7ef19fff)-AU3_AF3(a));return b*(-b*a+AF3_(2.0));} AF3 APrxLoRsqF3(AF3 a){return AF3_AU3(AU3_(0x5f347d74)-(AU3_AF3(a)>>AU3_(1)));} //------------------------------------------------------------------------------------------------------------------------------ AF4 APrxLoSqrtF4(AF4 a){return AF4_AU4((AU4_AF4(a)>>AU4_(1))+AU4_(0x1fbc4639));} AF4 APrxLoRcpF4(AF4 a){return AF4_AU4(AU4_(0x7ef07ebb)-AU4_AF4(a));} AF4 APrxMedRcpF4(AF4 a){AF4 b=AF4_AU4(AU4_(0x7ef19fff)-AU4_AF4(a));return b*(-b*a+AF4_(2.0));} AF4 APrxLoRsqF4(AF4 a){return AF4_AU4(AU4_(0x5f347d74)-(AU4_AF4(a)>>AU4_(1)));} //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // PQ APPROXIMATIONS //------------------------------------------------------------------------------------------------------------------------------ // PQ is very close to x^(1/8). The functions below Use the fast float approximation method to do // PQ<~>Gamma2 (4th power and fast 4th root) and PQ<~>Linear (8th power and fast 8th root). Maximum error is ~0.2%. //============================================================================================================================== // Helpers AF1 Quart(AF1 a) { a = a * a; return a * a;} AF1 Oct(AF1 a) { a = a * a; a = a * a; return a * a; } AF2 Quart(AF2 a) { a = a * a; return a * a; } AF2 Oct(AF2 a) { a = a * a; a = a * a; return a * a; } AF3 Quart(AF3 a) { a = a * a; return a * a; } AF3 Oct(AF3 a) { a = a * a; a = a * a; return a * a; } AF4 Quart(AF4 a) { a = a * a; return a * a; } AF4 Oct(AF4 a) { a = a * a; a = a * a; return a * a; } //------------------------------------------------------------------------------------------------------------------------------ AF1 APrxPQToGamma2(AF1 a) { return Quart(a); } AF1 APrxPQToLinear(AF1 a) { return Oct(a); } AF1 APrxLoGamma2ToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); } AF1 APrxMedGamma2ToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(2)) + AU1_(0x2F9A4E46)); AF1 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); } AF1 APrxHighGamma2ToPQ(AF1 a) { return sqrt(sqrt(a)); } AF1 APrxLoLinearToPQ(AF1 a) { return AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); } AF1 APrxMedLinearToPQ(AF1 a) { AF1 b = AF1_AU1((AU1_AF1(a) >> AU1_(3)) + AU1_(0x378D8723)); AF1 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); } AF1 APrxHighLinearToPQ(AF1 a) { return sqrt(sqrt(sqrt(a))); } //------------------------------------------------------------------------------------------------------------------------------ AF2 APrxPQToGamma2(AF2 a) { return Quart(a); } AF2 APrxPQToLinear(AF2 a) { return Oct(a); } AF2 APrxLoGamma2ToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); } AF2 APrxMedGamma2ToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(2)) + AU2_(0x2F9A4E46)); AF2 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); } AF2 APrxHighGamma2ToPQ(AF2 a) { return sqrt(sqrt(a)); } AF2 APrxLoLinearToPQ(AF2 a) { return AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); } AF2 APrxMedLinearToPQ(AF2 a) { AF2 b = AF2_AU2((AU2_AF2(a) >> AU2_(3)) + AU2_(0x378D8723)); AF2 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); } AF2 APrxHighLinearToPQ(AF2 a) { return sqrt(sqrt(sqrt(a))); } //------------------------------------------------------------------------------------------------------------------------------ AF3 APrxPQToGamma2(AF3 a) { return Quart(a); } AF3 APrxPQToLinear(AF3 a) { return Oct(a); } AF3 APrxLoGamma2ToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); } AF3 APrxMedGamma2ToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(2)) + AU3_(0x2F9A4E46)); AF3 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); } AF3 APrxHighGamma2ToPQ(AF3 a) { return sqrt(sqrt(a)); } AF3 APrxLoLinearToPQ(AF3 a) { return AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); } AF3 APrxMedLinearToPQ(AF3 a) { AF3 b = AF3_AU3((AU3_AF3(a) >> AU3_(3)) + AU3_(0x378D8723)); AF3 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); } AF3 APrxHighLinearToPQ(AF3 a) { return sqrt(sqrt(sqrt(a))); } //------------------------------------------------------------------------------------------------------------------------------ AF4 APrxPQToGamma2(AF4 a) { return Quart(a); } AF4 APrxPQToLinear(AF4 a) { return Oct(a); } AF4 APrxLoGamma2ToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); } AF4 APrxMedGamma2ToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(2)) + AU4_(0x2F9A4E46)); AF4 b4 = Quart(b); return b - b * (b4 - a) / (AF1_(4.0) * b4); } AF4 APrxHighGamma2ToPQ(AF4 a) { return sqrt(sqrt(a)); } AF4 APrxLoLinearToPQ(AF4 a) { return AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); } AF4 APrxMedLinearToPQ(AF4 a) { AF4 b = AF4_AU4((AU4_AF4(a) >> AU4_(3)) + AU4_(0x378D8723)); AF4 b8 = Oct(b); return b - b * (b8 - a) / (AF1_(8.0) * b8); } AF4 APrxHighLinearToPQ(AF4 a) { return sqrt(sqrt(sqrt(a))); } //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // PARABOLIC SIN & COS //------------------------------------------------------------------------------------------------------------------------------ // Approximate answers to transcendental questions. //------------------------------------------------------------------------------------------------------------------------------ //============================================================================================================================== #if 1 // Valid input range is {-1 to 1} representing {0 to 2 pi}. // Output range is {-1/4 to 1/4} representing {-1 to 1}. AF1 APSinF1(AF1 x){return x*abs(x)-x;} // MAD. AF2 APSinF2(AF2 x){return x*abs(x)-x;} AF1 APCosF1(AF1 x){x=AFractF1(x*AF1_(0.5)+AF1_(0.75));x=x*AF1_(2.0)-AF1_(1.0);return APSinF1(x);} // 3x MAD, FRACT AF2 APCosF2(AF2 x){x=AFractF2(x*AF2_(0.5)+AF2_(0.75));x=x*AF2_(2.0)-AF2_(1.0);return APSinF2(x);} AF2 APSinCosF1(AF1 x){AF1 y=AFractF1(x*AF1_(0.5)+AF1_(0.75));y=y*AF1_(2.0)-AF1_(1.0);return APSinF2(AF2(x,y));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // [ZOL] ZERO ONE LOGIC //------------------------------------------------------------------------------------------------------------------------------ // Conditional free logic designed for easy 16-bit packing, and backwards porting to 32-bit. //------------------------------------------------------------------------------------------------------------------------------ // 0 := false // 1 := true //------------------------------------------------------------------------------------------------------------------------------ // AndNot(x,y) -> !(x&y) .... One op. // AndOr(x,y,z) -> (x&y)|z ... One op. // GtZero(x) -> x>0.0 ..... One op. // Sel(x,y,z) -> x?y:z ..... Two ops, has no precision loss. // Signed(x) -> x<0.0 ..... One op. // ZeroPass(x,y) -> x?0:y ..... Two ops, 'y' is a pass through safe for aliasing as integer. //------------------------------------------------------------------------------------------------------------------------------ // OPTIMIZATION NOTES // ================== // - On Vega to use 2 constants in a packed op, pass in as one AW2 or one AH2 'k.xy' and use as 'k.xx' and 'k.yy'. // For example 'a.xy*k.xx+k.yy'. //============================================================================================================================== #if 1 AU1 AZolAndU1(AU1 x,AU1 y){return min(x,y);} AU2 AZolAndU2(AU2 x,AU2 y){return min(x,y);} AU3 AZolAndU3(AU3 x,AU3 y){return min(x,y);} AU4 AZolAndU4(AU4 x,AU4 y){return min(x,y);} //------------------------------------------------------------------------------------------------------------------------------ AU1 AZolNotU1(AU1 x){return x^AU1_(1);} AU2 AZolNotU2(AU2 x){return x^AU2_(1);} AU3 AZolNotU3(AU3 x){return x^AU3_(1);} AU4 AZolNotU4(AU4 x){return x^AU4_(1);} //------------------------------------------------------------------------------------------------------------------------------ AU1 AZolOrU1(AU1 x,AU1 y){return max(x,y);} AU2 AZolOrU2(AU2 x,AU2 y){return max(x,y);} AU3 AZolOrU3(AU3 x,AU3 y){return max(x,y);} AU4 AZolOrU4(AU4 x,AU4 y){return max(x,y);} //============================================================================================================================== AU1 AZolF1ToU1(AF1 x){return AU1(x);} AU2 AZolF2ToU2(AF2 x){return AU2(x);} AU3 AZolF3ToU3(AF3 x){return AU3(x);} AU4 AZolF4ToU4(AF4 x){return AU4(x);} //------------------------------------------------------------------------------------------------------------------------------ // 2 ops, denormals don't work in 32-bit on PC (and if they are enabled, OMOD is disabled). AU1 AZolNotF1ToU1(AF1 x){return AU1(AF1_(1.0)-x);} AU2 AZolNotF2ToU2(AF2 x){return AU2(AF2_(1.0)-x);} AU3 AZolNotF3ToU3(AF3 x){return AU3(AF3_(1.0)-x);} AU4 AZolNotF4ToU4(AF4 x){return AU4(AF4_(1.0)-x);} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolU1ToF1(AU1 x){return AF1(x);} AF2 AZolU2ToF2(AU2 x){return AF2(x);} AF3 AZolU3ToF3(AU3 x){return AF3(x);} AF4 AZolU4ToF4(AU4 x){return AF4(x);} //============================================================================================================================== AF1 AZolAndF1(AF1 x,AF1 y){return min(x,y);} AF2 AZolAndF2(AF2 x,AF2 y){return min(x,y);} AF3 AZolAndF3(AF3 x,AF3 y){return min(x,y);} AF4 AZolAndF4(AF4 x,AF4 y){return min(x,y);} //------------------------------------------------------------------------------------------------------------------------------ AF1 ASolAndNotF1(AF1 x,AF1 y){return (-x)*y+AF1_(1.0);} AF2 ASolAndNotF2(AF2 x,AF2 y){return (-x)*y+AF2_(1.0);} AF3 ASolAndNotF3(AF3 x,AF3 y){return (-x)*y+AF3_(1.0);} AF4 ASolAndNotF4(AF4 x,AF4 y){return (-x)*y+AF4_(1.0);} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolAndOrF1(AF1 x,AF1 y,AF1 z){return ASatF1(x*y+z);} AF2 AZolAndOrF2(AF2 x,AF2 y,AF2 z){return ASatF2(x*y+z);} AF3 AZolAndOrF3(AF3 x,AF3 y,AF3 z){return ASatF3(x*y+z);} AF4 AZolAndOrF4(AF4 x,AF4 y,AF4 z){return ASatF4(x*y+z);} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolGtZeroF1(AF1 x){return ASatF1(x*AF1_(A_INFP_F));} AF2 AZolGtZeroF2(AF2 x){return ASatF2(x*AF2_(A_INFP_F));} AF3 AZolGtZeroF3(AF3 x){return ASatF3(x*AF3_(A_INFP_F));} AF4 AZolGtZeroF4(AF4 x){return ASatF4(x*AF4_(A_INFP_F));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolNotF1(AF1 x){return AF1_(1.0)-x;} AF2 AZolNotF2(AF2 x){return AF2_(1.0)-x;} AF3 AZolNotF3(AF3 x){return AF3_(1.0)-x;} AF4 AZolNotF4(AF4 x){return AF4_(1.0)-x;} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolOrF1(AF1 x,AF1 y){return max(x,y);} AF2 AZolOrF2(AF2 x,AF2 y){return max(x,y);} AF3 AZolOrF3(AF3 x,AF3 y){return max(x,y);} AF4 AZolOrF4(AF4 x,AF4 y){return max(x,y);} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolSelF1(AF1 x,AF1 y,AF1 z){AF1 r=(-x)*z+z;return x*y+r;} AF2 AZolSelF2(AF2 x,AF2 y,AF2 z){AF2 r=(-x)*z+z;return x*y+r;} AF3 AZolSelF3(AF3 x,AF3 y,AF3 z){AF3 r=(-x)*z+z;return x*y+r;} AF4 AZolSelF4(AF4 x,AF4 y,AF4 z){AF4 r=(-x)*z+z;return x*y+r;} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolSignedF1(AF1 x){return ASatF1(x*AF1_(A_INFN_F));} AF2 AZolSignedF2(AF2 x){return ASatF2(x*AF2_(A_INFN_F));} AF3 AZolSignedF3(AF3 x){return ASatF3(x*AF3_(A_INFN_F));} AF4 AZolSignedF4(AF4 x){return ASatF4(x*AF4_(A_INFN_F));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AZolZeroPassF1(AF1 x,AF1 y){return AF1_AU1((AU1_AF1(x)!=AU1_(0))?AU1_(0):AU1_AF1(y));} AF2 AZolZeroPassF2(AF2 x,AF2 y){return AF2_AU2((AU2_AF2(x)!=AU2_(0))?AU2_(0):AU2_AF2(y));} AF3 AZolZeroPassF3(AF3 x,AF3 y){return AF3_AU3((AU3_AF3(x)!=AU3_(0))?AU3_(0):AU3_AF3(y));} AF4 AZolZeroPassF4(AF4 x,AF4 y){return AF4_AU4((AU4_AF4(x)!=AU4_(0))?AU4_(0):AU4_AF4(y));} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // COLOR CONVERSIONS //------------------------------------------------------------------------------------------------------------------------------ // These are all linear to/from some other space (where 'linear' has been shortened out of the function name). // So 'ToGamma' is 'LinearToGamma', and 'FromGamma' is 'LinearFromGamma'. // These are branch free implementations. // The AToSrgbF1() function is useful for stores for compute shaders for GPUs without hardware linear->sRGB store conversion. //------------------------------------------------------------------------------------------------------------------------------ // TRANSFER FUNCTIONS // ================== // 709 ..... Rec709 used for some HDTVs // Gamma ... Typically 2.2 for some PC displays, or 2.4-2.5 for CRTs, or 2.2 FreeSync2 native // Pq ...... PQ native for HDR10 // Srgb .... The sRGB output, typical of PC displays, useful for 10-bit output, or storing to 8-bit UNORM without SRGB type // Two ..... Gamma 2.0, fastest conversion (useful for intermediate pass approximations) // Three ... Gamma 3.0, less fast, but good for HDR. //------------------------------------------------------------------------------------------------------------------------------ // KEEPING TO SPEC // =============== // Both Rec.709 and sRGB have a linear segment which as spec'ed would intersect the curved segment 2 times. // (a.) For 8-bit sRGB, steps {0 to 10.3} are in the linear region (4% of the encoding range). // (b.) For 8-bit 709, steps {0 to 20.7} are in the linear region (8% of the encoding range). // Also there is a slight step in the transition regions. // Precision of the coefficients in the spec being the likely cause. // Main usage case of the sRGB code is to do the linear->sRGB converstion in a compute shader before store. // This is to work around lack of hardware (typically only ROP does the conversion for free). // To "correct" the linear segment, would be to introduce error, because hardware decode of sRGB->linear is fixed (and free). // So this header keeps with the spec. // For linear->sRGB transforms, the linear segment in some respects reduces error, because rounding in that region is linear. // Rounding in the curved region in hardware (and fast software code) introduces error due to rounding in non-linear. //------------------------------------------------------------------------------------------------------------------------------ // FOR PQ // ====== // Both input and output is {0.0-1.0}, and where output 1.0 represents 10000.0 cd/m^2. // All constants are only specified to FP32 precision. // External PQ source reference, // - https://github.com/ampas/aces-dev/blob/master/transforms/ctl/utilities/ACESlib.Utilities_Color.a1.0.1.ctl //------------------------------------------------------------------------------------------------------------------------------ // PACKED VERSIONS // =============== // These are the A*H2() functions. // There is no PQ functions as FP16 seemed to not have enough precision for the conversion. // The remaining functions are "good enough" for 8-bit, and maybe 10-bit if not concerned about a few 1-bit errors. // Precision is lowest in the 709 conversion, higher in sRGB, higher still in Two and Gamma (when using 2.2 at least). //------------------------------------------------------------------------------------------------------------------------------ // NOTES // ===== // Could be faster for PQ conversions to be in ALU or a texture lookup depending on usage case. //============================================================================================================================== #if 1 AF1 ATo709F1(AF1 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099); return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );} AF2 ATo709F2(AF2 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099); return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );} AF3 ATo709F3(AF3 c){AF3 j=AF3(0.018*4.5,4.5,0.45);AF2 k=AF2(1.099,-0.099); return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);} //------------------------------------------------------------------------------------------------------------------------------ // Note 'rcpX' is '1/x', where the 'x' is what would be used in AFromGamma(). AF1 AToGammaF1(AF1 c,AF1 rcpX){return pow(c,AF1_(rcpX));} AF2 AToGammaF2(AF2 c,AF1 rcpX){return pow(c,AF2_(rcpX));} AF3 AToGammaF3(AF3 c,AF1 rcpX){return pow(c,AF3_(rcpX));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AToPqF1(AF1 x){AF1 p=pow(x,AF1_(0.159302)); return pow((AF1_(0.835938)+AF1_(18.8516)*p)/(AF1_(1.0)+AF1_(18.6875)*p),AF1_(78.8438));} AF2 AToPqF1(AF2 x){AF2 p=pow(x,AF2_(0.159302)); return pow((AF2_(0.835938)+AF2_(18.8516)*p)/(AF2_(1.0)+AF2_(18.6875)*p),AF2_(78.8438));} AF3 AToPqF1(AF3 x){AF3 p=pow(x,AF3_(0.159302)); return pow((AF3_(0.835938)+AF3_(18.8516)*p)/(AF3_(1.0)+AF3_(18.6875)*p),AF3_(78.8438));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AToSrgbF1(AF1 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055); return clamp(j.x ,c*j.y ,pow(c,j.z )*k.x +k.y );} AF2 AToSrgbF2(AF2 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055); return clamp(j.xx ,c*j.yy ,pow(c,j.zz )*k.xx +k.yy );} AF3 AToSrgbF3(AF3 c){AF3 j=AF3(0.0031308*12.92,12.92,1.0/2.4);AF2 k=AF2(1.055,-0.055); return clamp(j.xxx,c*j.yyy,pow(c,j.zzz)*k.xxx+k.yyy);} //------------------------------------------------------------------------------------------------------------------------------ AF1 AToTwoF1(AF1 c){return sqrt(c);} AF2 AToTwoF2(AF2 c){return sqrt(c);} AF3 AToTwoF3(AF3 c){return sqrt(c);} //------------------------------------------------------------------------------------------------------------------------------ AF1 AToThreeF1(AF1 c){return pow(c,AF1_(1.0/3.0));} AF2 AToThreeF2(AF2 c){return pow(c,AF2_(1.0/3.0));} AF3 AToThreeF3(AF3 c){return pow(c,AF3_(1.0/3.0));} #endif //============================================================================================================================== #if 1 // Unfortunately median won't work here. AF1 AFrom709F1(AF1 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099); return AZolSelF1(AZolSignedF1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));} AF2 AFrom709F2(AF2 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099); return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));} AF3 AFrom709F3(AF3 c){AF3 j=AF3(0.081/4.5,1.0/4.5,1.0/0.45);AF2 k=AF2(1.0/1.099,0.099/1.099); return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AFromGammaF1(AF1 c,AF1 x){return pow(c,AF1_(x));} AF2 AFromGammaF2(AF2 c,AF1 x){return pow(c,AF2_(x));} AF3 AFromGammaF3(AF3 c,AF1 x){return pow(c,AF3_(x));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AFromPqF1(AF1 x){AF1 p=pow(x,AF1_(0.0126833)); return pow(ASatF1(p-AF1_(0.835938))/(AF1_(18.8516)-AF1_(18.6875)*p),AF1_(6.27739));} AF2 AFromPqF1(AF2 x){AF2 p=pow(x,AF2_(0.0126833)); return pow(ASatF2(p-AF2_(0.835938))/(AF2_(18.8516)-AF2_(18.6875)*p),AF2_(6.27739));} AF3 AFromPqF1(AF3 x){AF3 p=pow(x,AF3_(0.0126833)); return pow(ASatF3(p-AF3_(0.835938))/(AF3_(18.8516)-AF3_(18.6875)*p),AF3_(6.27739));} //------------------------------------------------------------------------------------------------------------------------------ // Unfortunately median won't work here. AF1 AFromSrgbF1(AF1 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055); return AZolSelF1(AZolSignedF1(c-j.x ),c*j.y ,pow(c*k.x +k.y ,j.z ));} AF2 AFromSrgbF2(AF2 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055); return AZolSelF2(AZolSignedF2(c-j.xx ),c*j.yy ,pow(c*k.xx +k.yy ,j.zz ));} AF3 AFromSrgbF3(AF3 c){AF3 j=AF3(0.04045/12.92,1.0/12.92,2.4);AF2 k=AF2(1.0/1.055,0.055/1.055); return AZolSelF3(AZolSignedF3(c-j.xxx),c*j.yyy,pow(c*k.xxx+k.yyy,j.zzz));} //------------------------------------------------------------------------------------------------------------------------------ AF1 AFromTwoF1(AF1 c){return c*c;} AF2 AFromTwoF2(AF2 c){return c*c;} AF3 AFromTwoF3(AF3 c){return c*c;} //------------------------------------------------------------------------------------------------------------------------------ AF1 AFromThreeF1(AF1 c){return c*c*c;} AF2 AFromThreeF2(AF2 c){return c*c*c;} AF3 AFromThreeF3(AF3 c){return c*c*c;} #endif //============================================================================================================================== //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // CS REMAP //============================================================================================================================== // Simple remap 64x1 to 8x8 with rotated 2x2 pixel quads in quad linear. // 543210 // ====== // ..xxx. // yy...y AU2 ARmp8x8(AU1 a){return AU2(ABfe(a,1u,3u),ABfiM(ABfe(a,3u,3u),a,1u));} //============================================================================================================================== // More complex remap 64x1 to 8x8 which is necessary for 2D wave reductions. // 543210 // ====== // .xx..x // y..yy. // Details, // LANE TO 8x8 MAPPING // =================== // 00 01 08 09 10 11 18 19 // 02 03 0a 0b 12 13 1a 1b // 04 05 0c 0d 14 15 1c 1d // 06 07 0e 0f 16 17 1e 1f // 20 21 28 29 30 31 38 39 // 22 23 2a 2b 32 33 3a 3b // 24 25 2c 2d 34 35 3c 3d // 26 27 2e 2f 36 37 3e 3f AU2 ARmpRed8x8(AU1 a){return AU2(ABfiM(ABfe(a,2u,3u),a,1u),ABfiM(ABfe(a,3u,3u),ABfe(a,1u,2u),2u));} //============================================================================================================================== #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // REFERENCE // //------------------------------------------------------------------------------------------------------------------------------ // IEEE FLOAT RULES // ================ // - saturate(NaN)=0, saturate(-INF)=0, saturate(+INF)=1 // - {+/-}0 * {+/-}INF = NaN // - -INF + (+INF) = NaN // - {+/-}0 / {+/-}0 = NaN // - {+/-}INF / {+/-}INF = NaN // - a<(-0) := sqrt(a) = NaN (a=-0.0 won't NaN) // - 0 == -0 // - 4/0 = +INF // - 4/-0 = -INF // - 4+INF = +INF // - 4-INF = -INF // - 4*(+INF) = +INF // - 4*(-INF) = -INF // - -4*(+INF) = -INF // - sqrt(+INF) = +INF //------------------------------------------------------------------------------------------------------------------------------ // FP16 ENCODING // ============= // fedcba9876543210 // ---------------- // ......mmmmmmmmmm 10-bit mantissa (encodes 11-bit 0.5 to 1.0 except for denormals) // .eeeee.......... 5-bit exponent // .00000.......... denormals // .00001.......... -14 exponent // .11110.......... 15 exponent // .111110000000000 infinity // .11111nnnnnnnnnn NaN with n!=0 // s............... sign //------------------------------------------------------------------------------------------------------------------------------ // FP16/INT16 ALIASING DENORMAL // ============================ // 11-bit unsigned integers alias with half float denormal/normal values, // 1 = 2^(-24) = 1/16777216 ....................... first denormal value // 2 = 2^(-23) // ... // 1023 = 2^(-14)*(1-2^(-10)) = 2^(-14)*(1-1/1024) ... last denormal value // 1024 = 2^(-14) = 1/16384 .......................... first normal value that still maps to integers // 2047 .............................................. last normal value that still maps to integers // Scaling limits, // 2^15 = 32768 ...................................... largest power of 2 scaling // Largest pow2 conversion mapping is at *32768, // 1 : 2^(-9) = 1/512 // 2 : 1/256 // 4 : 1/128 // 8 : 1/64 // 16 : 1/32 // 32 : 1/16 // 64 : 1/8 // 128 : 1/4 // 256 : 1/2 // 512 : 1 // 1024 : 2 // 2047 : a little less than 4 //============================================================================================================================== //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // // GPU/CPU PORTABILITY // // //------------------------------------------------------------------------------------------------------------------------------ // This is the GPU implementation. // See the CPU implementation for docs. //============================================================================================================================== #ifdef A_GPU #define A_TRUE true #define A_FALSE false #define A_STATIC //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // VECTOR ARGUMENT/RETURN/INITIALIZATION PORTABILITY //============================================================================================================================== #define retAD2 AD2 #define retAD3 AD3 #define retAD4 AD4 #define retAF2 AF2 #define retAF3 AF3 #define retAF4 AF4 #define retAL2 AL2 #define retAL3 AL3 #define retAL4 AL4 #define retAU2 AU2 #define retAU3 AU3 #define retAU4 AU4 //------------------------------------------------------------------------------------------------------------------------------ #define inAD2 in AD2 #define inAD3 in AD3 #define inAD4 in AD4 #define inAF2 in AF2 #define inAF3 in AF3 #define inAF4 in AF4 #define inAL2 in AL2 #define inAL3 in AL3 #define inAL4 in AL4 #define inAU2 in AU2 #define inAU3 in AU3 #define inAU4 in AU4 //------------------------------------------------------------------------------------------------------------------------------ #define inoutAD2 inout AD2 #define inoutAD3 inout AD3 #define inoutAD4 inout AD4 #define inoutAF2 inout AF2 #define inoutAF3 inout AF3 #define inoutAF4 inout AF4 #define inoutAL2 inout AL2 #define inoutAL3 inout AL3 #define inoutAL4 inout AL4 #define inoutAU2 inout AU2 #define inoutAU3 inout AU3 #define inoutAU4 inout AU4 //------------------------------------------------------------------------------------------------------------------------------ #define outAD2 out AD2 #define outAD3 out AD3 #define outAD4 out AD4 #define outAF2 out AF2 #define outAF3 out AF3 #define outAF4 out AF4 #define outAL2 out AL2 #define outAL3 out AL3 #define outAL4 out AL4 #define outAU2 out AU2 #define outAU3 out AU3 #define outAU4 out AU4 //------------------------------------------------------------------------------------------------------------------------------ #define varAD2(x) AD2 x #define varAD3(x) AD3 x #define varAD4(x) AD4 x #define varAF2(x) AF2 x #define varAF3(x) AF3 x #define varAF4(x) AF4 x #define varAL2(x) AL2 x #define varAL3(x) AL3 x #define varAL4(x) AL4 x #define varAU2(x) AU2 x #define varAU3(x) AU3 x #define varAU4(x) AU4 x //------------------------------------------------------------------------------------------------------------------------------ #define initAD2(x,y) AD2(x,y) #define initAD3(x,y,z) AD3(x,y,z) #define initAD4(x,y,z,w) AD4(x,y,z,w) #define initAF2(x,y) AF2(x,y) #define initAF3(x,y,z) AF3(x,y,z) #define initAF4(x,y,z,w) AF4(x,y,z,w) #define initAL2(x,y) AL2(x,y) #define initAL3(x,y,z) AL3(x,y,z) #define initAL4(x,y,z,w) AL4(x,y,z,w) #define initAU2(x,y) AU2(x,y) #define initAU3(x,y,z) AU3(x,y,z) #define initAU4(x,y,z,w) AU4(x,y,z,w) //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // SCALAR RETURN OPS //============================================================================================================================== #define AAbsD1(a) abs(AD1(a)) #define AAbsF1(a) abs(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ #define ACosD1(a) cos(AD1(a)) #define ACosF1(a) cos(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ #define ADotD2(a,b) dot(AD2(a),AD2(b)) #define ADotD3(a,b) dot(AD3(a),AD3(b)) #define ADotD4(a,b) dot(AD4(a),AD4(b)) #define ADotF2(a,b) dot(AF2(a),AF2(b)) #define ADotF3(a,b) dot(AF3(a),AF3(b)) #define ADotF4(a,b) dot(AF4(a),AF4(b)) //------------------------------------------------------------------------------------------------------------------------------ #define AExp2D1(a) exp2(AD1(a)) #define AExp2F1(a) exp2(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ #define AFloorD1(a) floor(AD1(a)) #define AFloorF1(a) floor(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ #define ALog2D1(a) log2(AD1(a)) #define ALog2F1(a) log2(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ #define AMaxD1(a,b) max(a,b) #define AMaxF1(a,b) max(a,b) #define AMaxL1(a,b) max(a,b) #define AMaxU1(a,b) max(a,b) //------------------------------------------------------------------------------------------------------------------------------ #define AMinD1(a,b) min(a,b) #define AMinF1(a,b) min(a,b) #define AMinL1(a,b) min(a,b) #define AMinU1(a,b) min(a,b) //------------------------------------------------------------------------------------------------------------------------------ #define ASinD1(a) sin(AD1(a)) #define ASinF1(a) sin(AF1(a)) //------------------------------------------------------------------------------------------------------------------------------ #define ASqrtD1(a) sqrt(AD1(a)) #define ASqrtF1(a) sqrt(AF1(a)) //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // SCALAR RETURN OPS - DEPENDENT //============================================================================================================================== #define APowD1(a,b) pow(AD1(a),AF1(b)) #define APowF1(a,b) pow(AF1(a),AF1(b)) //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // VECTOR OPS //------------------------------------------------------------------------------------------------------------------------------ // These are added as needed for production or prototyping, so not necessarily a complete set. // They follow a convention of taking in a destination and also returning the destination value to increase utility. //============================================================================================================================== #ifdef A_DUBL AD2 opAAbsD2(outAD2 d,inAD2 a){d=abs(a);return d;} AD3 opAAbsD3(outAD3 d,inAD3 a){d=abs(a);return d;} AD4 opAAbsD4(outAD4 d,inAD4 a){d=abs(a);return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opAAddD2(outAD2 d,inAD2 a,inAD2 b){d=a+b;return d;} AD3 opAAddD3(outAD3 d,inAD3 a,inAD3 b){d=a+b;return d;} AD4 opAAddD4(outAD4 d,inAD4 a,inAD4 b){d=a+b;return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opAAddOneD2(outAD2 d,inAD2 a,AD1 b){d=a+AD2_(b);return d;} AD3 opAAddOneD3(outAD3 d,inAD3 a,AD1 b){d=a+AD3_(b);return d;} AD4 opAAddOneD4(outAD4 d,inAD4 a,AD1 b){d=a+AD4_(b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opACpyD2(outAD2 d,inAD2 a){d=a;return d;} AD3 opACpyD3(outAD3 d,inAD3 a){d=a;return d;} AD4 opACpyD4(outAD4 d,inAD4 a){d=a;return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opALerpD2(outAD2 d,inAD2 a,inAD2 b,inAD2 c){d=ALerpD2(a,b,c);return d;} AD3 opALerpD3(outAD3 d,inAD3 a,inAD3 b,inAD3 c){d=ALerpD3(a,b,c);return d;} AD4 opALerpD4(outAD4 d,inAD4 a,inAD4 b,inAD4 c){d=ALerpD4(a,b,c);return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opALerpOneD2(outAD2 d,inAD2 a,inAD2 b,AD1 c){d=ALerpD2(a,b,AD2_(c));return d;} AD3 opALerpOneD3(outAD3 d,inAD3 a,inAD3 b,AD1 c){d=ALerpD3(a,b,AD3_(c));return d;} AD4 opALerpOneD4(outAD4 d,inAD4 a,inAD4 b,AD1 c){d=ALerpD4(a,b,AD4_(c));return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opAMaxD2(outAD2 d,inAD2 a,inAD2 b){d=max(a,b);return d;} AD3 opAMaxD3(outAD3 d,inAD3 a,inAD3 b){d=max(a,b);return d;} AD4 opAMaxD4(outAD4 d,inAD4 a,inAD4 b){d=max(a,b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opAMinD2(outAD2 d,inAD2 a,inAD2 b){d=min(a,b);return d;} AD3 opAMinD3(outAD3 d,inAD3 a,inAD3 b){d=min(a,b);return d;} AD4 opAMinD4(outAD4 d,inAD4 a,inAD4 b){d=min(a,b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opAMulD2(outAD2 d,inAD2 a,inAD2 b){d=a*b;return d;} AD3 opAMulD3(outAD3 d,inAD3 a,inAD3 b){d=a*b;return d;} AD4 opAMulD4(outAD4 d,inAD4 a,inAD4 b){d=a*b;return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opAMulOneD2(outAD2 d,inAD2 a,AD1 b){d=a*AD2_(b);return d;} AD3 opAMulOneD3(outAD3 d,inAD3 a,AD1 b){d=a*AD3_(b);return d;} AD4 opAMulOneD4(outAD4 d,inAD4 a,AD1 b){d=a*AD4_(b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opANegD2(outAD2 d,inAD2 a){d=-a;return d;} AD3 opANegD3(outAD3 d,inAD3 a){d=-a;return d;} AD4 opANegD4(outAD4 d,inAD4 a){d=-a;return d;} //------------------------------------------------------------------------------------------------------------------------------ AD2 opARcpD2(outAD2 d,inAD2 a){d=ARcpD2(a);return d;} AD3 opARcpD3(outAD3 d,inAD3 a){d=ARcpD3(a);return d;} AD4 opARcpD4(outAD4 d,inAD4 a){d=ARcpD4(a);return d;} #endif //============================================================================================================================== AF2 opAAbsF2(outAF2 d,inAF2 a){d=abs(a);return d;} AF3 opAAbsF3(outAF3 d,inAF3 a){d=abs(a);return d;} AF4 opAAbsF4(outAF4 d,inAF4 a){d=abs(a);return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opAAddF2(outAF2 d,inAF2 a,inAF2 b){d=a+b;return d;} AF3 opAAddF3(outAF3 d,inAF3 a,inAF3 b){d=a+b;return d;} AF4 opAAddF4(outAF4 d,inAF4 a,inAF4 b){d=a+b;return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opAAddOneF2(outAF2 d,inAF2 a,AF1 b){d=a+AF2_(b);return d;} AF3 opAAddOneF3(outAF3 d,inAF3 a,AF1 b){d=a+AF3_(b);return d;} AF4 opAAddOneF4(outAF4 d,inAF4 a,AF1 b){d=a+AF4_(b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opACpyF2(outAF2 d,inAF2 a){d=a;return d;} AF3 opACpyF3(outAF3 d,inAF3 a){d=a;return d;} AF4 opACpyF4(outAF4 d,inAF4 a){d=a;return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opALerpF2(outAF2 d,inAF2 a,inAF2 b,inAF2 c){d=ALerpF2(a,b,c);return d;} AF3 opALerpF3(outAF3 d,inAF3 a,inAF3 b,inAF3 c){d=ALerpF3(a,b,c);return d;} AF4 opALerpF4(outAF4 d,inAF4 a,inAF4 b,inAF4 c){d=ALerpF4(a,b,c);return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opALerpOneF2(outAF2 d,inAF2 a,inAF2 b,AF1 c){d=ALerpF2(a,b,AF2_(c));return d;} AF3 opALerpOneF3(outAF3 d,inAF3 a,inAF3 b,AF1 c){d=ALerpF3(a,b,AF3_(c));return d;} AF4 opALerpOneF4(outAF4 d,inAF4 a,inAF4 b,AF1 c){d=ALerpF4(a,b,AF4_(c));return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opAMaxF2(outAF2 d,inAF2 a,inAF2 b){d=max(a,b);return d;} AF3 opAMaxF3(outAF3 d,inAF3 a,inAF3 b){d=max(a,b);return d;} AF4 opAMaxF4(outAF4 d,inAF4 a,inAF4 b){d=max(a,b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opAMinF2(outAF2 d,inAF2 a,inAF2 b){d=min(a,b);return d;} AF3 opAMinF3(outAF3 d,inAF3 a,inAF3 b){d=min(a,b);return d;} AF4 opAMinF4(outAF4 d,inAF4 a,inAF4 b){d=min(a,b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opAMulF2(outAF2 d,inAF2 a,inAF2 b){d=a*b;return d;} AF3 opAMulF3(outAF3 d,inAF3 a,inAF3 b){d=a*b;return d;} AF4 opAMulF4(outAF4 d,inAF4 a,inAF4 b){d=a*b;return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opAMulOneF2(outAF2 d,inAF2 a,AF1 b){d=a*AF2_(b);return d;} AF3 opAMulOneF3(outAF3 d,inAF3 a,AF1 b){d=a*AF3_(b);return d;} AF4 opAMulOneF4(outAF4 d,inAF4 a,AF1 b){d=a*AF4_(b);return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opANegF2(outAF2 d,inAF2 a){d=-a;return d;} AF3 opANegF3(outAF3 d,inAF3 a){d=-a;return d;} AF4 opANegF4(outAF4 d,inAF4 a){d=-a;return d;} //------------------------------------------------------------------------------------------------------------------------------ AF2 opARcpF2(outAF2 d,inAF2 a){d=ARcpF2(a);return d;} AF3 opARcpF3(outAF3 d,inAF3 a){d=ARcpF3(a);return d;} AF4 opARcpF4(outAF4 d,inAF4 a){d=ARcpF4(a);return d;} #endif #endif //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // // [CAS] FIDELITY FX - CONSTRAST ADAPTIVE SHARPENING 1.20190610 // //============================================================================================================================== // LICENSE // ======= // Copyright (c) 2017-2019 Advanced Micro Devices, Inc. All rights reserved. // ------- // Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation // files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, // modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the // Software is furnished to do so, subject to the following conditions: // ------- // The above copyright notice and this permission notice shall be included in all copies or substantial portions of the // Software. // ------- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE // WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, // ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. //------------------------------------------------------------------------------------------------------------------------------ #define CAS_AREA_LIMIT 4.0 //------------------------------------------------------------------------------------------------------------------------------ // Pass in output and input resolution in pixels. // This returns true if CAS supports scaling in the given configuration. AP1 CasSupportScaling(AF1 outX,AF1 outY,AF1 inX,AF1 inY){return ((outX*outY)*ARcpF1(inX*inY))<=CAS_AREA_LIMIT;} //============================================================================================================================== // Call to setup required constant values (works on CPU or GPU). #ifndef A_GPU A_STATIC void CasSetup( outAU4 const0, outAU4 const1, AF1 sharpness, // 0 := default (lower ringing), 1 := maximum (higest ringing) AF1 inputSizeInPixelsX, AF1 inputSizeInPixelsY, AF1 outputSizeInPixelsX, AF1 outputSizeInPixelsY){ // Scaling terms. const0[0]=AU1_AF1(inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX)); const0[1]=AU1_AF1(inputSizeInPixelsY*ARcpF1(outputSizeInPixelsY)); const0[2]=AU1_AF1(AF1_(0.5)*inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX)-AF1_(0.5)); const0[3]=AU1_AF1(AF1_(0.5)*inputSizeInPixelsY*ARcpF1(outputSizeInPixelsY)-AF1_(0.5)); // Sharpness value. AF1 sharp=-ARcpF1(ALerpF1(8.0,5.0,ASatF1(sharpness))); varAF2(hSharp)=initAF2(sharp,0.0); const1[0]=AU1_AF1(sharp); const1[1]=AU1_AH2_AF2(hSharp); const1[2]=AU1_AF1(AF1_(8.0)*inputSizeInPixelsX*ARcpF1(outputSizeInPixelsX)); const1[3]=0;} #endif //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////// //_____________________________________________________________/\_______________________________________________________________ //============================================================================================================================== // NON-PACKED VERSION //============================================================================================================================== #ifdef A_GPU AF3 CasLoad(ASU2 p) { return texelFetch(diffuseRect, p, 0).rgb; } void CasInput(inout AF1 r,inout AF1 g,inout AF1 b) { r = AFromSrgbF1(r); g = AFromSrgbF1(g); b = AFromSrgbF1(b); } //------------------------------------------------------------------------------------------------------------------------------ void CasFilter( out AF1 pixR, // Output values, non-vector so port between CasFilter() and CasFilterH() is easy. out AF1 pixG, out AF1 pixB, AU2 ip, // Integer pixel position in output. AU4 const0, // Constants generated by CasSetup(). AU4 const1, AP1 noScaling){ // Must be a compile-time literal value, true = sharpen only (no resize). //------------------------------------------------------------------------------------------------------------------------------ // Debug a checker pattern of on/off tiles for visual inspection. #ifdef CAS_DEBUG_CHECKER if((((ip.x^ip.y)>>8u)&1u)==0u){AF3 pix0=CasLoad(ASU2(ip)); pixR=pix0.r;pixG=pix0.g;pixB=pix0.b;CasInput(pixR,pixG,pixB);return;} #endif //------------------------------------------------------------------------------------------------------------------------------ // No scaling algorithm uses minimal 3x3 pixel neighborhood. if(noScaling){ // a b c // d e f // g h i ASU2 sp=ASU2(ip); AF3 a=CasLoad(sp+ASU2(-1,-1)); AF3 b=CasLoad(sp+ASU2( 0,-1)); AF3 c=CasLoad(sp+ASU2( 1,-1)); AF3 d=CasLoad(sp+ASU2(-1, 0)); AF3 e=CasLoad(sp); AF3 f=CasLoad(sp+ASU2( 1, 0)); AF3 g=CasLoad(sp+ASU2(-1, 1)); AF3 h=CasLoad(sp+ASU2( 0, 1)); AF3 i=CasLoad(sp+ASU2( 1, 1)); // Run optional input transform. CasInput(a.r,a.g,a.b); CasInput(b.r,b.g,b.b); CasInput(c.r,c.g,c.b); CasInput(d.r,d.g,d.b); CasInput(e.r,e.g,e.b); CasInput(f.r,f.g,f.b); CasInput(g.r,g.g,g.b); CasInput(h.r,h.g,h.b); CasInput(i.r,i.g,i.b); // Soft min and max. // a b c b // d e f * 0.5 + d e f * 0.5 // g h i h // These are 2.0x bigger (factored out the extra multiply). AF1 mnR=AMin3F1(AMin3F1(d.r,e.r,f.r),b.r,h.r); AF1 mnG=AMin3F1(AMin3F1(d.g,e.g,f.g),b.g,h.g); AF1 mnB=AMin3F1(AMin3F1(d.b,e.b,f.b),b.b,h.b); #ifdef CAS_BETTER_DIAGONALS AF1 mnR2=AMin3F1(AMin3F1(mnR,a.r,c.r),g.r,i.r); AF1 mnG2=AMin3F1(AMin3F1(mnG,a.g,c.g),g.g,i.g); AF1 mnB2=AMin3F1(AMin3F1(mnB,a.b,c.b),g.b,i.b); mnR=mnR+mnR2; mnG=mnG+mnG2; mnB=mnB+mnB2; #endif AF1 mxR=AMax3F1(AMax3F1(d.r,e.r,f.r),b.r,h.r); AF1 mxG=AMax3F1(AMax3F1(d.g,e.g,f.g),b.g,h.g); AF1 mxB=AMax3F1(AMax3F1(d.b,e.b,f.b),b.b,h.b); #ifdef CAS_BETTER_DIAGONALS AF1 mxR2=AMax3F1(AMax3F1(mxR,a.r,c.r),g.r,i.r); AF1 mxG2=AMax3F1(AMax3F1(mxG,a.g,c.g),g.g,i.g); AF1 mxB2=AMax3F1(AMax3F1(mxB,a.b,c.b),g.b,i.b); mxR=mxR+mxR2; mxG=mxG+mxG2; mxB=mxB+mxB2; #endif // Smooth minimum distance to signal limit divided by smooth max. #ifdef CAS_GO_SLOWER AF1 rcpMR=ARcpF1(mxR); AF1 rcpMG=ARcpF1(mxG); AF1 rcpMB=ARcpF1(mxB); #else AF1 rcpMR=APrxLoRcpF1(mxR); AF1 rcpMG=APrxLoRcpF1(mxG); AF1 rcpMB=APrxLoRcpF1(mxB); #endif #ifdef CAS_BETTER_DIAGONALS AF1 ampR=ASatF1(min(mnR,AF1_(2.0)-mxR)*rcpMR); AF1 ampG=ASatF1(min(mnG,AF1_(2.0)-mxG)*rcpMG); AF1 ampB=ASatF1(min(mnB,AF1_(2.0)-mxB)*rcpMB); #else AF1 ampR=ASatF1(min(mnR,AF1_(1.0)-mxR)*rcpMR); AF1 ampG=ASatF1(min(mnG,AF1_(1.0)-mxG)*rcpMG); AF1 ampB=ASatF1(min(mnB,AF1_(1.0)-mxB)*rcpMB); #endif // Shaping amount of sharpening. #ifdef CAS_GO_SLOWER ampR=sqrt(ampR); ampG=sqrt(ampG); ampB=sqrt(ampB); #else ampR=APrxLoSqrtF1(ampR); ampG=APrxLoSqrtF1(ampG); ampB=APrxLoSqrtF1(ampB); #endif // Filter shape. // 0 w 0 // w 1 w // 0 w 0 AF1 peak=AF1_AU1(const1.x); AF1 wR=ampR*peak; AF1 wG=ampG*peak; AF1 wB=ampB*peak; // Filter. #ifndef CAS_SLOW // Using green coef only, depending on dead code removal to strip out the extra overhead. #ifdef CAS_GO_SLOWER AF1 rcpWeight=ARcpF1(AF1_(1.0)+AF1_(4.0)*wG); #else AF1 rcpWeight=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wG); #endif pixR=ASatF1((b.r*wG+d.r*wG+f.r*wG+h.r*wG+e.r)*rcpWeight); pixG=ASatF1((b.g*wG+d.g*wG+f.g*wG+h.g*wG+e.g)*rcpWeight); pixB=ASatF1((b.b*wG+d.b*wG+f.b*wG+h.b*wG+e.b)*rcpWeight); #else #ifdef CAS_GO_SLOWER AF1 rcpWeightR=ARcpF1(AF1_(1.0)+AF1_(4.0)*wR); AF1 rcpWeightG=ARcpF1(AF1_(1.0)+AF1_(4.0)*wG); AF1 rcpWeightB=ARcpF1(AF1_(1.0)+AF1_(4.0)*wB); #else AF1 rcpWeightR=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wR); AF1 rcpWeightG=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wG); AF1 rcpWeightB=APrxMedRcpF1(AF1_(1.0)+AF1_(4.0)*wB); #endif pixR=ASatF1((b.r*wR+d.r*wR+f.r*wR+h.r*wR+e.r)*rcpWeightR); pixG=ASatF1((b.g*wG+d.g*wG+f.g*wG+h.g*wG+e.g)*rcpWeightG); pixB=ASatF1((b.b*wB+d.b*wB+f.b*wB+h.b*wB+e.b)*rcpWeightB); #endif return;} //------------------------------------------------------------------------------------------------------------------------------ // Scaling algorithm adaptively interpolates between nearest 4 results of the non-scaling algorithm. // a b c d // e f g h // i j k l // m n o p // Working these 4 results. // +-----+-----+ // | | | // | f..|..g | // | . | . | // +-----+-----+ // | . | . | // | j..|..k | // | | | // +-----+-----+ AF2 pp=AF2(ip)*AF2_AU2(const0.xy)+AF2_AU2(const0.zw); AF2 fp=floor(pp); pp-=fp; ASU2 sp=ASU2(fp); AF3 a=CasLoad(sp+ASU2(-1,-1)); AF3 b=CasLoad(sp+ASU2( 0,-1)); AF3 e=CasLoad(sp+ASU2(-1, 0)); AF3 f=CasLoad(sp); AF3 c=CasLoad(sp+ASU2( 1,-1)); AF3 d=CasLoad(sp+ASU2( 2,-1)); AF3 g=CasLoad(sp+ASU2( 1, 0)); AF3 h=CasLoad(sp+ASU2( 2, 0)); AF3 i=CasLoad(sp+ASU2(-1, 1)); AF3 j=CasLoad(sp+ASU2( 0, 1)); AF3 m=CasLoad(sp+ASU2(-1, 2)); AF3 n=CasLoad(sp+ASU2( 0, 2)); AF3 k=CasLoad(sp+ASU2( 1, 1)); AF3 l=CasLoad(sp+ASU2( 2, 1)); AF3 o=CasLoad(sp+ASU2( 1, 2)); AF3 p=CasLoad(sp+ASU2( 2, 2)); // Run optional input transform. CasInput(a.r,a.g,a.b); CasInput(b.r,b.g,b.b); CasInput(c.r,c.g,c.b); CasInput(d.r,d.g,d.b); CasInput(e.r,e.g,e.b); CasInput(f.r,f.g,f.b); CasInput(g.r,g.g,g.b); CasInput(h.r,h.g,h.b); CasInput(i.r,i.g,i.b); CasInput(j.r,j.g,j.b); CasInput(k.r,k.g,k.b); CasInput(l.r,l.g,l.b); CasInput(m.r,m.g,m.b); CasInput(n.r,n.g,n.b); CasInput(o.r,o.g,o.b); CasInput(p.r,p.g,p.b); // Soft min and max. // These are 2.0x bigger (factored out the extra multiply). // a b c b // e f g * 0.5 + e f g * 0.5 [F] // i j k j AF1 mnfR=AMin3F1(AMin3F1(b.r,e.r,f.r),g.r,j.r); AF1 mnfG=AMin3F1(AMin3F1(b.g,e.g,f.g),g.g,j.g); AF1 mnfB=AMin3F1(AMin3F1(b.b,e.b,f.b),g.b,j.b); #ifdef CAS_BETTER_DIAGONALS AF1 mnfR2=AMin3F1(AMin3F1(mnfR,a.r,c.r),i.r,k.r); AF1 mnfG2=AMin3F1(AMin3F1(mnfG,a.g,c.g),i.g,k.g); AF1 mnfB2=AMin3F1(AMin3F1(mnfB,a.b,c.b),i.b,k.b); mnfR=mnfR+mnfR2; mnfG=mnfG+mnfG2; mnfB=mnfB+mnfB2; #endif AF1 mxfR=AMax3F1(AMax3F1(b.r,e.r,f.r),g.r,j.r); AF1 mxfG=AMax3F1(AMax3F1(b.g,e.g,f.g),g.g,j.g); AF1 mxfB=AMax3F1(AMax3F1(b.b,e.b,f.b),g.b,j.b); #ifdef CAS_BETTER_DIAGONALS AF1 mxfR2=AMax3F1(AMax3F1(mxfR,a.r,c.r),i.r,k.r); AF1 mxfG2=AMax3F1(AMax3F1(mxfG,a.g,c.g),i.g,k.g); AF1 mxfB2=AMax3F1(AMax3F1(mxfB,a.b,c.b),i.b,k.b); mxfR=mxfR+mxfR2; mxfG=mxfG+mxfG2; mxfB=mxfB+mxfB2; #endif // b c d c // f g h * 0.5 + f g h * 0.5 [G] // j k l k AF1 mngR=AMin3F1(AMin3F1(c.r,f.r,g.r),h.r,k.r); AF1 mngG=AMin3F1(AMin3F1(c.g,f.g,g.g),h.g,k.g); AF1 mngB=AMin3F1(AMin3F1(c.b,f.b,g.b),h.b,k.b); #ifdef CAS_BETTER_DIAGONALS AF1 mngR2=AMin3F1(AMin3F1(mngR,b.r,d.r),j.r,l.r); AF1 mngG2=AMin3F1(AMin3F1(mngG,b.g,d.g),j.g,l.g); AF1 mngB2=AMin3F1(AMin3F1(mngB,b.b,d.b),j.b,l.b); mngR=mngR+mngR2; mngG=mngG+mngG2; mngB=mngB+mngB2; #endif AF1 mxgR=AMax3F1(AMax3F1(c.r,f.r,g.r),h.r,k.r); AF1 mxgG=AMax3F1(AMax3F1(c.g,f.g,g.g),h.g,k.g); AF1 mxgB=AMax3F1(AMax3F1(c.b,f.b,g.b),h.b,k.b); #ifdef CAS_BETTER_DIAGONALS AF1 mxgR2=AMax3F1(AMax3F1(mxgR,b.r,d.r),j.r,l.r); AF1 mxgG2=AMax3F1(AMax3F1(mxgG,b.g,d.g),j.g,l.g); AF1 mxgB2=AMax3F1(AMax3F1(mxgB,b.b,d.b),j.b,l.b); mxgR=mxgR+mxgR2; mxgG=mxgG+mxgG2; mxgB=mxgB+mxgB2; #endif // e f g f // i j k * 0.5 + i j k * 0.5 [J] // m n o n AF1 mnjR=AMin3F1(AMin3F1(f.r,i.r,j.r),k.r,n.r); AF1 mnjG=AMin3F1(AMin3F1(f.g,i.g,j.g),k.g,n.g); AF1 mnjB=AMin3F1(AMin3F1(f.b,i.b,j.b),k.b,n.b); #ifdef CAS_BETTER_DIAGONALS AF1 mnjR2=AMin3F1(AMin3F1(mnjR,e.r,g.r),m.r,o.r); AF1 mnjG2=AMin3F1(AMin3F1(mnjG,e.g,g.g),m.g,o.g); AF1 mnjB2=AMin3F1(AMin3F1(mnjB,e.b,g.b),m.b,o.b); mnjR=mnjR+mnjR2; mnjG=mnjG+mnjG2; mnjB=mnjB+mnjB2; #endif AF1 mxjR=AMax3F1(AMax3F1(f.r,i.r,j.r),k.r,n.r); AF1 mxjG=AMax3F1(AMax3F1(f.g,i.g,j.g),k.g,n.g); AF1 mxjB=AMax3F1(AMax3F1(f.b,i.b,j.b),k.b,n.b); #ifdef CAS_BETTER_DIAGONALS AF1 mxjR2=AMax3F1(AMax3F1(mxjR,e.r,g.r),m.r,o.r); AF1 mxjG2=AMax3F1(AMax3F1(mxjG,e.g,g.g),m.g,o.g); AF1 mxjB2=AMax3F1(AMax3F1(mxjB,e.b,g.b),m.b,o.b); mxjR=mxjR+mxjR2; mxjG=mxjG+mxjG2; mxjB=mxjB+mxjB2; #endif // f g h g // j k l * 0.5 + j k l * 0.5 [K] // n o p o AF1 mnkR=AMin3F1(AMin3F1(g.r,j.r,k.r),l.r,o.r); AF1 mnkG=AMin3F1(AMin3F1(g.g,j.g,k.g),l.g,o.g); AF1 mnkB=AMin3F1(AMin3F1(g.b,j.b,k.b),l.b,o.b); #ifdef CAS_BETTER_DIAGONALS AF1 mnkR2=AMin3F1(AMin3F1(mnkR,f.r,h.r),n.r,p.r); AF1 mnkG2=AMin3F1(AMin3F1(mnkG,f.g,h.g),n.g,p.g); AF1 mnkB2=AMin3F1(AMin3F1(mnkB,f.b,h.b),n.b,p.b); mnkR=mnkR+mnkR2; mnkG=mnkG+mnkG2; mnkB=mnkB+mnkB2; #endif AF1 mxkR=AMax3F1(AMax3F1(g.r,j.r,k.r),l.r,o.r); AF1 mxkG=AMax3F1(AMax3F1(g.g,j.g,k.g),l.g,o.g); AF1 mxkB=AMax3F1(AMax3F1(g.b,j.b,k.b),l.b,o.b); #ifdef CAS_BETTER_DIAGONALS AF1 mxkR2=AMax3F1(AMax3F1(mxkR,f.r,h.r),n.r,p.r); AF1 mxkG2=AMax3F1(AMax3F1(mxkG,f.g,h.g),n.g,p.g); AF1 mxkB2=AMax3F1(AMax3F1(mxkB,f.b,h.b),n.b,p.b); mxkR=mxkR+mxkR2; mxkG=mxkG+mxkG2; mxkB=mxkB+mxkB2; #endif // Smooth minimum distance to signal limit divided by smooth max. #ifdef CAS_GO_SLOWER AF1 rcpMfR=ARcpF1(mxfR); AF1 rcpMfG=ARcpF1(mxfG); AF1 rcpMfB=ARcpF1(mxfB); AF1 rcpMgR=ARcpF1(mxgR); AF1 rcpMgG=ARcpF1(mxgG); AF1 rcpMgB=ARcpF1(mxgB); AF1 rcpMjR=ARcpF1(mxjR); AF1 rcpMjG=ARcpF1(mxjG); AF1 rcpMjB=ARcpF1(mxjB); AF1 rcpMkR=ARcpF1(mxkR); AF1 rcpMkG=ARcpF1(mxkG); AF1 rcpMkB=ARcpF1(mxkB); #else AF1 rcpMfR=APrxLoRcpF1(mxfR); AF1 rcpMfG=APrxLoRcpF1(mxfG); AF1 rcpMfB=APrxLoRcpF1(mxfB); AF1 rcpMgR=APrxLoRcpF1(mxgR); AF1 rcpMgG=APrxLoRcpF1(mxgG); AF1 rcpMgB=APrxLoRcpF1(mxgB); AF1 rcpMjR=APrxLoRcpF1(mxjR); AF1 rcpMjG=APrxLoRcpF1(mxjG); AF1 rcpMjB=APrxLoRcpF1(mxjB); AF1 rcpMkR=APrxLoRcpF1(mxkR); AF1 rcpMkG=APrxLoRcpF1(mxkG); AF1 rcpMkB=APrxLoRcpF1(mxkB); #endif #ifdef CAS_BETTER_DIAGONALS AF1 ampfR=ASatF1(min(mnfR,AF1_(2.0)-mxfR)*rcpMfR); AF1 ampfG=ASatF1(min(mnfG,AF1_(2.0)-mxfG)*rcpMfG); AF1 ampfB=ASatF1(min(mnfB,AF1_(2.0)-mxfB)*rcpMfB); AF1 ampgR=ASatF1(min(mngR,AF1_(2.0)-mxgR)*rcpMgR); AF1 ampgG=ASatF1(min(mngG,AF1_(2.0)-mxgG)*rcpMgG); AF1 ampgB=ASatF1(min(mngB,AF1_(2.0)-mxgB)*rcpMgB); AF1 ampjR=ASatF1(min(mnjR,AF1_(2.0)-mxjR)*rcpMjR); AF1 ampjG=ASatF1(min(mnjG,AF1_(2.0)-mxjG)*rcpMjG); AF1 ampjB=ASatF1(min(mnjB,AF1_(2.0)-mxjB)*rcpMjB); AF1 ampkR=ASatF1(min(mnkR,AF1_(2.0)-mxkR)*rcpMkR); AF1 ampkG=ASatF1(min(mnkG,AF1_(2.0)-mxkG)*rcpMkG); AF1 ampkB=ASatF1(min(mnkB,AF1_(2.0)-mxkB)*rcpMkB); #else AF1 ampfR=ASatF1(min(mnfR,AF1_(1.0)-mxfR)*rcpMfR); AF1 ampfG=ASatF1(min(mnfG,AF1_(1.0)-mxfG)*rcpMfG); AF1 ampfB=ASatF1(min(mnfB,AF1_(1.0)-mxfB)*rcpMfB); AF1 ampgR=ASatF1(min(mngR,AF1_(1.0)-mxgR)*rcpMgR); AF1 ampgG=ASatF1(min(mngG,AF1_(1.0)-mxgG)*rcpMgG); AF1 ampgB=ASatF1(min(mngB,AF1_(1.0)-mxgB)*rcpMgB); AF1 ampjR=ASatF1(min(mnjR,AF1_(1.0)-mxjR)*rcpMjR); AF1 ampjG=ASatF1(min(mnjG,AF1_(1.0)-mxjG)*rcpMjG); AF1 ampjB=ASatF1(min(mnjB,AF1_(1.0)-mxjB)*rcpMjB); AF1 ampkR=ASatF1(min(mnkR,AF1_(1.0)-mxkR)*rcpMkR); AF1 ampkG=ASatF1(min(mnkG,AF1_(1.0)-mxkG)*rcpMkG); AF1 ampkB=ASatF1(min(mnkB,AF1_(1.0)-mxkB)*rcpMkB); #endif // Shaping amount of sharpening. #ifdef CAS_GO_SLOWER ampfR=sqrt(ampfR); ampfG=sqrt(ampfG); ampfB=sqrt(ampfB); ampgR=sqrt(ampgR); ampgG=sqrt(ampgG); ampgB=sqrt(ampgB); ampjR=sqrt(ampjR); ampjG=sqrt(ampjG); ampjB=sqrt(ampjB); ampkR=sqrt(ampkR); ampkG=sqrt(ampkG); ampkB=sqrt(ampkB); #else ampfR=APrxLoSqrtF1(ampfR); ampfG=APrxLoSqrtF1(ampfG); ampfB=APrxLoSqrtF1(ampfB); ampgR=APrxLoSqrtF1(ampgR); ampgG=APrxLoSqrtF1(ampgG); ampgB=APrxLoSqrtF1(ampgB); ampjR=APrxLoSqrtF1(ampjR); ampjG=APrxLoSqrtF1(ampjG); ampjB=APrxLoSqrtF1(ampjB); ampkR=APrxLoSqrtF1(ampkR); ampkG=APrxLoSqrtF1(ampkG); ampkB=APrxLoSqrtF1(ampkB); #endif // Filter shape. // 0 w 0 // w 1 w // 0 w 0 AF1 peak=AF1_AU1(const1.x); AF1 wfR=ampfR*peak; AF1 wfG=ampfG*peak; AF1 wfB=ampfB*peak; AF1 wgR=ampgR*peak; AF1 wgG=ampgG*peak; AF1 wgB=ampgB*peak; AF1 wjR=ampjR*peak; AF1 wjG=ampjG*peak; AF1 wjB=ampjB*peak; AF1 wkR=ampkR*peak; AF1 wkG=ampkG*peak; AF1 wkB=ampkB*peak; // Blend between 4 results. // s t // u v AF1 s=(AF1_(1.0)-pp.x)*(AF1_(1.0)-pp.y); AF1 t= pp.x *(AF1_(1.0)-pp.y); AF1 u=(AF1_(1.0)-pp.x)* pp.y ; AF1 v= pp.x * pp.y ; // Thin edges to hide bilinear interpolation (helps diagonals). AF1 thinB=1.0/32.0; #ifdef CAS_GO_SLOWER s*=ARcpF1(thinB+(mxfG-mnfG)); t*=ARcpF1(thinB+(mxgG-mngG)); u*=ARcpF1(thinB+(mxjG-mnjG)); v*=ARcpF1(thinB+(mxkG-mnkG)); #else s*=APrxLoRcpF1(thinB+(mxfG-mnfG)); t*=APrxLoRcpF1(thinB+(mxgG-mngG)); u*=APrxLoRcpF1(thinB+(mxjG-mnjG)); v*=APrxLoRcpF1(thinB+(mxkG-mnkG)); #endif // Final weighting. // b c // e f g h // i j k l // n o // _____ _____ _____ _____ // fs gt // // _____ _____ _____ _____ // fs s gt fs t gt // ju kv // _____ _____ _____ _____ // fs gt // ju u kv ju v kv // _____ _____ _____ _____ // // ju kv AF1 qbeR=wfR*s; AF1 qbeG=wfG*s; AF1 qbeB=wfB*s; AF1 qchR=wgR*t; AF1 qchG=wgG*t; AF1 qchB=wgB*t; AF1 qfR=wgR*t+wjR*u+s; AF1 qfG=wgG*t+wjG*u+s; AF1 qfB=wgB*t+wjB*u+s; AF1 qgR=wfR*s+wkR*v+t; AF1 qgG=wfG*s+wkG*v+t; AF1 qgB=wfB*s+wkB*v+t; AF1 qjR=wfR*s+wkR*v+u; AF1 qjG=wfG*s+wkG*v+u; AF1 qjB=wfB*s+wkB*v+u; AF1 qkR=wgR*t+wjR*u+v; AF1 qkG=wgG*t+wjG*u+v; AF1 qkB=wgB*t+wjB*u+v; AF1 qinR=wjR*u; AF1 qinG=wjG*u; AF1 qinB=wjB*u; AF1 qloR=wkR*v; AF1 qloG=wkG*v; AF1 qloB=wkB*v; // Filter. #ifndef CAS_SLOW // Using green coef only, depending on dead code removal to strip out the extra overhead. #ifdef CAS_GO_SLOWER AF1 rcpWG=ARcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG); #else AF1 rcpWG=APrxMedRcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG); #endif pixR=ASatF1((b.r*qbeG+e.r*qbeG+c.r*qchG+h.r*qchG+i.r*qinG+n.r*qinG+l.r*qloG+o.r*qloG+f.r*qfG+g.r*qgG+j.r*qjG+k.r*qkG)*rcpWG); pixG=ASatF1((b.g*qbeG+e.g*qbeG+c.g*qchG+h.g*qchG+i.g*qinG+n.g*qinG+l.g*qloG+o.g*qloG+f.g*qfG+g.g*qgG+j.g*qjG+k.g*qkG)*rcpWG); pixB=ASatF1((b.b*qbeG+e.b*qbeG+c.b*qchG+h.b*qchG+i.b*qinG+n.b*qinG+l.b*qloG+o.b*qloG+f.b*qfG+g.b*qgG+j.b*qjG+k.b*qkG)*rcpWG); #else #ifdef CAS_GO_SLOWER AF1 rcpWR=ARcpF1(AF1_(2.0)*qbeR+AF1_(2.0)*qchR+AF1_(2.0)*qinR+AF1_(2.0)*qloR+qfR+qgR+qjR+qkR); AF1 rcpWG=ARcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG); AF1 rcpWB=ARcpF1(AF1_(2.0)*qbeB+AF1_(2.0)*qchB+AF1_(2.0)*qinB+AF1_(2.0)*qloB+qfB+qgB+qjB+qkB); #else AF1 rcpWR=APrxMedRcpF1(AF1_(2.0)*qbeR+AF1_(2.0)*qchR+AF1_(2.0)*qinR+AF1_(2.0)*qloR+qfR+qgR+qjR+qkR); AF1 rcpWG=APrxMedRcpF1(AF1_(2.0)*qbeG+AF1_(2.0)*qchG+AF1_(2.0)*qinG+AF1_(2.0)*qloG+qfG+qgG+qjG+qkG); AF1 rcpWB=APrxMedRcpF1(AF1_(2.0)*qbeB+AF1_(2.0)*qchB+AF1_(2.0)*qinB+AF1_(2.0)*qloB+qfB+qgB+qjB+qkB); #endif pixR=ASatF1((b.r*qbeR+e.r*qbeR+c.r*qchR+h.r*qchR+i.r*qinR+n.r*qinR+l.r*qloR+o.r*qloR+f.r*qfR+g.r*qgR+j.r*qjR+k.r*qkR)*rcpWR); pixG=ASatF1((b.g*qbeG+e.g*qbeG+c.g*qchG+h.g*qchG+i.g*qinG+n.g*qinG+l.g*qloG+o.g*qloG+f.g*qfG+g.g*qgG+j.g*qjG+k.g*qkG)*rcpWG); pixB=ASatF1((b.b*qbeB+e.b*qbeB+c.b*qchB+h.b*qchB+i.b*qinB+n.b*qinB+l.b*qloB+o.b*qloB+f.b*qfB+g.b*qgB+j.b*qjB+k.b*qkB)*rcpWB); #endif } #endif #ifdef A_GPU void main() { vec4 diff = vec4(0.f); uvec2 point = uvec2(vary_fragcoord * out_screen_res.xy); CasFilter(diff.r, diff.g, diff.b, point, cas_param_0, cas_param_1, true); frag_color = vec4(linear_to_srgb(diff.rgb), 1.0); } #endif