/** 
 * @file lscript_tree.cpp
 * @brief implements methods for lscript_tree.h classes
 *
 * $LicenseInfo:firstyear=2002&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2010, Linden Research, Inc.
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * 
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

// TO DO: Move print functionality from .h file to here

#include "linden_common.h"

#include "lscript_tree.h"
#include "lscript_typecheck.h"
#include "lscript_resource.h"
#include "lscript_bytecode.h"
#include "lscript_heap.h"
#include "lscript_library.h"
#include "lscript_alloc.h"

//#define LSL_INCLUDE_DEBUG_INFO


static void print_cil_box(LLFILE* fp, LSCRIPTType type)
{
	
switch(type)
	{
	case LST_INTEGER:
		fprintf(fp, "box [mscorlib]System.Int32\n");
		break;
	case LST_FLOATINGPOINT:
		fprintf(fp, "box [mscorlib]System.Single\n");
		break;
	case LST_STRING:
		// System.String is not a System.ValueType,
		// so does not need to be boxed.
		break;
	case LST_KEY:
		fprintf(fp, "box [ScriptTypes]LindenLab.SecondLife.Key\n");
		break;
	case LST_VECTOR:
		fprintf(fp, "box [ScriptTypes]LindenLab.SecondLife.Vector\n");
		break;
	case LST_QUATERNION:
		fprintf(fp, "box [ScriptTypes]LindenLab.SecondLife.Quaternion\n");
		break;
	default:
		llassert(false);
		break;
	}
}

static void print_cil_type(LLFILE* fp, LSCRIPTType type)
{
	switch(type)
	{
	case LST_INTEGER:
		fprintf(fp, "int32");
		break;
	case LST_FLOATINGPOINT:
		fprintf(fp, "float32");
		break;
	case LST_STRING:
		fprintf(fp, "string");
		break;		
	case LST_KEY:
		fprintf(fp, "valuetype [ScriptTypes]LindenLab.SecondLife.Key");
		break;
	case LST_VECTOR:
		fprintf(fp, "class [ScriptTypes]LindenLab.SecondLife.Vector");
		break;
	case LST_QUATERNION:
		fprintf(fp, "class [ScriptTypes]LindenLab.SecondLife.Quaternion");
		break;
	case LST_LIST:
		fprintf(fp, "class [mscorlib]System.Collections.ArrayList");
		break;
	case LST_NULL:
		fprintf(fp, "void");
		break;
	default:
		break;
	}
}

void LLScriptType::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp,"%s",LSCRIPTTypeNames[mType]);
		break;
	case LSCP_TYPE:
		type = mType;
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		print_cil_type(fp, mType);
		break;
	default:
		break;
	}
}

S32 LLScriptType::getSize()
{
	return LSCRIPTDataSize[mType];
}

void LLScriptConstant::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp,"Script Constant Base class -- should never get here!\n");
		break;
	default:
		break;
	}
}

S32 LLScriptConstant::getSize()
{
	printf("Script Constant Base class -- should never get here!\n");
	return 0;
}



void LLScriptConstantInteger::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "%d", mValue);
		break;
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "PUSHARGI %d\n", mValue);
		break;
	case LSCP_TYPE:
		type = mType;
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			chunk->addInteger(mValue);
			type = mType;
		}
		break;
	case LSCP_TO_STACK:
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
			chunk->addInteger(mValue);
			type = mType;
		}
		break;
	case LSCP_LIST_BUILD_SIMPLE:
		{
			*ldata = new LLScriptLibData(mValue);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "ldc.i4 %d\n", mValue);
		type = mType;
		break;
	default:
		break;
	}
}

S32 LLScriptConstantInteger::getSize()
{
	return LSCRIPTDataSize[LST_INTEGER];
}

void LLScriptConstantFloat::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "%5.5f", mValue);
		break;
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "PUSHARGF %5.5f\n", mValue);
		break;
	case LSCP_TYPE:
		type = mType;
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			chunk->addFloat(mValue);
			type = mType;
		}
		break;
	case LSCP_TO_STACK:
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGF]);
			chunk->addFloat(mValue);
			type = mType;
		}
		break;
	case LSCP_LIST_BUILD_SIMPLE:
		{
			*ldata = new LLScriptLibData(mValue);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
	        {
		        double v = (double)mValue;
			U8 * p = (U8 *)&v; // See ECMA-335 Partition VI, Appendix C.4.6 Examples, line 4
			fprintf(fp, "ldc.r8 (%02x %02x %02x %02x %02x %02x %02x %02x)\n", p[0], p[1], p[2], p[3], p[4], p[5], p[6], p[7]);
			type = mType;
		}
		break;
	default:
		break;
	}
}

S32 LLScriptConstantFloat::getSize()
{
	return LSCRIPTDataSize[LST_FLOATINGPOINT];
}

void print_escaped(LLFILE* fp, const char* str)
{
  putc('"', fp);
  for(const char* c = str; *c != '\0'; ++c)
  {
	  switch(*c)
	  {
	  case '"':
		putc('\\', fp);
		putc(*c, fp);
		break;
	  case '\n':
		putc('\\', fp);
		putc('n', fp);
		break;
	  case '\t':
		putc(' ', fp);
		putc(' ', fp);
		putc(' ', fp);
		putc(' ', fp);
		break;
	  case '\\':
		putc('\\', fp);
		putc('\\', fp);
		break;
	  default:
		putc(*c, fp);
	  }
  }
  putc('"', fp);
}

void LLScriptConstantString::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "\"%s\"", mValue);
		break;
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "PUSHARGS \"%s\"\n", mValue);
		break;
	case LSCP_TYPE:
		type = mType;
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			chunk->addInteger(heap->mCurrentOffset + 1);
			LLScriptLibData *data = new LLScriptLibData(mValue);
			U8 *temp;
			S32 size = lsa_create_data_block(&temp, data, heap->mCurrentOffset);

			heap->addBytes(temp, size);
			delete [] temp;
			delete data;
		}
		break;
	case LSCP_TO_STACK:
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGS]);
			chunk->addBytes(mValue, (S32)strlen(mValue) + 1);
			type = mType;
		}
		break;
	case LSCP_LIST_BUILD_SIMPLE:
		{
			*ldata = new LLScriptLibData(mValue);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "ldstr ");
		print_escaped(fp, mValue);
		fprintf(fp, "\n");
	default:
		break;
	}
}

S32 LLScriptConstantString::getSize()
{
	return (S32)strlen(mValue) + 1;
}

void LLScriptIdentifier::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "%s", mName);
		break;
	case LSCP_EMIT_ASSEMBLY:
		if (mScopeEntry)
		{
			if (mScopeEntry->mIDType == LIT_VARIABLE)
			{
				fprintf(fp, "$BP + %d [%s]", mScopeEntry->mOffset, mName);
			}
			else if (mScopeEntry->mIDType == LIT_GLOBAL)
			{
				fprintf(fp, "$GVR + %d [%s]", mScopeEntry->mOffset, mName);
			}
			else
			{
				fprintf(fp, "%s", mName);
			}
		}
		break;
	case LSCP_TYPE:
		if (mScopeEntry)
			type = mScopeEntry->mType;
		else
			type = LST_NULL;
		break;
	case LSCP_RESOURCE:
		if (mScopeEntry)
		{
			if (mScopeEntry->mIDType == LIT_VARIABLE)
			{
//				fprintf(fp, "LOCAL : %d : %d : %s\n", mScopeEntry->mOffset, mScopeEntry->mSize, mName);
			}
			else if (mScopeEntry->mIDType == LIT_GLOBAL)
			{
//				fprintf(fp, "GLOBAL: %d : %d : %s\n", mScopeEntry->mOffset, mScopeEntry->mSize, mName);
			}
		}
		break;
	case LSCP_LIST_BUILD_SIMPLE:
		{
			if (mScopeEntry)
			{
				if (mScopeEntry->mType == LST_LIST)
				{
					gErrorToText.writeError(fp, this, LSERROR_NO_LISTS_IN_LISTS);
				}
				else if (mScopeEntry->mAssignable)
				{
					mScopeEntry->mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, ldata);
				}
				else
				{
					gErrorToText.writeError(fp, this, LSERROR_NO_UNITIALIZED_VARIABLES_IN_LISTS);
				}
			}
			else
			{
				gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
			}
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "'%s'", mName);
		break;
	default:
		break;
	}
}

S32 LLScriptIdentifier::getSize()
{
	
	return 0;
}



void LLScriptSimpleAssignable::addAssignable(LLScriptSimpleAssignable *assign)
{
	if (mNextp)
	{
		assign->mNextp = mNextp;
	}
	mNextp = assign;
}

void LLScriptSimpleAssignable::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	fprintf(fp, "Simple Assignable Base Class -- should never get here!\n");
}

S32 LLScriptSimpleAssignable::getSize()
{
	
	printf("Simple Assignable Base Class -- should never get here!\n");
	return 0;
}

static void print_cil_member(LLFILE* fp, LLScriptIdentifier *ident)
{
	print_cil_type(fp, ident->mScopeEntry->mType);
	fprintf(fp, " %s::'%s'\n", gScriptp->getClassName(), ident->mScopeEntry->mIdentifier);
}

void LLScriptSAIdentifier::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mNextp)
		{
			fprintf(fp, ", ");
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_SCOPE_PASS1:
		{ 
			LLScriptScopeEntry *entry = scope->findEntry(mIdentifier->mName);
			if (!entry)
			{
				gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
			}
			else
			{
				// if we did find it, make sure this identifier is associated with the correct scope entry
				mIdentifier->mScopeEntry = entry;
			}
			if (mNextp)
			{
				mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			if (mIdentifier->mScopeEntry)
			{
				if(mIdentifier->mScopeEntry->mAssignable)
				{
					mIdentifier->mScopeEntry->mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				}
				else
				{
					// Babbage: 29/8/06: If the scope entry has no mAssignable,
					// set the default type and add the default 0 value to the 
					// chunk. Without this SAVectors and SAQuaternions will 
					// assume the arbitrary current type is the assignable type 
					// and may attempt to access a null chunk. (SL-20156)
					type = mIdentifier->mScopeEntry->mType;
					chunk->addBytes(LSCRIPTDataSize[type]);
				}
			}
			if (mNextp)
			{
				mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			}
		}
		break;
	case LSCP_LIST_BUILD_SIMPLE:
		{
			mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, ldata);
			if (mNextp)
			{
				mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, &(*ldata)->mListp);
			}
		}
		break;

	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			fprintf(fp, "ldarg.0\n");
			fprintf(fp, "ldfld ");
			print_cil_member(fp, mIdentifier);
			fprintf(fp, "\n");
			if (mNextp)
			{
				mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			}
			break;
		}
	default:
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
}

S32 LLScriptSAIdentifier::getSize()
{
	return mIdentifier->getSize();
}

void LLScriptSAConstant::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mNextp)
		{
			fprintf(fp, ", ");
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_LIST_BUILD_SIMPLE:
		{
			mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, ldata);
			if (mNextp)
			{
				mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, &(*ldata)->mListp);
			}
		}
		break;
	default:
		mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
}

S32 LLScriptSAConstant::getSize()
{
	return mConstant->getSize();
}


static void print_cil_cast(LLFILE* fp, LSCRIPTType srcType, LSCRIPTType targetType)
{
	switch(srcType)
	{
	case LST_INTEGER:
		switch(targetType)
		{
		case LST_FLOATINGPOINT:
			fprintf(fp, "conv.r8\n");
			break;
		case LST_STRING:
			fprintf(fp, "call string class [mscorlib]System.Convert::ToString(int32)\n");
			break;
		case LST_LIST:
			print_cil_box(fp, LST_INTEGER);
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList(object)\n");
			break;
		default:
			break;
		}
		break;
	case LST_FLOATINGPOINT:
		switch(targetType)
		{
		case LST_INTEGER:
			fprintf(fp, "call int32 [LslLibrary]LindenLab.SecondLife.LslRunTime::ToInteger(float32)\n");
			break;
		case LST_STRING:
			fprintf(fp, "call string [LslLibrary]LindenLab.SecondLife.LslRunTime::ToString(float32)\n");
			break;
		case LST_LIST:
			print_cil_box(fp, LST_FLOATINGPOINT);
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList(object)\n");
			break;
		default:
			break;
		}
		break;
	case LST_STRING:
		switch(targetType)
		{
		case LST_INTEGER:
			fprintf(fp, "call int32 [LslLibrary]LindenLab.SecondLife.LslRunTime::StringToInt(string)\n");
			break;
		case LST_FLOATINGPOINT:
			fprintf(fp, "call float32 [LslLibrary]LindenLab.SecondLife.LslRunTime::StringToFloat(string)\n");
			break;
		case LST_KEY:
			fprintf(fp, "call valuetype [ScriptTypes]LindenLab.SecondLife.Key class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateKey'(string)\n");
			break;	
		case LST_LIST:
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList(object)\n");
			break;
		case LST_VECTOR:
			fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'ParseVector'(string)\n");
			break;
		case LST_QUATERNION:
			fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'ParseQuaternion'(string)\n");
			break;
		default:
			break;
		}
		break;
	case LST_KEY:
		switch(targetType)
		{
		case LST_KEY:
			break;
		case LST_STRING:
			fprintf(fp, "call string [LslUserScript]LindenLab.SecondLife.LslUserScript::'ToString'(valuetype [ScriptTypes]LindenLab.SecondLife.Key)\n");
			break;
		case LST_LIST:
			print_cil_box(fp, LST_KEY);
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList(object)\n");
			break;
		default:
			break;
		}
		break;
	case LST_VECTOR:
		switch(targetType)
		{
		case LST_VECTOR:
			break;
		case LST_STRING:
			fprintf(fp, "call string [LslUserScript]LindenLab.SecondLife.LslUserScript::'ToString'(valuetype [ScriptTypes]LindenLab.SecondLife.Vector)\n");
			break;
		case LST_LIST:
			print_cil_box(fp, LST_VECTOR);
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList(object)\n");
			break;
		default:
			break;
		}
		break;
	case LST_QUATERNION:
		switch(targetType)
		{
		case LST_QUATERNION:
			break;
		case LST_STRING:
			fprintf(fp, "call string [LslUserScript]LindenLab.SecondLife.LslUserScript::'ToString'(valuetype [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
			break;
		case LST_LIST:
			print_cil_box(fp, LST_QUATERNION);
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList(object)\n");
			break;
		default:
			break;
		}
		break;
	case LST_LIST:
		switch(targetType)
		{
		case LST_LIST:
			break;
		case LST_STRING:
			fprintf(fp, "call string [LslLibrary]LindenLab.SecondLife.LslRunTime::ListToString(class [mscorlib]System.Collections.ArrayList)\n");
			break;
		default:
			break;
		}
		break;
	default:
		break;
	}
}

static void print_cil_numeric_cast(LLFILE* fp, LSCRIPTType currentArg, LSCRIPTType otherArg)
{
	if((currentArg == LST_INTEGER) && ((otherArg == LST_FLOATINGPOINT) || (otherArg == LST_VECTOR)))
	{
		print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
	}
}

static void print_cil_assignment_cast(LLFILE* fp, LSCRIPTType src,
									  LSCRIPTType dest)
{
	if (LST_STRING == src && LST_KEY == dest)
	{
		print_cil_cast(fp, src, dest);
	}
	else if(LST_KEY == src && LST_STRING == dest)
	{
		print_cil_cast(fp, src, dest);
	}
	else
	{
		print_cil_numeric_cast(fp, src, dest);
	}
}
 
// HACK! Babbage: should be converted to virtual on LSCRIPTSimpleAssignableType to avoid downcasts.
LSCRIPTType get_type(LLScriptSimpleAssignable* sa)
{
	LSCRIPTType result = LST_NULL;
	switch(sa->mType)
	{
	case LSSAT_IDENTIFIER:
		result = ((LLScriptSAIdentifier*) sa)->mIdentifier->mScopeEntry->mType;
		break;
	case LSSAT_CONSTANT:
		result = ((LLScriptSAConstant*) sa)->mConstant->mType;
		break;
	case LSSAT_VECTOR_CONSTANT:
		result = LST_VECTOR;
		break;
	case LSSAT_QUATERNION_CONSTANT:
		result = LST_QUATERNION;
		break;
	case LSSAT_LIST_CONSTANT:
		result = LST_LIST;
		break;
	default:
		result = LST_UNDEFINED;
		break;
	}
	return result;
}

void LLScriptSAVector::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "< ");
		mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", ");
		mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", ");
		mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " >");
		if (mNextp)
		{
			fprintf(fp, ", ");
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_TYPE:
		// vector's take floats
		mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		type = LST_VECTOR;
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (type == LST_INTEGER)
		{
			S32 offset = chunk->mCurrentOffset - 4;
			bytestream_int2float(chunk->mCodeChunk, offset);
		}
		mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (type == LST_INTEGER)
		{
			S32 offset = chunk->mCurrentOffset - 4;
			bytestream_int2float(chunk->mCodeChunk, offset);
		}
		mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (type == LST_INTEGER)
		{
			S32 offset = chunk->mCurrentOffset - 4;
			bytestream_int2float(chunk->mCodeChunk, offset);
		}
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_LIST_BUILD_SIMPLE:
		{
			LLScriptByteCodeChunk	*list = new LLScriptByteCodeChunk(FALSE);
			mEntry3->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
			if (type == LST_INTEGER)
			{
				S32 offset = list->mCurrentOffset - 4;
				bytestream_int2float(list->mCodeChunk, offset);
			}
			mEntry2->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
			if (type == LST_INTEGER)
			{
				S32 offset = list->mCurrentOffset - 4;
				bytestream_int2float(list->mCodeChunk, offset);
			}
			mEntry1->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
			if (type == LST_INTEGER)
			{
				S32 offset = list->mCurrentOffset - 4;
				bytestream_int2float(list->mCodeChunk, offset);
			}
			LLVector3 vec;
			S32 offset = 0;
			bytestream2vector(vec, list->mCodeChunk, offset);
			*ldata = new LLScriptLibData(vec);
			delete list;
			if (mNextp)
			{
				mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, &(*ldata)->mListp);
			}
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:

		// Load arguments.
		mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if(LST_INTEGER == get_type(mEntry1))
		{
			print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
		}
		mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if(LST_INTEGER == get_type(mEntry2))
		{
			print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
		}
		mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if(LST_INTEGER == get_type(mEntry3))
		{
			print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
		}
		
		// Call named ctor, which leaves new Vector on stack, so it can be saved in to local or argument just like a primitive type.
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateVector'(float32, float32, float32)\n");

		// Next.
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	default:
		mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
}

S32 LLScriptSAVector::getSize()
{
	return mEntry1->getSize() + mEntry2->getSize() + mEntry3->getSize();
}

void LLScriptSAQuaternion::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "< ");
		mEntry4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", ");
		mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", ");
		mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", ");
		mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " >");
		if (mNextp)
		{
			fprintf(fp, ", ");
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_TYPE:
		// vector's take floats
		mEntry4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		type = LST_QUATERNION;
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		mEntry4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (type == LST_INTEGER)
		{
			S32 offset = chunk->mCurrentOffset - 4;
			bytestream_int2float(chunk->mCodeChunk, offset);
		}
		mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (type == LST_INTEGER)
		{
			S32 offset = chunk->mCurrentOffset - 4;
			bytestream_int2float(chunk->mCodeChunk, offset);
		}
		mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (type == LST_INTEGER)
		{
			S32 offset = chunk->mCurrentOffset - 4;
			bytestream_int2float(chunk->mCodeChunk, offset);
		}
		mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (type == LST_INTEGER)
		{
			S32 offset = chunk->mCurrentOffset - 4;
			bytestream_int2float(chunk->mCodeChunk, offset);
		}
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_LIST_BUILD_SIMPLE:
		{
			LLScriptByteCodeChunk	*list = new LLScriptByteCodeChunk(FALSE);
			mEntry4->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
			if (type == LST_INTEGER)
			{
				S32 offset = list->mCurrentOffset - 4;
				bytestream_int2float(list->mCodeChunk, offset);
			}
			mEntry3->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
			if (type == LST_INTEGER)
			{
				S32 offset = list->mCurrentOffset - 4;
				bytestream_int2float(list->mCodeChunk, offset);
			}
			mEntry2->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
			if (type == LST_INTEGER)
			{
				S32 offset = list->mCurrentOffset - 4;
				bytestream_int2float(list->mCodeChunk, offset);
			}
			mEntry1->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, list, heap, stacksize, entry, entrycount, NULL);
			if (type == LST_INTEGER)
			{
				S32 offset = list->mCurrentOffset - 4;
				bytestream_int2float(list->mCodeChunk, offset);
			}
			LLQuaternion quat;
			S32 offset = 0;
			bytestream2quaternion(quat, list->mCodeChunk, offset);
			*ldata = new LLScriptLibData(quat);
			delete list;
			if (mNextp)
			{
				mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, &(*ldata)->mListp);
			}
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:

		// Load arguments.
		mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if(LST_INTEGER == get_type(mEntry1))
		{
			print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
		}
		mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if(LST_INTEGER == get_type(mEntry2))
		{
			print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
		}
		mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if(LST_INTEGER == get_type(mEntry3))
		{
			print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
		}
		mEntry4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if(LST_INTEGER == get_type(mEntry4))
		{
			print_cil_cast(fp, LST_INTEGER, LST_FLOATINGPOINT);
		}
		
		// Call named ctor, which leaves new Vector on stack, so it can be saved in to local or argument just like a primitive type.
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateQuaternion'(float32, float32, float32, float32)\n");

		// Next.
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	default:
		mEntry4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mEntry3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mEntry2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mEntry1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
}

S32 LLScriptSAQuaternion::getSize()
{
	return mEntry1->getSize() + mEntry2->getSize() + mEntry3->getSize() + mEntry4->getSize();
}

void LLScriptSAList::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "[ ");
		if (mEntryList)
			mEntryList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " ]");
		if (mNextp)
		{
			fprintf(fp, ", ");
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_TYPE:
		if (mEntryList)
			mEntryList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		type = LST_LIST;
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			LLScriptLibData *list_data = new LLScriptLibData;

			list_data->mType = LST_LIST;
			if (mEntryList)
				mEntryList->recurse(fp, tabs, tabsize, LSCP_LIST_BUILD_SIMPLE, ptype, prunearg, scope, type, basetype, count, chunk, NULL, stacksize, entry, entrycount, &(list_data->mListp));

			U8 *temp;
			chunk->addInteger(heap->mCurrentOffset + 1);
			S32 size = lsa_create_data_block(&temp, list_data, heap->mCurrentOffset);
			heap->addBytes(temp, size);
			delete list_data;
			delete [] temp;

			if (mNextp)
			{
				mNextp->recurse(fp, tabs, tabsize, LSCP_EMIT_BYTE_CODE, ptype, prunearg, scope, type, basetype, count, chunk, NULL, stacksize, entry, entrycount, NULL);
			}
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			// Create list.
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList()\n");

			// Add elements.
			LLScriptSimpleAssignable* current_entry = mEntryList;
			LLScriptSimpleAssignable* next_entry = NULL;
			while(NULL != current_entry)
			{
				next_entry = current_entry->mNextp;

				// Null mNextp pointer, so only current list element is processed.
				current_entry->mNextp = NULL;
				current_entry->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);

				// Restore mNextp pointer.
				current_entry->mNextp = next_entry;

				// Box element and store in list.
				print_cil_box(fp, get_type(current_entry));
				fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(class [mscorlib]System.Collections.ArrayList, object)\n");

				// Process next element.
				current_entry = next_entry;
			}

			// Process next list.
			if (mNextp)
			{
				mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			}
		}
		break;
	default:
		if (mEntryList)
			mEntryList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, ldata);
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, ldata);
		}
		break;
	}
}

S32 LLScriptSAList::getSize()
{
	return mEntryList->getSize();
}

void LLScriptGlobalVariable::addGlobal(LLScriptGlobalVariable *global)
{
	if (mNextp)
	{
		global->mNextp = mNextp;
	}
	mNextp = global;
}

void LLScriptGlobalVariable::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	default:
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
}

// Push initialised variable of type on to stack.
static void print_cil_init_variable(LLFILE* fp, LSCRIPTType type)
{
	switch(type)
	{
	case LST_INTEGER:
		fprintf(fp, "ldc.i4.0\n");
		break;
	case LST_FLOATINGPOINT:
		fprintf(fp, "ldc.r8 0\n");
		break;
	case LST_STRING:
		fprintf(fp, "ldstr \"\"\n");
		break;
	case LST_KEY:
		fprintf(fp, "ldstr \"\"\n");
		fprintf(fp, "call valuetype [ScriptTypes]LindenLab.SecondLife.Key class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateKey'(string)\n");
		break;
	case LST_VECTOR:
		fprintf(fp, "ldc.r8 0\n");
		fprintf(fp, "ldc.r8 0\n");
		fprintf(fp, "ldc.r8 0\n");
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateVector'(float32, float32, float32)\n");
		break;
	case LST_QUATERNION:
		fprintf(fp, "ldc.r8 0\n");
		fprintf(fp, "ldc.r8 0\n");
		fprintf(fp, "ldc.r8 0\n");
		fprintf(fp, "ldc.r8 1\n");
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateQuaternion'(float32, float32, float32, float32)\n");
		break;
	case LST_LIST:
		fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList()\n");
		break;
	default:
		break;
	}
}

void LLScriptGlobalVariable::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp,"\t");
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mAssignable)
		{
			fprintf(fp, " = ");
			mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		fprintf(fp, ";\n");
		break;
	case LSCP_EMIT_ASSEMBLY:
		mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp,"\t");
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mAssignable)
		{
			fprintf(fp, " = ");
			mAssignable->recurse(fp, tabs, tabsize, LSCP_PRETTY_PRINT, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "\n");
			fprintf(fp, "Offset: %d Type: %d\n", mIdentifier->mScopeEntry->mOffset, (S32)LSCRIPTTypeByte[mType->mType]);
		}
		else
		{
			fprintf(fp, "\n");
			fprintf(fp, "Offset: %d Type: %d\n", mIdentifier->mScopeEntry->mOffset, (S32)LSCRIPTTypeByte[mType->mType]);
		}
		break;
	case LSCP_SCOPE_PASS1:
		if (scope->checkEntry(mIdentifier->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			if (mAssignable)
			{
				mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			}			
			// this needs to go after expression decent to make sure that we don't add ourselves or something silly
			mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_GLOBAL, mType->mType);
			if (mIdentifier->mScopeEntry && mAssignable)
					mIdentifier->mScopeEntry->mAssignable = mAssignable;
		}
		break;
	case LSCP_TYPE:
		// if the variable has an assignable, it must assignable to the variable's type
		if (mAssignable)
		{
			mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mAssignableType = type;
			if (!legal_assignment(mType->mType, mAssignableType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			// it also includes the name of the variable as well as the type
			// plus 4 bytes of offset from it's apparent address to the actual data
#ifdef LSL_INCLUDE_DEBUG_INFO
			count += strlen(mIdentifier->mName) + 1 + 1 + 4;
#else
			count += 1 + 1 + 4;
#endif
			mIdentifier->mScopeEntry->mOffset = (S32)count;
			mIdentifier->mScopeEntry->mSize = mType->getSize();
			count += mIdentifier->mScopeEntry->mSize;
			mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			// order for global variables
			// 0 - 4: offset to actual data
			S32 offsetoffset = chunk->mCurrentOffset;
			S32 offsetdelta = 0;
			chunk->addBytes(4);
			// type
			char vtype;
			vtype = LSCRIPTTypeByte[mType->mType]; 
			chunk->addBytes(&vtype, 1);
			// null terminated name
#ifdef LSL_INCLUDE_DEBUG_INFO
			chunk->addBytes(mIdentifier->mName, strlen(mIdentifier->mName) + 1);
#else
			chunk->addBytes(1);
#endif
			// put correct offset delta in
			offsetdelta = chunk->mCurrentOffset - offsetoffset;
			integer2bytestream(chunk->mCodeChunk, offsetoffset, offsetdelta);

			// now we need space for the variable itself
			LLScriptByteCodeChunk	*value = new LLScriptByteCodeChunk(FALSE);
			if (mAssignable)
			{
				mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, value, heap, stacksize, entry, entrycount, NULL);
				// need to put sneaky type conversion here
				if (mAssignableType != mType->mType)
				{
					// the only legal case that is a problem is int->float
					if (mType->mType == LST_FLOATINGPOINT && mAssignableType == LST_INTEGER)
					{
						S32 offset = value->mCurrentOffset - 4;
						bytestream_int2float(value->mCodeChunk, offset);
					}
				}
			}
			else
			{
				if (  (mType->mType == LST_STRING)
					||(mType->mType == LST_KEY))
				{
					// string and keys (even empty ones) need heap entries
					chunk->addInteger(heap->mCurrentOffset + 1);
					LLScriptLibData *data = new LLScriptLibData("");
					U8 *temp;
					S32 size = lsa_create_data_block(&temp, data, heap->mCurrentOffset);

					heap->addBytes(temp, size);
					delete [] temp;
					delete data;
				}
				else if (mType->mType == LST_LIST)
				{
					chunk->addInteger(heap->mCurrentOffset + 1);
					LLScriptLibData *data = new LLScriptLibData;
					data->mType = LST_LIST;
					U8 *temp;
					S32 size = lsa_create_data_block(&temp, data, heap->mCurrentOffset);

					heap->addBytes(temp, size);
					delete [] temp;
					delete data;
				}
				else if (mType->mType == LST_QUATERNION)
				{
					chunk->addFloat(1.f);
					chunk->addFloat(0.f);
					chunk->addFloat(0.f);
					chunk->addFloat(0.f);
				}
				else
				{
					value->addBytes(LSCRIPTDataSize[mType->mType]);
				}
			}
			chunk->addBytes(value->mCodeChunk, value->mCurrentOffset);
			delete value;
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:

		// Initialisation inside ctor.
		fprintf(fp, "ldarg.0\n");
		if (mAssignable)
		{
			// Initialise to value.
			mAssignable->recurse(fp, tabs, tabsize, LSCP_EMIT_CIL_ASSEMBLY,
								 ptype, prunearg, scope, type, basetype,
								 count, chunk, heap, stacksize, entry,
								 entrycount, NULL);
			print_cil_assignment_cast(fp, get_type(mAssignable), mType->mType);
		}
		else
		{
			// Initialise to zero.
			print_cil_init_variable(fp, mType->mType);
		}
		// Store value.
		fprintf(fp, "stfld ");
		mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp," %s::", gScriptp->getClassName());
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "\n");
		break;
	default:
		mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mAssignable)
		{
			mAssignable->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptGlobalVariable::getSize()
{
	S32 return_size;

	return_size = mType->getSize();
	return return_size;
}

void LLScriptEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	fprintf(fp, "Event Base Class -- should never get here!\n");
}

S32 LLScriptEvent::getSize()
{
	printf("Event Base Class -- should never get here!\n");
	return 0;
}
static void checkForDuplicateHandler(LLFILE *fp, LLScriptFilePosition *pos, 
				     LLScriptScope *scope,
				     const char* name)
{
    LLScriptScope *parent = scope->mParentScope;
    if (parent->checkEntry((char*)name))
    {
        gErrorToText.writeError(fp, pos, LSERROR_DUPLICATE_NAME);
    }
    else
    {
        parent->addEntry(((char*)name), LIT_HANDLER, LST_NULL);
    }
}

void LLScriptStateEntryEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "state_entry()\n");
		break;
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "state_entry()\n");
		break;
	case LSCP_SCOPE_PASS1:
	        checkForDuplicateHandler(fp, this, scope, "state_entry");
	        break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "state_entry";
			chunk->addBytes(name, strlen(name) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "state_entry()");
		break;
	default:
		break;
	}
}

S32 LLScriptStateEntryEvent::getSize()
{
	return 0;
}

void LLScriptStateExitEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "state_exit()\n");
		break;
        case LSCP_SCOPE_PASS1:
                checkForDuplicateHandler(fp, this, scope, "state_exit");
	        break;
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "state_exit()\n");
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "state_exit";
			chunk->addBytes(name, strlen(name) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "state_exit()");
		break;
	default:
		break;
	}
}

S32 LLScriptStateExitEvent::getSize()
{
	return 0;
}

void LLScriptTouchStartEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "touch_start( integer ");
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
		break;
	case LSCP_SCOPE_PASS1:
	        checkForDuplicateHandler(fp, this, scope, "touch_start");
		if (scope->checkEntry(mCount->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mCount->mScopeEntry = scope->addEntry(mCount->mName, LIT_VARIABLE, LST_INTEGER);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mCount->mScopeEntry)
			{
				mCount->mScopeEntry->mOffset = (S32)count;
				mCount->mScopeEntry->mSize = 4;
				count += mCount->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "touch_start";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mCount->mName, strlen(mCount->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "touch_start( int32 ");
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
		break;
	default:
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptTouchStartEvent::getSize()
{
	// integer = 4
	return 4;
}

void LLScriptTouchEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "touch( integer ");
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
		break;
	case LSCP_SCOPE_PASS1:
	        checkForDuplicateHandler(fp, this, scope, "touch");
		if (scope->checkEntry(mCount->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mCount->mScopeEntry = scope->addEntry(mCount->mName, LIT_VARIABLE, LST_INTEGER);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mCount->mScopeEntry)
			{
				mCount->mScopeEntry->mOffset = (S32)count;
				mCount->mScopeEntry->mSize = 4;
				count += mCount->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "touch";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mCount->mName, strlen(mCount->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "touch( int32 ");
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
		break;
	default:
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptTouchEvent::getSize()
{
	// integer = 4
	return 4;
}

void LLScriptTouchEndEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "touch_end( integer ");
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
		break;
	case LSCP_SCOPE_PASS1:
	        checkForDuplicateHandler(fp, this, scope, "touch_end");
		if (scope->checkEntry(mCount->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mCount->mScopeEntry = scope->addEntry(mCount->mName, LIT_VARIABLE, LST_INTEGER);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mCount->mScopeEntry)
			{
				mCount->mScopeEntry->mOffset = (S32)count;
				mCount->mScopeEntry->mSize = 4;
				count += mCount->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "touch_end";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mCount->mName, strlen(mCount->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "touch_end( int32 ");
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
		break;
	default:
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptTouchEndEvent::getSize()
{
	// integer = 4
	return 4;
}

void LLScriptCollisionStartEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "collision_start( integer ");
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
		break;
	case LSCP_SCOPE_PASS1:
	        checkForDuplicateHandler(fp, this, scope, "collision_start");
		if (scope->checkEntry(mCount->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mCount->mScopeEntry = scope->addEntry(mCount->mName, LIT_VARIABLE, LST_INTEGER);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mCount->mScopeEntry)
			{
				mCount->mScopeEntry->mOffset = (S32)count;
				mCount->mScopeEntry->mSize = 4;
				count += mCount->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "collision_start";
			chunk->addBytes(name, (S32)strlen(name) + 1);
			chunk->addBytes(mCount->mName, (S32)strlen(mCount->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "collision_start( int32 ");
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptCollisionStartEvent::getSize()
{
	// integer = 4
	return 4;
}

void LLScriptCollisionEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "collision( integer ");
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
		break;
	case LSCP_SCOPE_PASS1:
	        checkForDuplicateHandler(fp, this, scope, "collision");
		if (scope->checkEntry(mCount->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mCount->mScopeEntry = scope->addEntry(mCount->mName, LIT_VARIABLE, LST_INTEGER);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mCount->mScopeEntry)
			{
				mCount->mScopeEntry->mOffset = (S32)count;
				mCount->mScopeEntry->mSize = 4;
				count += mCount->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "collision";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mCount->mName, strlen(mCount->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "collision( int32 ");
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptCollisionEvent::getSize()
{
	// integer = 4
	return 4;
}

void LLScriptCollisionEndEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "collision_end( integer ");
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "collision_end");
		if (scope->checkEntry(mCount->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mCount->mScopeEntry = scope->addEntry(mCount->mName, LIT_VARIABLE, LST_INTEGER);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mCount->mScopeEntry)
			{
				mCount->mScopeEntry->mOffset = (S32)count;
				mCount->mScopeEntry->mSize = 4;
				count += mCount->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "collision_end";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mCount->mName, strlen(mCount->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "collision_end( int32 ");
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mCount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptCollisionEndEvent::getSize()
{
	// integer = 4
	return 4;
}

void LLScriptLandCollisionStartEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "land_collision_start( vector ");
		mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "land_collision_start");
		if (scope->checkEntry(mPosition->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mPosition->mScopeEntry = scope->addEntry(mPosition->mName, LIT_VARIABLE, LST_VECTOR);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mPosition->mScopeEntry)
			{
				mPosition->mScopeEntry->mOffset = (S32)count;
				mPosition->mScopeEntry->mSize = 12;
				count += mPosition->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "land_collision_start";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mPosition->mName, strlen(mPosition->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "land_collision_start( class [ScriptTypes]LindenLab.SecondLife.Vector ");
		mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptLandCollisionStartEvent::getSize()
{
	// vector = 12
	return 12;
}



void LLScriptLandCollisionEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "land_collision( vector ");
		mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "land_collision");
		if (scope->checkEntry(mPosition->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mPosition->mScopeEntry = scope->addEntry(mPosition->mName, LIT_VARIABLE, LST_VECTOR);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mPosition->mScopeEntry)
			{
				mPosition->mScopeEntry->mOffset = (S32)count;
				mPosition->mScopeEntry->mSize = 12;
				count += mPosition->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "land_collision";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mPosition->mName, strlen(mPosition->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "land_collision( class [ScriptTypes]LindenLab.SecondLife.Vector ");
		mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptLandCollisionEvent::getSize()
{
	// vector = 12
	return 12;
}


void LLScriptLandCollisionEndEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "land_collision_end( vector ");
		mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "land_collision_end");
		if (scope->checkEntry(mPosition->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mPosition->mScopeEntry = scope->addEntry(mPosition->mName, LIT_VARIABLE, LST_VECTOR);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mPosition->mScopeEntry)
			{
				mPosition->mScopeEntry->mOffset = (S32)count;
				mPosition->mScopeEntry->mSize = 12;
				count += mPosition->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "land_collision_end";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mPosition->mName, strlen(mPosition->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "land_collision_end( class [ScriptTypes]LindenLab.SecondLife.Vector ");
		mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptLandCollisionEndEvent::getSize()
{
	// vector = 12
	return 12;
}


void LLScriptInventoryEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "changed( integer ");
		mChange->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "changed");
		if (scope->checkEntry(mChange->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mChange->mScopeEntry = scope->addEntry(mChange->mName, LIT_VARIABLE, LST_INTEGER);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mChange->mScopeEntry)
			{
				mChange->mScopeEntry->mOffset = (S32)count;
				mChange->mScopeEntry->mSize = 4;
				count += mChange->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "changed";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mChange->mName, strlen(mChange->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "changed( int32 ");
		mChange->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mChange->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptInventoryEvent::getSize()
{
	// integer = 4
	return 4;
}

void LLScriptAttachEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "attach( key ");
		mAttach->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "attach");
		if (scope->checkEntry(mAttach->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mAttach->mScopeEntry = scope->addEntry(mAttach->mName, LIT_VARIABLE, LST_KEY);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mAttach->mScopeEntry)
			{
				mAttach->mScopeEntry->mOffset = (S32)count;
				mAttach->mScopeEntry->mSize = 4;
				count += mAttach->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "attach";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mAttach->mName, strlen(mAttach->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "attach( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
		mAttach->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	default:
		mAttach->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptAttachEvent::getSize()
{
	// key = 4
	return 4;
}

void LLScriptDataserverEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "dataserver( key ");
		mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mData->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "dataserver");
		if (scope->checkEntry(mID->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mID->mScopeEntry = scope->addEntry(mID->mName, LIT_VARIABLE, LST_KEY);
		}
		if (scope->checkEntry(mData->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mData->mScopeEntry = scope->addEntry(mData->mName, LIT_VARIABLE, LST_STRING);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mID->mScopeEntry)
			{
				mID->mScopeEntry->mOffset = (S32)count;
				mID->mScopeEntry->mSize = 4;
				count += mID->mScopeEntry->mSize;
				mData->mScopeEntry->mOffset = (S32)count;
				mData->mScopeEntry->mSize = 4;
				count += mData->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "dataserver";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mID->mName, strlen(mID->mName) + 1);
			chunk->addBytes(mData->mName, strlen(mData->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "dataserver( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
		mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mData->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mData->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptDataserverEvent::getSize()
{
	// key + string = 8
	return 8;
}

void LLScriptTimerEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "timer()\n");
		break;
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "timer()\n");
		break;
        case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "timer");
	  break;

	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "timer";
			chunk->addBytes(name, strlen(name) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "timer()");
		break;
	default:
		break;
	}
}

S32 LLScriptTimerEvent::getSize()
{
	return 0;
}

void LLScriptMovingStartEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "moving_start()\n");
		break;
        case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "moving_start");
	  break;

	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "moving_start";
			chunk->addBytes(name, strlen(name) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "moving_start()");
		break;
	default:
		break;
	}
}

S32 LLScriptMovingStartEvent::getSize()
{
	return 0;
}

void LLScriptMovingEndEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "moving_end()\n");
		break;
        case LSCP_SCOPE_PASS1:
          checkForDuplicateHandler(fp, this, scope, "moving_end");
          break;

	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "moving_end";
			chunk->addBytes(name, strlen(name) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "moving_end()");
		break;
	default:
		break;
	}
}

S32 LLScriptMovingEndEvent::getSize()
{
	return 0;
}

void LLScriptRTPEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "chat( integer ");
		mRTPermissions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "run_time_perms");
		if (scope->checkEntry(mRTPermissions->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mRTPermissions->mScopeEntry = scope->addEntry(mRTPermissions->mName, LIT_VARIABLE, LST_INTEGER);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mRTPermissions->mScopeEntry)
			{
				mRTPermissions->mScopeEntry->mOffset = (S32)count;
				mRTPermissions->mScopeEntry->mSize = 4;
				count += mRTPermissions->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "chat";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mRTPermissions->mName, strlen(mRTPermissions->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		// NOTE: Not replicating LSL2 bug by calling RTP event hander "chat"
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "run_time_perms( int32 ");
		mRTPermissions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mRTPermissions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptRTPEvent::getSize()
{
	// integer = 4
	return 4;
}

void LLScriptChatEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "chat( integer ");
		mChannel->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", key ");
		mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mMessage->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
		checkForDuplicateHandler(fp, this, scope, "listen"); // note: this is actually listen in lsl source
		if (scope->checkEntry(mChannel->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mChannel->mScopeEntry = scope->addEntry(mChannel->mName, LIT_VARIABLE, LST_INTEGER);
		}
		if (scope->checkEntry(mName->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mName->mScopeEntry = scope->addEntry(mName->mName, LIT_VARIABLE, LST_STRING);
		}
		if (scope->checkEntry(mID->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mID->mScopeEntry = scope->addEntry(mID->mName, LIT_VARIABLE, LST_KEY);
		}
		if (scope->checkEntry(mMessage->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mMessage->mScopeEntry = scope->addEntry(mMessage->mName, LIT_VARIABLE, LST_STRING);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mName->mScopeEntry)
			{
				mChannel->mScopeEntry->mOffset = (S32)count;
				mChannel->mScopeEntry->mSize = 4;
				count += mChannel->mScopeEntry->mSize;
				mName->mScopeEntry->mOffset = (S32)count;
				mName->mScopeEntry->mSize = 4;
				count += mName->mScopeEntry->mSize;
				mID->mScopeEntry->mOffset = (S32)count;
				mID->mScopeEntry->mSize = 4;
				count += mID->mScopeEntry->mSize;
				mMessage->mScopeEntry->mOffset = (S32)count;
				mMessage->mScopeEntry->mSize = 4;
				count += mMessage->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "chat";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mChannel->mName, strlen(mChannel->mName) + 1);
			chunk->addBytes(mName->mName, strlen(mName->mName) + 1);
			chunk->addBytes(mID->mName, strlen(mID->mName) + 1);
			chunk->addBytes(mMessage->mName, strlen(mMessage->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "chat( int32 ");
		mChannel->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
		mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mMessage->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mChannel->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mMessage->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptChatEvent::getSize()
{
	// integer + key + string + string = 16
	return 16;
}

void LLScriptSensorEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "sensor( integer ");
		mNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "sensor");
		if (scope->checkEntry(mNumber->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mNumber->mScopeEntry = scope->addEntry(mNumber->mName, LIT_VARIABLE, LST_INTEGER);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mNumber->mScopeEntry)
			{
				mNumber->mScopeEntry->mOffset = (S32)count;
				mNumber->mScopeEntry->mSize = 4;
				count += mNumber->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "sensor";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mNumber->mName, strlen(mNumber->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "sensor( int32 ");
		mNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptSensorEvent::getSize()
{
	// integer = 4
	return 4;
}

void LLScriptObjectRezEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "object_rez( key ");
		mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "object_rez");
		if (scope->checkEntry(mID->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mID->mScopeEntry = scope->addEntry(mID->mName, LIT_VARIABLE, LST_KEY);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mID->mScopeEntry)
			{
				mID->mScopeEntry->mOffset = (S32)count;
				mID->mScopeEntry->mSize = 4;
				count += mID->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "sensor";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mID->mName, strlen(mID->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "object_rez( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
		mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptObjectRezEvent::getSize()
{
	// key = 4
	return 4;
}

void LLScriptControlEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "control( key ");
		mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", integer ");
		mLevels->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", integer ");
		mEdges->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "control");
		if (scope->checkEntry(mName->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mName->mScopeEntry = scope->addEntry(mName->mName, LIT_VARIABLE, LST_KEY);
		}
		if (scope->checkEntry(mLevels->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mLevels->mScopeEntry = scope->addEntry(mLevels->mName, LIT_VARIABLE, LST_INTEGER);
		}
		if (scope->checkEntry(mEdges->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mEdges->mScopeEntry = scope->addEntry(mEdges->mName, LIT_VARIABLE, LST_INTEGER);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mName->mScopeEntry)
			{
				mName->mScopeEntry->mOffset = (S32)count;
				mName->mScopeEntry->mSize = 4;
				count += mName->mScopeEntry->mSize;
				mLevels->mScopeEntry->mOffset = (S32)count;
				mLevels->mScopeEntry->mSize = 4;
				count += mLevels->mScopeEntry->mSize;
				mEdges->mScopeEntry->mOffset = (S32)count;
				mEdges->mScopeEntry->mSize = 4;
				count += mEdges->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "control";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mName->mName, strlen(mName->mName) + 1);
			chunk->addBytes(mLevels->mName, strlen(mLevels->mName) + 1);
			chunk->addBytes(mEdges->mName, strlen(mEdges->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "control( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
		mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", int32 ");
		mLevels->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", int32 ");
		mEdges->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLevels->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mEdges->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptControlEvent::getSize()
{
	// key + integer + integer = 12
	return 12;
}

void LLScriptLinkMessageEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "link_message( integer ");
		mSender->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", integer ");
		mNum->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mStr->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", key ");
		mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "link_message");
		if (scope->checkEntry(mSender->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mSender->mScopeEntry = scope->addEntry(mSender->mName, LIT_VARIABLE, LST_INTEGER);
		}
		if (scope->checkEntry(mNum->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mNum->mScopeEntry = scope->addEntry(mNum->mName, LIT_VARIABLE, LST_INTEGER);
		}
		if (scope->checkEntry(mStr->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mStr->mScopeEntry = scope->addEntry(mStr->mName, LIT_VARIABLE, LST_STRING);
		}
		if (scope->checkEntry(mID->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mID->mScopeEntry = scope->addEntry(mID->mName, LIT_VARIABLE, LST_KEY);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mSender->mScopeEntry)
			{
				mSender->mScopeEntry->mOffset = (S32)count;
				mSender->mScopeEntry->mSize = 4;
				count += mSender->mScopeEntry->mSize;
				mNum->mScopeEntry->mOffset = (S32)count;
				mNum->mScopeEntry->mSize = 4;
				count += mNum->mScopeEntry->mSize;
				mStr->mScopeEntry->mOffset = (S32)count;
				mStr->mScopeEntry->mSize = 4;
				count += mStr->mScopeEntry->mSize;
				mID->mScopeEntry->mOffset = (S32)count;
				mID->mScopeEntry->mSize = 4;
				count += mID->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "link_message";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mSender->mName, strlen(mSender->mName) + 1);
			chunk->addBytes(mNum->mName, strlen(mNum->mName) + 1);
			chunk->addBytes(mStr->mName, strlen(mStr->mName) + 1);
			chunk->addBytes(mID->mName, strlen(mID->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "link_message( int32 ");
		mSender->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", int32 ");
		mNum->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mStr->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
		mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mSender->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mNum->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mStr->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptLinkMessageEvent::getSize()
{
	// integer + key + integer + string = 16
	return 16;
}

void LLScriptRemoteEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "remote_event( integer ");
		mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", key ");
		mChannel->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", key ");
		mMessageID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mSender->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", integer ");
		mIntVal->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mStrVal->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "remote_event");
		if (scope->checkEntry(mType->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mType->mScopeEntry = scope->addEntry(mType->mName, LIT_VARIABLE, LST_INTEGER);
		}
		if (scope->checkEntry(mChannel->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mChannel->mScopeEntry = scope->addEntry(mChannel->mName, LIT_VARIABLE, LST_KEY);
		}
		if (scope->checkEntry(mMessageID->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mMessageID->mScopeEntry = scope->addEntry(mMessageID->mName, LIT_VARIABLE, LST_KEY);
		}
		if (scope->checkEntry(mSender->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mSender->mScopeEntry = scope->addEntry(mSender->mName, LIT_VARIABLE, LST_STRING);
		}
		if (scope->checkEntry(mIntVal->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mIntVal->mScopeEntry = scope->addEntry(mIntVal->mName, LIT_VARIABLE, LST_INTEGER);
		}
		if (scope->checkEntry(mStrVal->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mStrVal->mScopeEntry = scope->addEntry(mStrVal->mName, LIT_VARIABLE, LST_STRING);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mType->mScopeEntry)
			{
				mType->mScopeEntry->mOffset = (S32)count;
				mType->mScopeEntry->mSize = 4;
				count += mType->mScopeEntry->mSize;
				mChannel->mScopeEntry->mOffset = (S32)count;
				mChannel->mScopeEntry->mSize = 4;
				count += mChannel->mScopeEntry->mSize;
				mMessageID->mScopeEntry->mOffset = (S32)count;
				mMessageID->mScopeEntry->mSize = 4;
				count += mMessageID->mScopeEntry->mSize;
				mSender->mScopeEntry->mOffset = (S32)count;
				mSender->mScopeEntry->mSize = 4;
				count += mSender->mScopeEntry->mSize;
				mIntVal->mScopeEntry->mOffset = (S32)count;
				mIntVal->mScopeEntry->mSize = 4;
				count += mIntVal->mScopeEntry->mSize;
				mStrVal->mScopeEntry->mOffset = (S32)count;
				mStrVal->mScopeEntry->mSize = 4;
				count += mStrVal->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "remote_event";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mType->mName, strlen(mType->mName) + 1);
			chunk->addBytes(mChannel->mName, strlen(mChannel->mName) + 1);
			chunk->addBytes(mMessageID->mName, strlen(mMessageID->mName) + 1);
			chunk->addBytes(mSender->mName, strlen(mSender->mName) + 1);
			chunk->addBytes(mIntVal->mName, strlen(mIntVal->mName) + 1);
			chunk->addBytes(mStrVal->mName, strlen(mStrVal->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "remote_event( int32 ");
		mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
		mChannel->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
		mMessageID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mSender->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", int32 ");
		mIntVal->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mStrVal->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mChannel->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mMessageID->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mSender->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mIntVal->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mStrVal->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptRemoteEvent::getSize()
{
	// integer + key + key + string + integer + string = 24
	return 24;
}

void LLScriptHTTPResponseEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "http_response( key ");
		mRequestId->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", integer ");
		mStatus->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", class [mscorlib]System.Collections.ArrayList ");
		mMetadata->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
		
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "http_response");
		if (scope->checkEntry(mRequestId->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mRequestId->mScopeEntry = scope->addEntry(mRequestId->mName, LIT_VARIABLE, LST_KEY);
		}
		
		if (scope->checkEntry(mStatus->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mStatus->mScopeEntry = scope->addEntry(mStatus->mName, LIT_VARIABLE, LST_INTEGER);
		}
		
		if (scope->checkEntry(mMetadata->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mMetadata->mScopeEntry = scope->addEntry(mMetadata->mName, LIT_VARIABLE, LST_LIST);
		}
		
		if (scope->checkEntry(mBody->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mBody->mScopeEntry = scope->addEntry(mBody->mName, LIT_VARIABLE, LST_STRING);
		}
		break;
		
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mRequestId->mScopeEntry)
			{
				mRequestId->mScopeEntry->mOffset = (S32)count;
				mRequestId->mScopeEntry->mSize = 4;
				count += mRequestId->mScopeEntry->mSize;

				mStatus->mScopeEntry->mOffset = (S32)count;
				mStatus->mScopeEntry->mSize = 4;
				count += mStatus->mScopeEntry->mSize;

				mMetadata->mScopeEntry->mOffset = (S32)count;
				mMetadata->mScopeEntry->mSize = 4;
				count += mMetadata->mScopeEntry->mSize;

				mBody->mScopeEntry->mOffset = (S32)count;
				mBody->mScopeEntry->mSize = 4;
				count += mBody->mScopeEntry->mSize;
			}
		}
		break;
		
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "http_response";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mRequestId->mName, strlen(mRequestId->mName) + 1);
			chunk->addBytes(mStatus->mName, strlen(mStatus->mName) + 1);
			chunk->addBytes(mMetadata->mName, strlen(mMetadata->mName) + 1);
			chunk->addBytes(mBody->mName, strlen(mBody->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
	        fdotabs(fp, tabs, tabsize);
   	        fprintf(fp, "http_response( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
		mRequestId->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", int32 ");
		mStatus->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", class [mscorlib]System.Collections.ArrayList ");
		mMetadata->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	default:
		mRequestId->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mStatus->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mMetadata->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptHTTPResponseEvent::getSize()
{
	// key + integer + list + string = 16
	return 16;
}

void LLScriptHTTPRequestEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "http_request( key ");
		mRequestId->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mMethod->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
		
	case LSCP_SCOPE_PASS1:
		checkForDuplicateHandler(fp, this, scope, "http_request");
		if (scope->checkEntry(mRequestId->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mRequestId->mScopeEntry = scope->addEntry(mRequestId->mName, LIT_VARIABLE, LST_KEY);
		}

		if (scope->checkEntry(mMethod->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mMethod->mScopeEntry = scope->addEntry(mMethod->mName, LIT_VARIABLE, LST_STRING);
		}
		
		if (scope->checkEntry(mBody->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mBody->mScopeEntry = scope->addEntry(mBody->mName, LIT_VARIABLE, LST_STRING);
		}
		break;
		
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mRequestId->mScopeEntry)
			{
				mRequestId->mScopeEntry->mOffset = (S32)count;
				mRequestId->mScopeEntry->mSize = 4;
				count += mRequestId->mScopeEntry->mSize;

				mMethod->mScopeEntry->mOffset = (S32)count;
				mMethod->mScopeEntry->mSize = 4;
				count += mMethod->mScopeEntry->mSize;

				mBody->mScopeEntry->mOffset = (S32)count;
				mBody->mScopeEntry->mSize = 4;
				count += mBody->mScopeEntry->mSize;
			}
		}
		break;
		
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "http_request";
			chunk->addBytes(name, strlen(name) + 1); 		/*Flawfinder: ignore*/
			chunk->addBytes(mRequestId->mName, strlen(mRequestId->mName) + 1); 		/*Flawfinder: ignore*/
			chunk->addBytes(mMethod->mName, strlen(mMethod->mName) + 1); 		/*Flawfinder: ignore*/
			chunk->addBytes(mBody->mName, strlen(mBody->mName) + 1); 		/*Flawfinder: ignore*/
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
	        fdotabs(fp, tabs, tabsize);
   	        fprintf(fp, "http_request( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
		mRequestId->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mMethod->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	default:
		mRequestId->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mMethod->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptHTTPRequestEvent::getSize()
{
	// key + string + string = 12
	return 12;
}

void LLScriptMoneyEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "money( key ");
		mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", integer ");
		mAmount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "money");
		if (scope->checkEntry(mName->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mName->mScopeEntry = scope->addEntry(mName->mName, LIT_VARIABLE, LST_KEY);
		}
		if (scope->checkEntry(mAmount->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mAmount->mScopeEntry = scope->addEntry(mAmount->mName, LIT_VARIABLE, LST_INTEGER);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mName->mScopeEntry)
			{
				mName->mScopeEntry->mOffset = (S32)count;
				mName->mScopeEntry->mSize = 4;
				count += mName->mScopeEntry->mSize;
				mAmount->mScopeEntry->mOffset = (S32)count;
				mAmount->mScopeEntry->mSize = 4;
				count += mAmount->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "money";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mName->mName, strlen(mName->mName) + 1);
			chunk->addBytes(mAmount->mName, strlen(mAmount->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "money( valuetype [ScriptTypes]LindenLab.SecondLife.Key ");
		mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", int32 ");
		mAmount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mName->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mAmount->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptMoneyEvent::getSize()
{
	// key + integer = 8
	return 8;
}

void LLScriptEmailEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "email( string ");
		mTime->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mAddress->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mSubject->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", integer ");
		mNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "email");
		if (scope->checkEntry(mTime->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mTime->mScopeEntry = scope->addEntry(mTime->mName, LIT_VARIABLE, LST_STRING);
		}
		if (scope->checkEntry(mAddress->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mAddress->mScopeEntry = scope->addEntry(mAddress->mName, LIT_VARIABLE, LST_STRING);
		}
		if (scope->checkEntry(mSubject->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mSubject->mScopeEntry = scope->addEntry(mSubject->mName, LIT_VARIABLE, LST_STRING);
		}
		if (scope->checkEntry(mBody->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mBody->mScopeEntry = scope->addEntry(mBody->mName, LIT_VARIABLE, LST_STRING);
		}
		if (scope->checkEntry(mNumber->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mNumber->mScopeEntry = scope->addEntry(mNumber->mName, LIT_VARIABLE, LST_INTEGER);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mAddress->mScopeEntry)
			{
				mTime->mScopeEntry->mOffset = (S32)count;
				mTime->mScopeEntry->mSize = 4;
				count += mTime->mScopeEntry->mSize;
				mAddress->mScopeEntry->mOffset = (S32)count;
				mAddress->mScopeEntry->mSize = 4;
				count += mAddress->mScopeEntry->mSize;
				mSubject->mScopeEntry->mOffset = (S32)count;
				mSubject->mScopeEntry->mSize = 4;
				count += mSubject->mScopeEntry->mSize;
				mBody->mScopeEntry->mOffset = (S32)count;
				mBody->mScopeEntry->mSize = 4;
				count += mBody->mScopeEntry->mSize;
				mNumber->mScopeEntry->mOffset = (S32)count;
				mNumber->mScopeEntry->mSize = 4;
				count += mNumber->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "email";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mTime->mName, strlen(mTime->mName) + 1);
			chunk->addBytes(mAddress->mName, strlen(mAddress->mName) + 1);
			chunk->addBytes(mSubject->mName, strlen(mSubject->mName) + 1);
			chunk->addBytes(mBody->mName, strlen(mBody->mName) + 1);
			chunk->addBytes(mNumber->mName, strlen(mNumber->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "email( string ");
		mTime->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mAddress->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mSubject->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", string ");
		mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", int32 ");
		mNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mTime->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mAddress->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mSubject->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mBody->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptEmailEvent::getSize()
{
	// string + string + string + string + integer = 16
	return 20;
}

void LLScriptRezEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "rez( integer ");
		mStartParam->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
		checkForDuplicateHandler(fp, this, scope, "on_rez");
		if (scope->checkEntry(mStartParam->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mStartParam->mScopeEntry = scope->addEntry(mStartParam->mName, LIT_VARIABLE, LST_INTEGER);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mStartParam->mScopeEntry)
			{
				mStartParam->mScopeEntry->mOffset = (S32)count;
				mStartParam->mScopeEntry->mSize = 4;
				count += mStartParam->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "rez";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mStartParam->mName, strlen(mStartParam->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "rez( int32 ");
		mStartParam->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mStartParam->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptRezEvent::getSize()
{
	// integer = 4
	return 4;
}

void LLScriptNoSensorEvent::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "no_sensor()\n");
		break;
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "no_sensor()\n");
		break;
        case LSCP_SCOPE_PASS1:
     	        checkForDuplicateHandler(fp, this, scope, "no_sensor");
	        break;
  	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "no_sensor";
			chunk->addBytes(name, strlen(name) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "no_sensor()");
		break;
	default:
		break;
	}
}

S32 LLScriptNoSensorEvent::getSize()
{
	return 0;
}

void LLScriptAtTarget::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "at_target( integer ");
		mTargetNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", vector ");
		mTargetPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", vector ");
		mOurPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
	        checkForDuplicateHandler(fp, this, scope, "at_target");
		if (scope->checkEntry(mTargetNumber->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mTargetNumber->mScopeEntry = scope->addEntry(mTargetNumber->mName, LIT_VARIABLE, LST_INTEGER);
		}
		if (scope->checkEntry(mTargetPosition->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mTargetPosition->mScopeEntry = scope->addEntry(mTargetPosition->mName, LIT_VARIABLE, LST_VECTOR);
		}
		if (scope->checkEntry(mOurPosition->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mOurPosition->mScopeEntry = scope->addEntry(mOurPosition->mName, LIT_VARIABLE, LST_VECTOR);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mTargetNumber->mScopeEntry)
			{
				mTargetNumber->mScopeEntry->mOffset = (S32)count;
				mTargetNumber->mScopeEntry->mSize = 4;
				count += mTargetNumber->mScopeEntry->mSize;
				mTargetPosition->mScopeEntry->mOffset = (S32)count;
				mTargetPosition->mScopeEntry->mSize = 12;
				count += mTargetPosition->mScopeEntry->mSize;
				mOurPosition->mScopeEntry->mOffset = (S32)count;
				mOurPosition->mScopeEntry->mSize = 12;
				count += mOurPosition->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "at_target";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mTargetNumber->mName, strlen(mTargetNumber->mName) + 1);
			chunk->addBytes(mTargetPosition->mName, strlen(mTargetPosition->mName) + 1);
			chunk->addBytes(mOurPosition->mName, strlen(mOurPosition->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "at_target( int32 ");
		mTargetNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", class [ScriptTypes]LindenLab.SecondLife.Vector ");
		mTargetPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", class [ScriptTypes]LindenLab.SecondLife.Vector ");
		mOurPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mTargetNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mTargetPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mOurPosition->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptAtTarget::getSize()
{
	// integer + vector + vector = 28
	return 28;
}



void LLScriptNotAtTarget::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "not_at_target()\n");
		break;
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "not_at_target()\n");
		break;
        case LSCP_SCOPE_PASS1:
	        checkForDuplicateHandler(fp, this, scope, "not_at_target");
	        break;

	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "not_at_target";
			chunk->addBytes(name, strlen(name) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "not_at_target()");
		break;
	default:
		break;
	}
}

S32 LLScriptNotAtTarget::getSize()
{
	return 0;
}

void LLScriptAtRotTarget::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
	case LSCP_EMIT_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "at_rot_target( integer ");
		mTargetNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", quaternion ");
		mTargetRotation->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", quaternion ");
		mOurRotation->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		break;
	case LSCP_SCOPE_PASS1:
		checkForDuplicateHandler(fp, this, scope, "at_rot_target");
		if (scope->checkEntry(mTargetNumber->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mTargetNumber->mScopeEntry = scope->addEntry(mTargetNumber->mName, LIT_VARIABLE, LST_INTEGER);
		}
		if (scope->checkEntry(mTargetRotation->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mTargetRotation->mScopeEntry = scope->addEntry(mTargetRotation->mName, LIT_VARIABLE, LST_QUATERNION);
		}
		if (scope->checkEntry(mOurRotation->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mOurRotation->mScopeEntry = scope->addEntry(mOurRotation->mName, LIT_VARIABLE, LST_QUATERNION);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			if (mTargetNumber->mScopeEntry)
			{
				mTargetNumber->mScopeEntry->mOffset = (S32)count;
				mTargetNumber->mScopeEntry->mSize = 4;
				count += mTargetNumber->mScopeEntry->mSize;
				mTargetRotation->mScopeEntry->mOffset = (S32)count;
				mTargetRotation->mScopeEntry->mSize = 16;
				count += mTargetRotation->mScopeEntry->mSize;
				mOurRotation->mScopeEntry->mOffset = (S32)count;
				mOurRotation->mScopeEntry->mSize = 16;
				count += mOurRotation->mScopeEntry->mSize;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "at_rot_target";
			chunk->addBytes(name, strlen(name) + 1);
			chunk->addBytes(mTargetNumber->mName, strlen(mTargetNumber->mName) + 1);
			chunk->addBytes(mTargetRotation->mName, strlen(mTargetRotation->mName) + 1);
			chunk->addBytes(mOurRotation->mName, strlen(mOurRotation->mName) + 1);
#endif
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "at_rot_target( int32 ");
		mTargetNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", class [ScriptTypes]LindenLab.SecondLife.Quaternion ");
		mTargetRotation->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", class [ScriptTypes]LindenLab.SecondLife.Quaternion ");
		mOurRotation->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	default:
		mTargetNumber->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mTargetRotation->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mOurRotation->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}

S32 LLScriptAtRotTarget::getSize()
{
	// integer + quaternion + quaternion = 36
	return 36;
}



void LLScriptNotAtRotTarget::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "not_at_rot_target()\n");
		break;
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "not_at_rot_target()\n");
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
#ifdef LSL_INCLUDE_DEBUG_INFO
			char name[] = "not_at_rot_target";
			chunk->addBytes(name, strlen(name) + 1);
#endif
		}
		break;
        case LSCP_SCOPE_PASS1:
	  checkForDuplicateHandler(fp, this, scope, "not_at_rot_target");
	  break;

	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "not_at_rot_target()");
		break;
	default:
		break;
	}
}

S32 LLScriptNotAtRotTarget::getSize()
{
	return 0;
}



void LLScriptExpression::addExpression(LLScriptExpression *expression)
{
	if (mNextp)
	{
		expression->mNextp = mNextp;
	}
	mNextp = expression;
}

void LLScriptExpression::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	fprintf(fp, "Expression Base Class -- should never get here!\n");
}

S32 LLScriptExpression::getSize()
{
	printf("Expression Base Class -- should never get here!\n");
	return 0;
}

void LLScriptExpression::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		if (mNextp)
		{
			fprintf(fp, ", ");
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	default:
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
}

void LLScriptForExpressionList::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mSecondp)
		{
			fprintf(fp, ", ");
			mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_EMIT_ASSEMBLY:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mFirstp->mReturnType)
		{
			fprintf(fp, "%s\n", LSCRIPTTypePop[mFirstp->mReturnType]);
		}
		if (mSecondp)
		{
			mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (mSecondp->mReturnType)
			{
				fprintf(fp, "%s\n", LSCRIPTTypePop[mSecondp->mReturnType]);
			}
		}
		break;
	case LSCP_TO_STACK:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		switch(mFirstp->mReturnType)
		{
		case LST_INTEGER:
		case LST_FLOATINGPOINT:
			chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
			break;
		case LST_STRING:
		case LST_KEY:
			chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
			break;
		case LST_LIST:
			chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
			break;
		case LST_VECTOR:
			chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
			break;
		case LST_QUATERNION:
			chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
			break;
		default:
			break;
		}
		if (mSecondp)
		{
			mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			switch(mSecondp->mReturnType)
			{
			case LST_INTEGER:
			case LST_FLOATINGPOINT:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
				break;
			case LST_STRING:
			case LST_KEY:
			chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
				break;
			case LST_LIST:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
				break;
			case LST_VECTOR:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
				break;
			case LST_QUATERNION:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
				break;
			default:
				break;
			}
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mFirstp->mReturnType)
		{
			fprintf(fp, "pop\n");
		}
		if (mSecondp)
		{
			mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (mSecondp->mReturnType)
			{
				fprintf(fp, "pop\n");
			}
		}
		break;
	default:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mSecondp)
		{
			mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
}

S32 LLScriptForExpressionList::getSize()
{
	return 0;
}

// CIL code generation requires both caller and callee scope entries, so cannot use normal recurse signature.
// TODO: Refactor general purpose recurse calls in to pass specific virtuals using visitor pattern to select method by pass and node type.
static void print_cil_func_expression_list(LLScriptFuncExpressionList* self, LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata, LLScriptScopeEntry *callee_entry)
{
	self->mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
	LSCRIPTType argtype = callee_entry->mFunctionArgs.getType(entrycount);
	if (argtype != self->mFirstp->mReturnType)
	{
		print_cil_cast(fp, self->mFirstp->mReturnType, argtype);
	}
	entrycount++;
	if (self->mSecondp)
	{
		llassert(LET_FUNC_EXPRESSION_LIST == self->mSecondp->mType);
		print_cil_func_expression_list((LLScriptFuncExpressionList*) self->mSecondp, fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL, callee_entry);

	}
}

void LLScriptFuncExpressionList::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mSecondp)
		{
			fprintf(fp, ", ");
			mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_TYPE:
		{
			mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (!entry->mFunctionArgs.getType(entrycount))
			{
				gErrorToText.writeError(fp, this, LSERROR_FUNCTION_TYPE_ERROR);
			}
			if (!legal_assignment(entry->mFunctionArgs.getType(entrycount), mFirstp->mReturnType))
			{
				gErrorToText.writeError(fp, this, LSERROR_FUNCTION_TYPE_ERROR);
			}
			count++;
			entrycount++;
			if (mSecondp)
			{
				mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				if (mSecondp->mReturnType)
				{
					count++;
					if (!entry->mFunctionArgs.getType(entrycount))
					{
						gErrorToText.writeError(fp, this, LSERROR_FUNCTION_TYPE_ERROR);
					}
					if (!legal_assignment(entry->mFunctionArgs.getType(entrycount), mSecondp->mReturnType))
					{
						gErrorToText.writeError(fp, this, LSERROR_FUNCTION_TYPE_ERROR);
					}
				}
			}
		}
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			LSCRIPTType argtype = entry->mFunctionArgs.getType(entrycount);
			if (argtype != mFirstp->mReturnType)
			{
				fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mFirstp->mReturnType], LSCRIPTTypeNames[argtype]);
			}
			entrycount++;
			if (mSecondp)
			{
				mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				if (mSecondp->mReturnType)
				{
					argtype = entry->mFunctionArgs.getType(entrycount);
					if (argtype != mSecondp->mReturnType)
					{
						fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mSecondp->mReturnType], LSCRIPTTypeNames[argtype]);
					}
				}
			}
		}
		break;
	case LSCP_TO_STACK:
		{
			mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			LSCRIPTType argtype = entry->mFunctionArgs.getType(entrycount);
			if (argtype != mFirstp->mReturnType)
			{
				chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
				U8 castbyte = LSCRIPTTypeByte[argtype] | LSCRIPTTypeHi4Bits[mFirstp->mReturnType];
				chunk->addByte(castbyte);
			}
			entrycount++;
			if (mSecondp)
			{
				mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				if (mSecondp->mReturnType)
				{
					argtype = entry->mFunctionArgs.getType(entrycount);
					if (argtype != mSecondp->mReturnType)
					{
						chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
						U8 castbyte = LSCRIPTTypeByte[argtype] | LSCRIPTTypeHi4Bits[mSecondp->mReturnType];
						chunk->addByte(castbyte);
					}
				}
			}
		}
		break;
	default:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mSecondp)
		{
			mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
}

S32 LLScriptFuncExpressionList::getSize()
{
	return 0;
}

void LLScriptListExpressionList::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mSecondp)
		{
			fprintf(fp, ", ");
			mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_EMIT_ASSEMBLY:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mFirstp->mType != LET_LIST_EXPRESSION_LIST)
		{
			fprintf(fp, "%s\n", LSCRIPTListDescription[mFirstp->mReturnType]);
			count++;
		}
		if (mSecondp)
		{
			mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (mSecondp->mType != LET_LIST_EXPRESSION_LIST)
			{
				fprintf(fp, "%s\n", LSCRIPTListDescription[mSecondp->mReturnType]);
				count++;
			}
		}
		break;
	case LSCP_TO_STACK:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mFirstp->mType != LET_LIST_EXPRESSION_LIST)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGB]);
			chunk->addByte(LSCRIPTTypeByte[mFirstp->mReturnType]);
			count++;
		}
		if (mSecondp)
		{
			mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (mSecondp->mType != LET_LIST_EXPRESSION_LIST)
			{
				chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGB]);
				chunk->addByte(LSCRIPTTypeByte[mSecondp->mReturnType]);
				count++;
			}
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mFirstp->mType != LET_LIST_EXPRESSION_LIST)
		{
			// Box value.
			print_cil_box(fp, mFirstp->mReturnType);
			++count;
		}
		if (mSecondp)
		{
			mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (mSecondp->mType != LET_LIST_EXPRESSION_LIST)
			{
				// Box value.
				print_cil_box(fp, mSecondp->mReturnType);
				++count;
			}
		}
		break;
	default:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mSecondp)
		{
			mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
}

S32 LLScriptListExpressionList::getSize()
{
	return 0;
}

// Returns true if identifier is a parameter and false if identifier is a local variable within function_scope.
bool is_parameter(LLScriptIdentifier* identifier, LLScriptScopeEntry* function_scope)
{
	// Function stores offset of first local.
	if(0 == function_scope->mOffset)
	{
		// Function offset 0 -> no parameters -> identifier is a local.
		return false;
	}
	else
	{
		// Compare variable offset with function offset to
		// determine whether variable is local or parameter.
		return (identifier->mScopeEntry->mOffset < function_scope->mOffset);
	}
}

// If assignment is to global variable, pushes this pointer on to stack.
static void print_cil_load_address(LLFILE* fp, LLScriptExpression* exp, LLScriptScopeEntry* function_scope)
{
	LLScriptLValue *lvalue = (LLScriptLValue *) exp;
	LLScriptIdentifier *ident = lvalue->mIdentifier;

	// If global (member), load this pointer.
	if(ident->mScopeEntry->mIDType == LIT_GLOBAL)
	{
		fprintf(fp, "ldarg.0\n");
	}

	// If accessor, load value type address, consumed by ldfld.
	if(lvalue->mAccessor)
	{
		if(ident->mScopeEntry->mIDType == LIT_VARIABLE)
		{
			if(is_parameter(ident, function_scope))
			{
				// Parameter, load by name.
				fprintf(fp, "ldarga.s '%s'\n", ident->mScopeEntry->mIdentifier);
			}
			else
			{
				// Local, load by index.
				fprintf(fp, "ldloca.s %d\n", ident->mScopeEntry->mCount);
			}
		}
		else if (ident->mScopeEntry->mIDType == LIT_GLOBAL)
		{
			fprintf(fp, "ldflda ");
			print_cil_member(fp, ident);
		}
	}
}

static void print_cil_accessor(LLFILE* fp, LLScriptLValue *lvalue)

{
	LLScriptIdentifier *ident = lvalue->mIdentifier;
	print_cil_type(fp, lvalue->mReturnType);
	fprintf(fp, " ");
	print_cil_type(fp, ident->mScopeEntry->mType);
	fprintf(fp, "::%s\n", lvalue->mAccessor->mName);
}

void LLScriptLValue::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mAccessor)
		{
			fprintf(fp, ".");
			mAccessor->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_EMIT_ASSEMBLY:
		if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
		{
			if (mAccessor)
			{
				fprintf(fp, "%s%d [%s.%s]\n", LSCRIPTTypeLocalPush[mReturnType], mIdentifier->mScopeEntry->mOffset + mOffset, mIdentifier->mName, mAccessor->mName);
			}
			else
			{
				fprintf(fp, "%s%d [%s]\n", LSCRIPTTypeLocalPush[mIdentifier->mScopeEntry->mType], mIdentifier->mScopeEntry->mOffset, mIdentifier->mName);
			}
		}
		else if (mIdentifier->mScopeEntry->mIDType == LIT_GLOBAL)
		{
			if (mAccessor)
			{
				fprintf(fp, "%s%d [%s.%s]\n", LSCRIPTTypeGlobalPush[mReturnType], mIdentifier->mScopeEntry->mOffset + mOffset, mIdentifier->mName, mAccessor->mName);
			}
			else
			{
				fprintf(fp, "%s%d [%s]\n", LSCRIPTTypeGlobalPush[mIdentifier->mScopeEntry->mType], mIdentifier->mScopeEntry->mOffset, mIdentifier->mName);
			}
		}
		else
		{
			fprintf(fp, "Unexpected LValue!\n");
		}
		break;
	case LSCP_SCOPE_PASS1:
		{
			LLScriptScopeEntry *entry = scope->findEntry(mIdentifier->mName);
			if (!entry || (  (entry->mIDType != LIT_GLOBAL) && (entry->mIDType != LIT_VARIABLE)))
			{
				gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
			}
			else
			{
				// if we did find it, make sure this identifier is associated with the correct scope entry
				mIdentifier->mScopeEntry = entry;
			}
		}
		break;
	case LSCP_TYPE:
		// if we have an accessor, we need to change what type our identifier returns and set our offset value
		if (mIdentifier->mScopeEntry)
		{
			if (mAccessor)
			{
				BOOL b_ok = FALSE;
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					if (mIdentifier->mScopeEntry->mType == LST_VECTOR)
					{
						if (!strcmp("x", mAccessor->mName))
						{
							mOffset = 0;
							b_ok = TRUE;
						}
						else if (!strcmp("y", mAccessor->mName))
						{
							mOffset = 4;
							b_ok = TRUE;
						}
						else if (!strcmp("z", mAccessor->mName))
						{
							mOffset = 8;
							b_ok = TRUE;
						}
					}
					else if (mIdentifier->mScopeEntry->mType == LST_QUATERNION)
					{
						if (!strcmp("x", mAccessor->mName))
						{
							mOffset = 0;
							b_ok = TRUE;
						}
						else if (!strcmp("y", mAccessor->mName))
						{
							mOffset = 4;
							b_ok = TRUE;
						}
						else if (!strcmp("z", mAccessor->mName))
						{
							mOffset = 8;
							b_ok = TRUE;
						}
						else if (!strcmp("s", mAccessor->mName))
						{
							mOffset = 12;
							b_ok = TRUE;
						}
					}
				}
				else
				{
					if (mIdentifier->mScopeEntry->mType == LST_VECTOR)
					{
						if (!strcmp("x", mAccessor->mName))
						{
							mOffset = 8;
							b_ok = TRUE;
						}
						else if (!strcmp("y", mAccessor->mName))
						{
							mOffset = 4;
							b_ok = TRUE;
						}
						else if (!strcmp("z", mAccessor->mName))
						{
							mOffset = 0;
							b_ok = TRUE;
						}
					}
					else if (mIdentifier->mScopeEntry->mType == LST_QUATERNION)
					{
						if (!strcmp("x", mAccessor->mName))
						{
							mOffset = 12;
							b_ok = TRUE;
						}
						else if (!strcmp("y", mAccessor->mName))
						{
							mOffset = 8;
							b_ok = TRUE;
						}
						else if (!strcmp("z", mAccessor->mName))
						{
							mOffset = 4;
							b_ok = TRUE;
						}
						else if (!strcmp("s", mAccessor->mName))
						{
							mOffset = 0;
							b_ok = TRUE;
						}
					}
				}
				if (b_ok)
				{
					mReturnType = type =  LST_FLOATINGPOINT;
				}
				else
				{
					gErrorToText.writeError(fp, this, LSERROR_VECTOR_METHOD_ERROR);
				}
			}
			else
			{
				mReturnType = type = mIdentifier->mScopeEntry->mType;
			}
		}
		else
		{
			mReturnType = type = LST_UNDEFINED;
		}
		break;
	case LSCP_TO_STACK:
		{
			switch(mReturnType)
			{
			case LST_INTEGER:
			case LST_FLOATINGPOINT:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSH]);
				}
				else
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHG]);
				}
				break;
			case LST_KEY:
			case LST_STRING:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHS]);
				}
				else
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHGS]);
				}
				break;
			case LST_LIST:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHL]);
				}
				else
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHGL]);
				}
				break;
			case LST_VECTOR:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHV]);
				}
				else
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHGV]);
				}
				break;
			case LST_QUATERNION:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHQ]);
				}
				else
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHGQ]);
				}
				break;
			default:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSH]);
				}
				else
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHG]);
				}
				break;
			}
			S32 address = mIdentifier->mScopeEntry->mOffset + mOffset;
			chunk->addInteger(address);
		}	
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		print_cil_load_address(fp, this, entry);
		if(mAccessor)
		{
			fprintf(fp, "ldfld ");
			print_cil_accessor(fp, this);
		}
		else if(mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
		{
			if(is_parameter(mIdentifier, entry))
			{
				// Parameter, load by name.
				fprintf(fp, "ldarg.s '%s'\n", mIdentifier->mScopeEntry->mIdentifier);
			}
			else
			{
				// Local, load by index.
				fprintf(fp, "ldloc.s %d\n", mIdentifier->mScopeEntry->mCount);
			}
		}
		else if (mIdentifier->mScopeEntry->mIDType == LIT_GLOBAL)
		{
			fprintf(fp, "ldfld ");
			print_cil_member(fp, mIdentifier);
		}
		else
		{
			fprintf(fp, "Unexpected LValue!\n");
		}
		break;
	default:
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptLValue::getSize()
{
	return 0;
}

static void print_assignment(LLFILE *fp, LLScriptExpression *exp)
{
	LLScriptLValue *lvalue = (LLScriptLValue *)exp;
	LLScriptIdentifier *ident = lvalue->mIdentifier;
	if (lvalue->mAccessor)
	{
		if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
		{
			fprintf(fp, "%s%d [%s.%s]\n", LSCRIPTTypeLocalStore[ident->mScopeEntry->mType], ident->mScopeEntry->mOffset + lvalue->mOffset, ident->mName, lvalue->mAccessor->mName);
		}
		else if (ident->mScopeEntry->mIDType == LIT_GLOBAL)
		{
			fprintf(fp, "%s%d [%s.%s]\n", LSCRIPTTypeGlobalStore[ident->mScopeEntry->mType], ident->mScopeEntry->mOffset + lvalue->mOffset, ident->mName, lvalue->mAccessor->mName);
		}
	}
	else
	{
		if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
		{
			fprintf(fp, "%s%d [%s]\n", LSCRIPTTypeLocalStore[ident->mScopeEntry->mType], ident->mScopeEntry->mOffset, ident->mName);
		}
		else if (ident->mScopeEntry->mIDType == LIT_GLOBAL)
		{
			fprintf(fp, "%s%d [%s]\n", LSCRIPTTypeGlobalStore[ident->mScopeEntry->mType], ident->mScopeEntry->mOffset, ident->mName);
		}
	}
}

static void print_cil_assignment(LLFILE *fp, LLScriptExpression *exp, LLScriptScopeEntry* function_scope)
{
	LLScriptLValue *lvalue = (LLScriptLValue *) exp;
	LLScriptIdentifier *ident = lvalue->mIdentifier;
	if (lvalue->mAccessor)
	{
		// Object address loaded, store in to field.
		fprintf(fp, "stfld ");
		print_cil_accessor(fp, lvalue);

		// Load object address.
		print_cil_load_address(fp, exp, function_scope);

		// Load field.
		fprintf(fp, "ldfld ");
		print_cil_accessor(fp, lvalue);
	}
	else
	{
		if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
		{
			// Language semantics require value of assignment to be left on stack. 
			// TODO: Optimise away redundant dup/pop pairs.
			fprintf(fp, "dup\n"); 
			if(is_parameter(ident, function_scope))
			{
				// Parameter, store by name.
				fprintf(fp, "starg.s '%s'\n", ident->mScopeEntry->mIdentifier);
			}
			else
			{
				// Local, store by index.
				fprintf(fp, "stloc.s %d\n", ident->mScopeEntry->mCount);
			}
		}
		else if (ident->mScopeEntry->mIDType == LIT_GLOBAL)
		{
			// Object address loaded, store in to field.
			fprintf(fp, "stfld ");
			print_cil_member(fp, ident);

			// Load object address.
			print_cil_load_address(fp, exp, function_scope);

			// Load field.
			fprintf(fp, "ldfld ");
			print_cil_member(fp, ident);
		}
	}
}

void print_cast(LLFILE *fp, LSCRIPTType ret_type, LSCRIPTType right_type)
{
	if (right_type != ret_type)
	{
		fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[right_type], LSCRIPTTypeNames[ret_type]);
	}
}

void cast2stack(LLScriptByteCodeChunk *chunk, LSCRIPTType ret_type, LSCRIPTType right_type)
{
	if (right_type != ret_type)
	{
		chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
		U8 castbyte = LSCRIPTTypeByte[right_type] | LSCRIPTTypeHi4Bits[ret_type];
		chunk->addByte(castbyte);
	}
}

void operation2stack(LLScriptByteCodeChunk *chunk, LSCRIPTType ret_type, LSCRIPTType right_type)
{
	U8 typebyte = LSCRIPTTypeByte[right_type] | LSCRIPTTypeHi4Bits[ret_type];
	chunk->addByte(typebyte);
}

void store2stack(LLScriptExpression *exp, LLScriptExpression *lv, LLScriptByteCodeChunk *chunk, LSCRIPTType right_type)
{
	LLScriptLValue *lvalue = (LLScriptLValue *)lv;
	LLScriptIdentifier *ident = lvalue->mIdentifier;
	LSCRIPTType rettype = exp->mReturnType;

	if (exp->mRightType != LST_NULL)
	{
		if (legal_binary_expression(rettype, exp->mLeftType, exp->mRightType, exp->mType)) 
			cast2stack(chunk, right_type, exp->mReturnType);
	}
	switch(exp->mReturnType)
	{
	case LST_INTEGER:
	case LST_FLOATINGPOINT:
		if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_STORE]);
		}
		else
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_STOREG]);
		}
		break;
	case LST_KEY:
	case LST_STRING:
		if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_STORES]);
		}
		else
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_STOREGS]);
		}
		break;
	case LST_LIST:
		if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_STOREL]);
		}
		else
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_STOREGL]);
		}
		break;
	case LST_VECTOR:
		if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_STOREV]);
		}
		else
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_STOREGV]);
		}
		break;
	case LST_QUATERNION:
		if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_STOREQ]);
		}
		else
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_STOREGQ]);
		}
		break;
	default:
		if (ident->mScopeEntry->mIDType == LIT_VARIABLE)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_STORE]);
		}
		else
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_STOREG]);
		}
		break;
	}
	S32 address = ident->mScopeEntry->mOffset + lvalue->mOffset;
	chunk->addInteger(address);
}

void LLScriptAssignment::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " = ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cast(fp, mReturnType, mRightType);
			print_assignment(fp, mLValue);
		}
		break;
	case LSCP_TYPE:
		{
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_assignment(mLeftType, mRightType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType = mLeftType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			store2stack(this, mLValue, chunk, mRightType);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			print_cil_load_address(fp, mLValue, entry);
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_assignment_cast(fp, mRightType, mReturnType);
			print_cil_assignment(fp, mLValue, entry);
		}
		break;
	default:
		mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptAssignment::getSize()
{
	return 0;
}

static void print_cil_add(LLFILE* fp, LSCRIPTType left_type, LSCRIPTType right_type)
{
	if(LST_LIST == right_type && LST_LIST != left_type)
	{
		print_cil_box(fp, left_type);
		fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Prepend(class [mscorlib]System.Collections.ArrayList, object)\n");
		return;
	}

	switch(left_type)
	{
	case LST_INTEGER:
	case LST_FLOATINGPOINT:

		// Numeric addition.
		fprintf(fp, "add\n");
		break;

	case LST_STRING:
	case LST_KEY:

		// String concatenation.
		fprintf(fp, "call string valuetype [LslUserScript]LindenLab.SecondLife.LslUserScript::Add(string, string)\n");
		break;
	
	case LST_VECTOR:

		// Vector addition.
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Add'(class [ScriptTypes]LindenLab.SecondLife.Vector, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
		break;

	case LST_QUATERNION:

		// Rotation addition.
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Add'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
		break;

	case LST_LIST:
		switch(right_type)
		{
		case LST_LIST:
			// Concatenate lists.
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(class [mscorlib]System.Collections.ArrayList, class [mscorlib]System.Collections.ArrayList)\n");
			break;
		case LST_INTEGER:
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(int32, class [mscorlib]System.Collections.ArrayList)\n");
			break;
		case LST_FLOATINGPOINT:
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(float32, class [mscorlib]System.Collections.ArrayList)\n");
			break;
		case LST_STRING:
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(string, class [mscorlib]System.Collections.ArrayList)\n");
			break;
		case LST_KEY:
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(valuetype [ScriptTypes]LindenLab.SecondLife.Key, class [mscorlib]System.Collections.ArrayList)\n");
			break;			
		case LST_VECTOR:
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(valuetype [ScriptTypes]LindenLab.SecondLife.Vector, class [mscorlib]System.Collections.ArrayList)\n");
			break;
		case LST_QUATERNION:
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Append(valuetype [ScriptTypes]LindenLab.SecondLife.Quaternion, class [mscorlib]System.Collections.ArrayList)\n");
			break;
		default:
			break;
		}

	default:
		break;
	}
}

void LLScriptAddAssignment::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " += ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "ADD %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
			print_assignment(fp, mLValue);
		}
		break;
	case LSCP_TYPE:
		{
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
			operation2stack(chunk, mReturnType, mRightType);
			store2stack(this, mLValue, chunk, mReturnType);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			print_cil_load_address(fp, mLValue, entry);
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_numeric_cast(fp, mRightSide->mReturnType, mLValue->mReturnType);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_numeric_cast(fp, mLValue->mReturnType, mRightSide->mReturnType);
			print_cil_add(fp, mLValue->mReturnType, mRightSide->mReturnType);
			print_cil_assignment(fp, mLValue, entry);
		}
		break;
	default:
		mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptAddAssignment::getSize()
{
	return 0;
}

static void print_cil_sub(LLFILE* fp, LSCRIPTType left_type, LSCRIPTType right_type)
{
	switch(left_type)
	{
	case LST_INTEGER:
		if(LST_INTEGER == right_type)
		{	
			fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::Subtract(int32, int32)\n");
			break;
		}
	case LST_FLOATINGPOINT:
		// Numeric subtraction.
		fprintf(fp, "call float64 [LslUserScript]LindenLab.SecondLife.LslUserScript::Subtract(float64, float64)\n");
		break;
	case LST_VECTOR:

		// Vector subtraction.
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Subtract'(class [ScriptTypes]LindenLab.SecondLife.Vector, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
		break;

	case LST_QUATERNION:

		// Rotation subtraction.
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Subtract'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
		break;

	default:

		// Error.
		break;
	}
}

void LLScriptSubAssignment::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " -= ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "SUB %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
			print_assignment(fp, mLValue);
		}
		break;
	case LSCP_TYPE:
		{
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_SUB]);
			operation2stack(chunk, mReturnType, mRightType);
			store2stack(this, mLValue, chunk, mReturnType);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			print_cil_load_address(fp, mLValue, entry);
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_numeric_cast(fp, mRightSide->mReturnType, mLValue->mReturnType);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_numeric_cast(fp, mLValue->mReturnType, mRightSide->mReturnType);
			print_cil_sub(fp, mLValue->mReturnType, mRightSide->mReturnType);
			print_cil_assignment(fp, mLValue, entry);
		}
		break;
	default:
		mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptSubAssignment::getSize()
{
	return 0;
}

static void print_cil_neg(LLFILE* fp, LSCRIPTType type)
{
        switch(type)
	{
	case LST_INTEGER:
	case LST_FLOATINGPOINT:
	  fprintf(fp, "neg\n");
	  break;
	case LST_VECTOR:
	  fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Negate'(class [ScriptTypes]LindenLab.SecondLife.Vector)\n");	  
	  break;
	case LST_QUATERNION:
	  fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Negate'(class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");	  
	  break;
	default:
	  break;
	}
}

static void print_cil_mul(LLFILE* fp, LSCRIPTType left_type, LSCRIPTType right_type)
{
	switch(left_type)
	{
	case LST_INTEGER:

		switch(right_type)
		{
		case LST_INTEGER:
		case LST_FLOATINGPOINT:

			// Numeric multiplication.
			fprintf(fp, "mul\n");
			break;

		case LST_VECTOR:

			// Vector scaling.
			fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Multiply'(class [ScriptTypes]LindenLab.SecondLife.Vector, float32)\n");
			break;
		default:
			break;
		}
		break;

	case LST_FLOATINGPOINT:

		switch(right_type)
		{
		case LST_INTEGER:
		case LST_FLOATINGPOINT:

			// Numeric multiplication.
			fprintf(fp, "mul\n");
			break;

		case LST_VECTOR:

			// Vector scaling.
			fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Multiply'(class [ScriptTypes]LindenLab.SecondLife.Vector, float32)\n");
			break;

		default:
			break;
		}
		break;
		
	case LST_VECTOR:

		switch(right_type)
		{
		case LST_INTEGER:
		case LST_FLOATINGPOINT:

			// Vector scaling.
			fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Multiply'(float32, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
			break;

		case LST_VECTOR:

			// Dot product.
			fprintf(fp, "call float32 class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Multiply'(class [ScriptTypes]LindenLab.SecondLife.Vector, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
			break;

		case LST_QUATERNION:

			// Vector rotation.
			fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Multiply'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
			break;

		default:
			break;
		}
		break;

	case LST_QUATERNION:

		// Rotation multiplication.
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Multiply'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
		break;

	default:

		// Error.
		break;
	}
}

void LLScriptMulAssignment::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " *= ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "MUL %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
			print_assignment(fp, mLValue);
		}
		break;
	case LSCP_TYPE:
		{
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType) /*|| !legal_assignment(mLValue->mReturnType, mReturnType)*/)
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_MUL]);
			operation2stack(chunk, mReturnType, mRightType);
			store2stack(this, mLValue, chunk, mReturnType);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			print_cil_load_address(fp, mLValue, entry);
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_numeric_cast(fp, mRightSide->mReturnType, mLValue->mReturnType);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_numeric_cast(fp, mLValue->mReturnType, mRightSide->mReturnType);
			print_cil_mul(fp, mLValue->mReturnType, mRightSide->mReturnType);
			if((mLValue->mReturnType == LST_INTEGER) && 
			   (mRightSide->mReturnType == LST_FLOATINGPOINT))
			{
			    print_cil_cast(fp, LST_FLOATINGPOINT, LST_INTEGER);
			} 
			print_cil_assignment(fp, mLValue, entry);
		}
		break;
	default:
		mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptMulAssignment::getSize()
{
	return 0;
}

static void print_cil_div(LLFILE* fp, LSCRIPTType left_type, LSCRIPTType right_type)
{
	switch(left_type)
	{
	case LST_INTEGER:
		if(LST_INTEGER == right_type)
		{
			fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::Divide(int32, int32)\n");
			break;
		}
	case LST_FLOATINGPOINT:

		// Numeric division.
		fprintf(fp, "call float64 [LslUserScript]LindenLab.SecondLife.LslUserScript::Divide(float64, float64)\n");
		break;
	
	case LST_VECTOR:

		switch(right_type)
		{
		case LST_INTEGER:
		case LST_FLOATINGPOINT:

			// Scale.
			fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Divide'(float32, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
			break;

		case LST_QUATERNION:

			// Inverse rotation.
			fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Divide'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
			break;

		default:
			break;
		}
		break;

	case LST_QUATERNION:

		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Divide'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");		
		break;

	default:

		// Error.
		break;
	}
}

void LLScriptDivAssignment::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " /= ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "DIV %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
			print_assignment(fp, mLValue);
		}
		break;
	case LSCP_TYPE:
		{
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_DIV]);
			operation2stack(chunk, mReturnType, mRightType);
			store2stack(this, mLValue, chunk, mReturnType);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			print_cil_load_address(fp, mLValue, entry);
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_numeric_cast(fp, mRightSide->mReturnType, mLValue->mReturnType);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_numeric_cast(fp, mLValue->mReturnType, mRightSide->mReturnType);
			print_cil_div(fp, mLValue->mReturnType, mRightSide->mReturnType);
			print_cil_assignment(fp, mLValue, entry);
		}
		break;
	default:
		mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptDivAssignment::getSize()
{
	return 0;
}

static void print_cil_mod(LLFILE* fp, LSCRIPTType left_type, LSCRIPTType right_type)
{
	switch(left_type)
	{
	case LST_INTEGER:

		// Numeric remainder.
		fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::Modulo(int32, int32)\n");
		break;
	
	case LST_VECTOR:

		// Vector cross product.
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'Modulo'(class [ScriptTypes]LindenLab.SecondLife.Vector, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
		break;

	default:

		// Error.
		break;
	}
}

void LLScriptModAssignment::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " %%= ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "MOD %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
			print_assignment(fp, mLValue);
		}
		break;
	case LSCP_TYPE:
		{
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_MOD]);
			operation2stack(chunk, mReturnType, mRightType);
			store2stack(this, mLValue, chunk, mReturnType);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			print_cil_load_address(fp, mLValue, entry);
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_mod(fp, mLValue->mReturnType, mRightSide->mReturnType);
			print_cil_assignment(fp, mLValue, entry);
		}
		break;
	default:
		mLValue->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptModAssignment::getSize()
{
	return 0;
}

static void print_cil_eq(LLFILE* fp, LSCRIPTType left_type, LSCRIPTType right_type)
{
	
	switch(right_type)
	{
	case LST_INTEGER:
	case LST_FLOATINGPOINT:

		// Numeric equality.
		fprintf(fp, "ceq\n");
		break;

	case LST_STRING:
	        // NOTE: babbage: strings and keys can be compared, so a cast
	        // may be required
	        print_cil_cast(fp, left_type, right_type);
		// String equality.
		fprintf(fp, "call bool valuetype [mscorlib]System.String::op_Equality(string, string)\n");
		break;
		
	case LST_KEY:
	        // NOTE: babbage: strings and keys can be compared, so a cast 
	        // may be required
	        print_cil_cast(fp, left_type, right_type);

		// Key equality.
		fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::'Equals'(valuetype [ScriptTypes]LindenLab.SecondLife.Key, valuetype [ScriptTypes]LindenLab.SecondLife.Key)\n");
		break;
	
	case LST_VECTOR:

		// Vector equality.
		fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::'Equals'(class [ScriptTypes]LindenLab.SecondLife.Vector, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
		break;

	case LST_QUATERNION:

		// Rotation equality.
		fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::'Equals'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
		break;

	case LST_LIST:
		fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::Equals(class [mscorlib]System.Collections.ArrayList, class [mscorlib]System.Collections.ArrayList)\n");
		break;

	default:

		// Error.
		break;
	}
}

void LLScriptEquality::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " == ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "EQ %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
			chunk->addByte(LSCRIPTOpCodes[LOPC_EQ]);
			chunk->addByte(typebyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		print_cil_eq(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptEquality::getSize()
{
	return 0;
}

void LLScriptNotEquals::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " != ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "NEQ %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
			chunk->addByte(LSCRIPTOpCodes[LOPC_NEQ]);
			chunk->addByte(typebyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		if (LST_LIST == mLeftSide->mReturnType)
		{
		    fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::NotEquals(class [mscorlib]System.Collections.ArrayList, class [mscorlib]System.Collections.ArrayList)\n");
		}
		else
		{  
		    print_cil_eq(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		    fprintf(fp, "ldc.i4.0\n");
		    fprintf(fp, "ceq\n"); // Compare result of first compare equal with 0 to get compare not equal.
		}    
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptNotEquals::getSize()
{
	return 0;
}

static void print_cil_lte(LLFILE* fp)
{
	// NOTE: LSL pushes operands backwards, so <= becomes >=
	fprintf(fp, "clt\n");
	fprintf(fp, "ldc.i4.0\n");
	fprintf(fp, "ceq\n");
}

void LLScriptLessEquals::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " <= ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "LEQ %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
			chunk->addByte(LSCRIPTOpCodes[LOPC_LEQ]);
			chunk->addByte(typebyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		print_cil_lte(fp);
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptLessEquals::getSize()
{
	return 0;
}

static void print_cil_gte(LLFILE* fp)
{   
	// NOTE: LSL pushes operands backwards, so >= becomes <=
	fprintf(fp, "cgt\n");
	fprintf(fp, "ldc.i4.0\n");
	fprintf(fp, "ceq\n");
}

void LLScriptGreaterEquals::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " >= ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "GEQ %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
			chunk->addByte(LSCRIPTOpCodes[LOPC_GEQ]);
			chunk->addByte(typebyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		print_cil_gte(fp);
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptGreaterEquals::getSize()
{
	return 0;
}

static void print_cil_lt(LLFILE* fp)
{
	// NOTE: LSL pushes operands backwards, so < becomes >
	fprintf(fp, "cgt\n");
}

void LLScriptLessThan::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " < ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "LESS %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
			chunk->addByte(LSCRIPTOpCodes[LOPC_LESS]);
			chunk->addByte(typebyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		print_cil_lt(fp);
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptLessThan::getSize()
{
	return 0;
}

static void print_cil_gt(LLFILE* fp)
{   
    // NOTE: LSL pushes operands backwards, so > becomes <
	fprintf(fp, "clt\n");
}

void LLScriptGreaterThan::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " > ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "GREATER %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
			chunk->addByte(LSCRIPTOpCodes[LOPC_GREATER]);
			chunk->addByte(typebyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		print_cil_gt(fp);
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptGreaterThan::getSize()
{
	return 0;
}

void LLScriptPlus::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " + ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "ADD %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
			chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
			chunk->addByte(typebyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		print_cil_add(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptPlus::getSize()
{
	return 0;
}

void LLScriptMinus::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " - ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "SUB %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
			chunk->addByte(LSCRIPTOpCodes[LOPC_SUB]);
			chunk->addByte(typebyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		print_cil_sub(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptMinus::getSize()
{
	return 0;
}

void LLScriptTimes::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " * ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "MUL %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
			chunk->addByte(LSCRIPTOpCodes[LOPC_MUL]);
			chunk->addByte(typebyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		print_cil_mul(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptTimes::getSize()
{
	return 0;
}

void LLScriptDivide::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " / ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "DIV %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
			chunk->addByte(LSCRIPTOpCodes[LOPC_DIV]);
			chunk->addByte(typebyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mRightSide->mReturnType, mLeftSide->mReturnType);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_numeric_cast(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		print_cil_div(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptDivide::getSize()
{
	return 0;
}

void LLScriptMod::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " %% ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "MOD %s, %s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mLeftType]);
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			U8 typebyte = LSCRIPTTypeByte[mRightType] | LSCRIPTTypeHi4Bits[mLeftType];
			chunk->addByte(LSCRIPTOpCodes[LOPC_MOD]);
			chunk->addByte(typebyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_mod(fp, mLeftSide->mReturnType, mRightSide->mReturnType);
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptMod::getSize()
{
	return 0;
}

void LLScriptBitAnd::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " & ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "BITAND\n");
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_BITAND]);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "and\n");
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptBitAnd::getSize()
{
	return 0;
}

void LLScriptBitOr::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " | ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "BITOR\n");
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_BITOR]);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "or\n");
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptBitOr::getSize()
{
	return 0;
}

void LLScriptBitXor::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " ^ ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "BITXOR\n");
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_BITXOR]);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "xor\n");
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptBitXor::getSize()
{
	return 0;
}

void LLScriptBooleanAnd::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " && ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "BOOLAND\n");
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_BOOLAND]);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "ldc.i4.0\n");
		fprintf(fp, "ceq\n");
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "ldc.i4.0\n");
		fprintf(fp, "ceq\n");
		fprintf(fp, "or\n");
                fprintf(fp, "ldc.i4.0\n");
                fprintf(fp, "ceq\n");
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptBooleanAnd::getSize()
{
	return 0;
}

void LLScriptBooleanOr::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " || ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "BOOLOR\n");
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_BOOLOR]);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "or\n");
                fprintf(fp, "ldc.i4.0\n");
                fprintf(fp, "ceq\n");
		fprintf(fp, "ldc.i4.0\n");
		fprintf(fp, "ceq\n");
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptBooleanOr::getSize()
{
	return 0;
}

void LLScriptShiftLeft::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " << ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "SHL\n");
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_SHL]);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::ShiftLeft(int32, int32)\n");
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptShiftLeft::getSize()
{
	return 0;
}


void LLScriptShiftRight::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " >> ");
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "SHR\n");
		break;
	case LSCP_TYPE:
		{
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftType = type;
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mRightType = type;
			if (!legal_binary_expression(mReturnType, mLeftType, mRightType, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			type = mReturnType;
		}
		break;
	case LSCP_TO_STACK:
		{
			mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_SHR]);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "call int32 [LslUserScript]LindenLab.SecondLife.LslUserScript::ShiftRight(int32, int32)\n");
		break;
	default:
		mLeftSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightSide->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptShiftRight::getSize()
{
	return 0;
}

void LLScriptParenthesis::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "( ");
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	case LSCP_TYPE:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mReturnType = mLeftType = type;
		break;
	case LSCP_EMIT_ASSEMBLY:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mReturnType = mLeftType = type;
		break;
	default:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptParenthesis::getSize()
{
	return 0;
}

void LLScriptUnaryMinus::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "-");
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "NEG %s\n", LSCRIPTTypeNames[mLeftType]);
		break;
	case LSCP_TYPE:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_unary_expression(type, type, mType))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		else
		{
			mReturnType = mLeftType = type;
		}
		break;
	case LSCP_TO_STACK:
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			U8 typebyte = LSCRIPTTypeByte[mLeftType];
			chunk->addByte(LSCRIPTOpCodes[LOPC_NEG]);
			chunk->addByte(typebyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
	    {
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_neg(fp, mLeftType);
	    }
	    break;
	default:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptUnaryMinus::getSize()
{
	return 0;
}

void LLScriptBooleanNot::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "!");
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "BOOLNOT\n");
		break;
	case LSCP_TYPE:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_unary_expression(type, type, mType))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		else
		{
			mReturnType = mLeftType = type;
		}
		break;
	case LSCP_TO_STACK:
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_BOOLNOT]);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "ldc.i4.0\n");
		fprintf(fp, "ceq\n"); // If f(e) is (e == 0), f(e) returns 1 if e is 0 and 0 otherwise, therefore f(e) implements boolean not.
		break;
	default:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptBooleanNot::getSize()
{
	return 0;
}

void LLScriptBitNot::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "~");
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "BITNOT\n");
		break;
	case LSCP_TYPE:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_unary_expression(type, type, mType))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		else
		{
			mReturnType = mLeftType = type;
		}
		break;
	case LSCP_TO_STACK:
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_BITNOT]);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "not\n");
		break;
	default:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptBitNot::getSize()
{
	return 0;
}

void LLScriptPreIncrement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "++");
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			if (mReturnType == LST_INTEGER)
			{
				fprintf(fp, "PUSHARGI 1\n");
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(fp, "\n");
				fprintf(fp, "ADD integer, integer\n");
			}
			else if (mReturnType == LST_FLOATINGPOINT)
			{
				fprintf(fp, "PUSHARGF 1\n");
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(fp, "\n");
				fprintf(fp, "ADD float, float\n");
			}
			else
			{
				fprintf(fp, "Unexpected Type\n");
			}
			print_assignment(fp, mExpression);
		}
		break;
	case LSCP_TYPE:
		if (mExpression->mType != LET_LVALUE)
		{
			gErrorToText.writeError(fp, this, LSERROR_EXPRESSION_ON_LVALUE);
		}
		else
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (!legal_unary_expression(type, type, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			else
			{
				mReturnType = mLeftType = type;
			}
		}
		break;
	case LSCP_TO_STACK:
		{
			if (mReturnType == LST_INTEGER)
			{
				chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
				chunk->addInteger(1);
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
				chunk->addByte(LSCRIPTTypeByte[LST_INTEGER] | LSCRIPTTypeHi4Bits[LST_INTEGER]);
			}
			else if (mReturnType == LST_FLOATINGPOINT)
			{
				chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGF]);
				chunk->addFloat(1.f);
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
				chunk->addByte(LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[LST_FLOATINGPOINT]);
			}
			store2stack(this, mExpression, chunk, mReturnType);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			print_cil_load_address(fp, mExpression, entry);
			if (mReturnType == LST_INTEGER)
			{
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(fp, "ldc.i4.1\n");
				fprintf(fp, "add\n");
			}
			else if (mReturnType == LST_FLOATINGPOINT)
			{
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(fp, "ldc.r8 1\n");
				fprintf(fp, "add\n");
			}
			else
			{
				fprintf(fp, "Unexpected Type\n");
			}
			print_cil_assignment(fp, mExpression, entry);
		}
		break;
	default:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptPreIncrement::getSize()
{
	return 0;
}

void LLScriptPreDecrement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "--");
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			if (mReturnType == LST_INTEGER)
			{
				fprintf(fp, "PUSHARGI 1\n");
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(fp, "\n");
				fprintf(fp, "SUB integer, integer\n");
			}
			else if (mReturnType == LST_FLOATINGPOINT)
			{
				fprintf(fp, "PUSHARGF 1\n");
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(fp, "\n");
				fprintf(fp, "SUB float, float\n");
			}
			else
			{
				fprintf(fp, "Unexpected Type\n");
			}
			print_assignment(fp, mExpression);
		}
		break;
	case LSCP_TYPE:
		if (mExpression->mType != LET_LVALUE)
		{
			gErrorToText.writeError(fp, this, LSERROR_EXPRESSION_ON_LVALUE);
		}
		else
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (!legal_unary_expression(type, type, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			else
			{
				mReturnType = mLeftType = type;
			}
		}
		break;
	case LSCP_TO_STACK:
		{
			if (mReturnType == LST_INTEGER)
			{
				chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
				chunk->addInteger(1);
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				chunk->addByte(LSCRIPTOpCodes[LOPC_SUB]);
				chunk->addByte(LSCRIPTTypeByte[LST_INTEGER] | LSCRIPTTypeHi4Bits[LST_INTEGER]);
			}
			else if (mReturnType == LST_FLOATINGPOINT)
			{
				chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGF]);
				chunk->addFloat(1.f);
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				chunk->addByte(LSCRIPTOpCodes[LOPC_SUB]);
				chunk->addByte(LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[LST_FLOATINGPOINT]);
			}
			store2stack(this, mExpression, chunk, mReturnType);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			print_cil_load_address(fp, mExpression, entry);
			if (mReturnType == LST_INTEGER)
			{
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(fp, "ldc.i4.1\n");
				fprintf(fp, "sub\n");
			}
			else if (mReturnType == LST_FLOATINGPOINT)
			{
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(fp, "ldc.r8 1\n");
				fprintf(fp, "sub\n");
			}
			else
			{
				fprintf(fp, "Unexpected Type\n");
			}
			print_cil_assignment(fp, mExpression, entry);
		}
		break;
	default:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptPreDecrement::getSize()
{
	return 0;
}

void LLScriptTypeCast::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "( ");
		mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ") ");
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mRightType], LSCRIPTTypeNames[mType->mType]);
		break;
	case LSCP_TYPE:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mRightType = type;
		if (!legal_casts(mType->mType, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		type = mType->mType;
		mReturnType = mLeftType = type;
		break;
	case LSCP_TO_STACK:
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
			U8 castbyte = LSCRIPTTypeByte[mType->mType] | LSCRIPTTypeHi4Bits[mRightType];
			chunk->addByte(castbyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_cast(fp, mRightType, mType->mType);
		break;
	default:
		mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptTypeCast::getSize()
{
	return 0;
}

void LLScriptVectorInitializer::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "< ");
		mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", ");
		mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", ");
		mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " >");
		break;
	case LSCP_EMIT_ASSEMBLY:
		mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression1->mReturnType != LST_FLOATINGPOINT)
		{
			fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression1->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
		}
		mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression2->mReturnType != LST_FLOATINGPOINT)
		{
			fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression2->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
		}
		mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression3->mReturnType != LST_FLOATINGPOINT)
		{
			fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression3->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
		}
		break;
	case LSCP_TYPE:
		// vector's take floats
		mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		mReturnType = type = LST_VECTOR;
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_TO_STACK:
		pass = LSCP_TO_STACK;
		mExpression1->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression1->mReturnType != LST_FLOATINGPOINT)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
			U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression1->mReturnType];
			chunk->addByte(castbyte);
		}
		mExpression2->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression2->mReturnType != LST_FLOATINGPOINT)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
			U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression2->mReturnType];
			chunk->addByte(castbyte);
		}
		mExpression3->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression3->mReturnType != LST_FLOATINGPOINT)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
			U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression3->mReturnType];
			chunk->addByte(castbyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:

		// Load arguments.
		mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression1->mReturnType != LST_FLOATINGPOINT)
		{
			print_cil_cast(fp, mExpression1->mReturnType, LST_FLOATINGPOINT);
		}
		mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression2->mReturnType != LST_FLOATINGPOINT)
		{
			print_cil_cast(fp, mExpression2->mReturnType, LST_FLOATINGPOINT);
		}
		mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression3->mReturnType != LST_FLOATINGPOINT)
		{
			print_cil_cast(fp, mExpression3->mReturnType, LST_FLOATINGPOINT);
		}
		// Call named ctor, which leaves new Vector on stack, so it can be saved in to local or argument just like a primitive type.
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateVector'(float32, float32, float32)\n");
		break;
	default:
		mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptVectorInitializer::getSize()
{
	return 0;
}

void LLScriptQuaternionInitializer::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "< ");
		mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", ");
		mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", ");
		mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ", ");
		mExpression4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " >");
		break;
	case LSCP_EMIT_ASSEMBLY:
		mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression1->mReturnType != LST_FLOATINGPOINT)
		{
			fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression1->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
		}
		mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression2->mReturnType != LST_FLOATINGPOINT)
		{
			fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression2->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
		}
		mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression3->mReturnType != LST_FLOATINGPOINT)
		{
			fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression3->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
		}
		mExpression4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression4->mReturnType != LST_FLOATINGPOINT)
		{
			fprintf(fp, "CAST %s->%s\n", LSCRIPTTypeNames[mExpression4->mReturnType], LSCRIPTTypeNames[LST_FLOATINGPOINT]);
		}
		break;
	case LSCP_TYPE:
		// vector's take floats
		mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		mExpression4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!legal_assignment(LST_FLOATINGPOINT, type))
		{
			gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		mReturnType = type = LST_QUATERNION;
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_TO_STACK:
		pass = LSCP_TO_STACK;
		mExpression1->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression1->mReturnType != LST_FLOATINGPOINT)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
			U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression1->mReturnType];
			chunk->addByte(castbyte);
		}
		mExpression2->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression2->mReturnType != LST_FLOATINGPOINT)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
			U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression2->mReturnType];
			chunk->addByte(castbyte);
		}
		mExpression3->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression3->mReturnType != LST_FLOATINGPOINT)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
			U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression3->mReturnType];
			chunk->addByte(castbyte);
		}
		mExpression4->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression4->mReturnType != LST_FLOATINGPOINT)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_CAST]);
			U8 castbyte = LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[mExpression4->mReturnType];
			chunk->addByte(castbyte);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:

		// Load arguments.
		mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression1->mReturnType != LST_FLOATINGPOINT)
		{
			print_cil_cast(fp, mExpression1->mReturnType, LST_FLOATINGPOINT);
		}
		mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression2->mReturnType != LST_FLOATINGPOINT)
		{
			print_cil_cast(fp, mExpression2->mReturnType, LST_FLOATINGPOINT);
		}
		mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression3->mReturnType != LST_FLOATINGPOINT)
		{
			print_cil_cast(fp, mExpression3->mReturnType, LST_FLOATINGPOINT);
		}
		mExpression4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression4->mReturnType != LST_FLOATINGPOINT)
		{
			print_cil_cast(fp, mExpression4->mReturnType, LST_FLOATINGPOINT);
		}

		// Call named ctor, which leaves new Vector on stack, so it can be saved in to local or argument just like a primitive type.
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateQuaternion'(float32, float32, float32, float32)\n");
		break;
	default:
		mExpression1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mExpression2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mExpression3->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mExpression4->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptQuaternionInitializer::getSize()
{
	return 0;
}

void LLScriptListInitializer::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, "[ ");
		mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " ]");
		break;
	case LSCP_EMIT_ASSEMBLY:
		count = 0;
		if (mExpressionList)
		{
			mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "STACKTOL %llu\n", count);
		}
		break;
	case LSCP_TYPE:
		if (mExpressionList)
		{
			mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mReturnType = type = LST_LIST;
		}
		mReturnType = type = LST_LIST;
		break;
	case LSCP_TO_STACK:
	{
		if (mExpressionList)
		{
			pass = LSCP_TO_STACK;
			U64 list_element_count = 0;
			mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, list_element_count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_STACKTOL]);
			chunk->addInteger((S32)list_element_count);
			
		}
		else
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_STACKTOL]);
			chunk->addInteger(0);
		}
		break;
	}
	case LSCP_EMIT_CIL_ASSEMBLY:
	{
		// Push boxed elements on stack.
		U64 list_element_count = 0;
		if (mExpressionList)
		{
			mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, list_element_count, chunk, heap, stacksize, entry, entrycount, NULL);
		}

		// Create list on stack.
		fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList()\n");

		// Call Prepend to add remaining boxed expressions.
		for(U64 i = 0; i < list_element_count; i++)
		{
			fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::Prepend(object, class [mscorlib]System.Collections.ArrayList)\n");
		}
		break;
	}
	default:
		if (mExpressionList)
		{
			mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptListInitializer::getSize()
{
	return 0;
}

void LLScriptPostIncrement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "++");
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (mReturnType == LST_INTEGER)
			{
				fprintf(fp, "PUSHARGI 1\n");
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(fp, "ADD integer, integer\n");
			}
			else if (mReturnType == LST_FLOATINGPOINT)
			{
				fprintf(fp, "PUSHARGF 1\n");
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(fp, "ADD float, float\n");
			}
			else
			{
				fprintf(fp, "Unexpected Type\n");
			}
			print_assignment(fp, mExpression);
			fprintf(fp, "%s\n", LSCRIPTTypePop[mReturnType]);
		}
		break;
	case LSCP_TYPE:
		if (mExpression->mType != LET_LVALUE)
		{
			gErrorToText.writeError(fp, this, LSERROR_EXPRESSION_ON_LVALUE);
		}
		else
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (!legal_unary_expression(type, type, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			else
			{
				mReturnType = mLeftType = type;
			}
		}
		break;
	case LSCP_TO_STACK:
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (mReturnType == LST_INTEGER)
			{
				chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
				chunk->addInteger(1);
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
				chunk->addByte(LSCRIPTTypeByte[LST_INTEGER] | LSCRIPTTypeHi4Bits[LST_INTEGER]);
			}
			else if (mReturnType == LST_FLOATINGPOINT)
			{
				chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGF]);
				chunk->addFloat(1.f);
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
				chunk->addByte(LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[LST_FLOATINGPOINT]);
			}
			store2stack(this, mExpression, chunk, mReturnType);
			switch(mReturnType)
			{
			case LST_INTEGER:
			case LST_FLOATINGPOINT:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
				break;
			case LST_KEY:
			case LST_STRING:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
				break;
			case LST_LIST:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
				break;
			case LST_VECTOR:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
				break;
			case LST_QUATERNION:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
				break;
			default:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
				break;
			}
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			// Push original value on to stack.
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);

			// Load address if needed for store.
			print_cil_load_address(fp, mExpression, entry);

			// Load value again.
			// TODO: Work out if sideeffects can result in 2 evaluations of expression giving different values.
			// Original LSL2 uses this method, so any bugs due to side effects will probably be identical ;-)
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (mReturnType == LST_INTEGER)
			{
				fprintf(fp, "ldc.i4.1\n");
			}
			else if (mReturnType == LST_FLOATINGPOINT)
			{
				fprintf(fp, "ldc.r8 1\n");
			}
			else
			{
				fprintf(fp, "Unexpected Type\n");
			}
			fprintf(fp, "add\n");
			print_cil_assignment(fp, mExpression, entry);

			// Pop assignment result to leave original expression result on stack. 
			// TODO: Optimise away redundant pop/dup pairs.
			fprintf(fp, "pop\n"); 
		}
		break;
	default:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptPostIncrement::getSize()
{
	return 0;
}

void LLScriptPostDecrement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "--");
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (mReturnType == LST_INTEGER)
			{
				fprintf(fp, "PUSHARGI 1\n");
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(fp, "SUB integer, integer\n");
			}
			else if (mReturnType == LST_FLOATINGPOINT)
			{
				fprintf(fp, "PUSHARGF 1\n");
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(fp, "SUB float, float\n");
			}
			else
			{
				fprintf(fp, "Unexpected Type\n");
			}
			print_assignment(fp, mExpression);
			fprintf(fp, "%s\n", LSCRIPTTypePop[mReturnType]);
		}
		break;
	case LSCP_TYPE:
		if (mExpression->mType != LET_LVALUE)
		{
			gErrorToText.writeError(fp, this, LSERROR_EXPRESSION_ON_LVALUE);
		}
		else
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (!legal_unary_expression(type, type, mType))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			else
			{
				mReturnType = mLeftType = type;
			}
		}
		break;
	case LSCP_TO_STACK:
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (mReturnType == LST_INTEGER)
			{
				chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
				chunk->addInteger(1);
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				chunk->addByte(LSCRIPTOpCodes[LOPC_SUB]);
				chunk->addByte(LSCRIPTTypeByte[LST_INTEGER] | LSCRIPTTypeHi4Bits[LST_INTEGER]);
			}
			else if (mReturnType == LST_FLOATINGPOINT)
			{
				chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGF]);
				chunk->addFloat(1.f);
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				chunk->addByte(LSCRIPTOpCodes[LOPC_SUB]);
				chunk->addByte(LSCRIPTTypeByte[LST_FLOATINGPOINT] | LSCRIPTTypeHi4Bits[LST_FLOATINGPOINT]);
			}
			store2stack(this, mExpression, chunk, mReturnType);
			switch(mReturnType)
			{
			case LST_INTEGER:
			case LST_FLOATINGPOINT:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
				break;
			case LST_KEY:
			case LST_STRING:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
				break;
			case LST_LIST:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
				break;
			case LST_VECTOR:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
				break;
			case LST_QUATERNION:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
				break;
			default:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
				break;
			}
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			// Push original value on to stack.
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);

			// Load address if needed for store.
			print_cil_load_address(fp, mExpression, entry);

			// Load value again.
			// TODO: Work out if sideeffects can result in 2 evaluations of expression giving different values.
			// Original LSL2 uses this method, so any bugs due to side effects will probably be identical ;-)
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (mReturnType == LST_INTEGER)
			{
				fprintf(fp, "ldc.i4.1\n");
			}
			else if (mReturnType == LST_FLOATINGPOINT)
			{
				fprintf(fp, "ldc.r8 1\n");
			}
			else
			{
				fprintf(fp, "Unexpected Type\n");
			}
			fprintf(fp, "sub\n");
			print_cil_assignment(fp, mExpression, entry);

			// Pop assignment result to leave original expression result on stack. 
			// TODO: Optimise away redundant pop/dup pairs.
			fprintf(fp, "pop\n"); 
		}
		break;
	default:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptPostDecrement::getSize()
{
	return 0;
}

// Generate arg list.
static void print_cil_arg_list(LLFILE *fp, LLScriptArgString& args)
{
	int i = 0;
	bool finished = (i >= args.getNumber());
	while(! finished)
	{
		print_cil_type(fp, args.getType(i));
		++i;
		finished = (i >= args.getNumber());
		if(! finished)
		{
			fprintf(fp, ", ");
		}
	}
}

void LLScriptFunctionCall::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "( ");
		if (mExpressionList)
			mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	case LSCP_EMIT_ASSEMBLY:
		if (mIdentifier->mScopeEntry->mType)
			fprintf(fp, "%s\n", LSCRIPTTypePush[mIdentifier->mScopeEntry->mType]);
		fprintf(fp,"PUSHE\n");
		fprintf(fp, "PUSHBP\n");
		if (mExpressionList)
			mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mIdentifier->mScopeEntry, 0, NULL);
		fprintf(fp, "PUSHARGE %d\n", mIdentifier->mScopeEntry->mSize - mIdentifier->mScopeEntry->mOffset);
		fprintf(fp, "PUSHSP\n");
		fprintf(fp, "PUSHARGI %d\n", mIdentifier->mScopeEntry->mSize);
		fprintf(fp, "ADD integer, integer\n");
		fprintf(fp, "POPBP\n");
		if (mIdentifier->mScopeEntry->mIDType != LIT_LIBRARY_FUNCTION)
		{
			fprintf(fp, "CALL ");
			mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		else
		{
			fprintf(fp, "CALLLID ");
			mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, ", %d", (U32)mIdentifier->mScopeEntry->mLibraryNumber);
		}
		fprintf(fp, "\n");
		fprintf(fp, "POPBP\n");
		break;
	case LSCP_SCOPE_PASS1:
		if (mExpressionList)
			mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_SCOPE_PASS2:
		{
			LLScriptScopeEntry *entry = scope->findEntryTyped(mIdentifier->mName, LIT_FUNCTION);
			if (!entry)
			{
				gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
			}
			else
			{
				// if we did find it, make sure this identifier is associated with the correct scope entry
				mIdentifier->mScopeEntry = entry;
			}
			if (mExpressionList)
				mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_TYPE:
		if (mIdentifier->mScopeEntry)
		{
			U64 argcount = 0;
			if (mExpressionList)
				mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, argcount, chunk, heap, stacksize, mIdentifier->mScopeEntry, 0, NULL);

			if (!mIdentifier->mScopeEntry->mFunctionArgs.mString)
			{
				if (argcount)
				{
					gErrorToText.writeError(fp, this, LSERROR_FUNCTION_TYPE_ERROR);
				}
			}
			else if (argcount != strlen(mIdentifier->mScopeEntry->mFunctionArgs.mString))
			{
				gErrorToText.writeError(fp, this, LSERROR_FUNCTION_TYPE_ERROR);
			}
		}

		if (mIdentifier->mScopeEntry)
			type = mIdentifier->mScopeEntry->mType;
		else
			type = LST_NULL;
		mReturnType = type;
		break;
	case LSCP_TO_STACK:
		switch(mIdentifier->mScopeEntry->mType)
		{
		case LST_INTEGER:
		case LST_FLOATINGPOINT:
		case LST_STRING:
		case LST_KEY:
		case LST_LIST:
			chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHE]);
			break;
		case LST_VECTOR:
			chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHEV]);
			break;
		case LST_QUATERNION:
			chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHEQ]);
			break;
		default:
			break;
		}
		chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHE]);
		chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHBP]);
		if (mExpressionList)
		{
			// Don't let this change the count.
			U64 dummy_count = 0;
			mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, dummy_count, chunk, heap, stacksize, mIdentifier->mScopeEntry, 0, NULL);
			//mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mIdentifier->mScopeEntry, 0, NULL);
		}
		chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGE]);
		chunk->addInteger(mIdentifier->mScopeEntry->mSize - mIdentifier->mScopeEntry->mOffset);
		chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHSP]);
		chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
		chunk->addInteger(mIdentifier->mScopeEntry->mSize);
		chunk->addByte(LSCRIPTOpCodes[LOPC_ADD]);
		chunk->addByte(LSCRIPTTypeByte[LST_INTEGER] | LSCRIPTTypeHi4Bits[LST_INTEGER]);
		chunk->addByte(LSCRIPTOpCodes[LOPC_POPBP]);
		if (mIdentifier->mScopeEntry->mIDType != LIT_LIBRARY_FUNCTION)
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_CALL]);
			chunk->addInteger(mIdentifier->mScopeEntry->mCount);
		}
		else
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_CALLLIB_TWO_BYTE]);
			chunk->addU16(mIdentifier->mScopeEntry->mLibraryNumber);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			bool library_call = (mIdentifier->mScopeEntry->mIDType == LIT_LIBRARY_FUNCTION);
			if(! library_call)
			{
				// Load this pointer.
				fprintf(fp, "ldarg.0\n");
			}

			// Load args on to stack.
			if (mExpressionList)
			{
				//mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry /* Needed for is_parameter calls */, 0, NULL);
				llassert(LET_FUNC_EXPRESSION_LIST == mExpressionList->mType);
				print_cil_func_expression_list((LLScriptFuncExpressionList*) mExpressionList, fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry /* Caller entry needed for is_parameter calls */, 0, NULL, mIdentifier->mScopeEntry /* Callee entry needed for argument casting */);
			}

			// Make call.
			if (! library_call)
			{
				fprintf(fp, "call instance ");
			}
			else
			{
				fprintf(fp, "call ");
			}
			print_cil_type(fp, mIdentifier->mScopeEntry->mType);
			fprintf(fp, " class ");
			if (library_call)
			{
				fprintf(fp, "[LslLibrary]LindenLab.SecondLife.Library::'");
			}
			else
			{
				// Prefix function name with g to distinguish from
				// event handlers.
				fprintf(fp, "%s", gScriptp->getClassName());
				fprintf(fp, "::'g");
			}
			fprintf(fp, "%s", mIdentifier->mName);
			fprintf(fp, "'(");
			print_cil_arg_list(fp, mIdentifier->mScopeEntry->mFunctionArgs);
			fprintf(fp, ")\n");
		}
		break;
	default:
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpressionList)
			mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptFunctionCall::getSize()
{
	return 0;
}

void LLScriptPrint::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fprintf(fp, " PRINT ( ");
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )");
		break;
	case LSCP_EMIT_ASSEMBLY:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "PRINT %s\n", LSCRIPTTypeNames[mLeftType]);
		break;
	case LSCP_TYPE:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mLeftType = type;
		mReturnType = LST_NULL;
		break;
	case LSCP_TO_STACK:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		chunk->addByte(LSCRIPTOpCodes[LOPC_PRINT]);
		chunk->addByte(LSCRIPTTypeByte[mLeftType]);
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
	        mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		print_cil_cast(fp, mLeftType, LST_STRING);
 	        fprintf(fp, "call void class [LslLibrary]LindenLab.SecondLife.Library::Print(string)");
	        break;
	default:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptPrint::getSize()
{
	return 0;
}

void LLScriptConstantExpression::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_TYPE:
		mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mReturnType = type;
		break;
	case LSCP_TO_STACK:
		mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	default:
		mConstant->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptConstantExpression::getSize()
{
	return 0;
}

void LLScriptStatement::addStatement(LLScriptStatement *event)
{
	if (mNextp)
	{
		event->mNextp = mNextp;
	}
	mNextp = event;
}

void LLScriptStatement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	fprintf(fp, "Statement Base Class -- should never get here!\n");
}

S32 LLScriptStatement::getSize()
{
	printf("Statement Base Class -- should never get here!\n");
	return 0;
}

void LLScriptStatement::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		if (mNextp)
		{
			fprintf(fp, ", ");
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_EMIT_ASSEMBLY:
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	default:
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
}

S32 LLScriptStatementSequence::getSize()
{
	return 0;
}

void LLScriptStatementSequence::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_PRUNE:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (prunearg)
		{
			// babbage: only warn on first dead code block found.
			if(ptype != LSPRUNE_DEAD_CODE)
			{
				gErrorToText.writeWarning(fp, this, LSWARN_DEAD_CODE);
			}
			
			// babbage: set prune type to LSPRUNE_DEAD_CODE to mask other
			// prune errors.
			ptype = LSPRUNE_DEAD_CODE;
			
			// babbage: reset prunearg, to track whether return needed at
			// end of dead code path as CIL always needs a return/throw.
			prunearg = FALSE;
		}
		mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_TYPE:
		// pass the return type into all statements so we can check returns
		{
			LSCRIPTType	return_type = type;
			mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, return_type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			return_type = type;
			mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, return_type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	default:
		mFirstp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mSecondp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptNOOP::getSize()
{
	return 0;
}

void LLScriptNOOP::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, ";\n");
		break;
	case LSCP_PRUNE:
		prunearg = FALSE;
		break;
	default:
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

void add_exit_pops(LLScriptByteCodeChunk *chunk, LLScriptScopeEntry *entry)
{
	// remember that we need to pop in reverse order
	S32 number, i;

	if (entry->mLocals.mString)
	{
		number = (S32)strlen(entry->mLocals.mString);
		for (i = number - 1; i >= 0; i--)
		{
			switch(entry->mLocals.getType(i))
			{
			case LST_INTEGER:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
				break;
			case LST_FLOATINGPOINT:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
				break;
			case LST_STRING:
			case LST_KEY:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
				break;
			case LST_VECTOR:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
				break;
			case LST_QUATERNION:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
				break;
			case LST_LIST:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
				break;

			default:
				break;
			}
		}
	}

	if (entry->mFunctionArgs.mString)
	{
		number = (S32)strlen(entry->mFunctionArgs.mString);
		for (i = number - 1; i >= 0; i--)
		{
			switch(entry->mFunctionArgs.getType(i))
			{
			case LST_INTEGER:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
				break;
			case LST_FLOATINGPOINT:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
				break;
			case LST_STRING:
			case LST_KEY:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
				break;
			case LST_VECTOR:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
				break;
			case LST_QUATERNION:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
				break;
			case LST_LIST:
				chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
				break;

			default:
				break;
			}
		}
	}
}

void print_exit_pops(LLFILE *fp, LLScriptScopeEntry *entry)
{
	// remember that we need to pop in reverse order
	S32 number, i;

	if (entry->mLocals.mString)
	{
		number = (S32)strlen(entry->mLocals.mString);
		for (i = number - 1; i >= 0; i--)
		{
			fprintf(fp, "%s", LSCRIPTTypePop[entry->mLocals.getType(i)]);
		}
	}

	if (entry->mFunctionArgs.mString)
	{
		number = (S32)strlen(entry->mFunctionArgs.mString);
		for (i = number - 1; i >= 0; i--)
		{
			fprintf(fp, "%s", LSCRIPTTypePop[entry->mFunctionArgs.getType(i)]);
		}
	}
}


S32 LLScriptStateChange::getSize()
{
	return 0;
}

void LLScriptStateChange::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "state ");
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ";\n");
		break;
	case LSCP_EMIT_ASSEMBLY:
		print_exit_pops(fp, entry);
		fprintf(fp, "STATE ");
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "\n");
		break;
	case LSCP_PRUNE:
		if (  (ptype == LSPRUNE_GLOBAL_VOIDS)
			||(ptype == LSPRUNE_GLOBAL_NON_VOIDS))
		{
			gErrorToText.writeError(fp, this, LSERROR_STATE_CHANGE_IN_GLOBAL);
		}
		prunearg = FALSE;
		break;
	case LSCP_SCOPE_PASS2:
		{
			LLScriptScopeEntry *entry = scope->findEntryTyped(mIdentifier->mName, LIT_STATE);
			if (!entry)
			{
				gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
			}
			else
			{
				// if we did find it, make sure this identifier is associated with the correct scope entry
				mIdentifier->mScopeEntry = entry;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			add_exit_pops(chunk, entry);
			chunk->addByte(LSCRIPTOpCodes[LOPC_STATE]);
			chunk->addInteger(mIdentifier->mScopeEntry->mCount);
		}
		break;
	case LSCP_TYPE:
		mReturnType = basetype;
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "ldarg.0\n");
		fprintf(fp, "ldstr \"%s\"\n", mIdentifier->mName);
		fprintf(fp, "call instance void class [LslUserScript]LindenLab.SecondLife.LslUserScript::ChangeState(string)\n");
		// We are doing a state change. In the LSL interpreter, this is basically a longjmp. We emulate it
		// here using a call to the ChangeState followed by a short cut return of the current method. To
		// maintain type safety we need to push an arbitrary variable of the current method's return type
		// onto the stack before returning. This will be ignored and discarded.
		print_cil_init_variable(fp, mReturnType);
		fprintf(fp, "ret\n");
		break;
	default:
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptJump::getSize()
{
	return 0;
}

void LLScriptJump::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "jump ");
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ";\n");
		break;
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "JUMP ");
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "\n");
		break;
	case LSCP_PRUNE:
		prunearg = FALSE;
		break;
	case LSCP_SCOPE_PASS2:
		{
			LLScriptScopeEntry *entry = scope->findEntryTyped(mIdentifier->mName, LIT_LABEL);
			if (!entry)
			{
				gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
			}
			else
			{
				// if we did find it, make sure this identifier is associated with the correct scope entry
				mIdentifier->mScopeEntry = entry;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			chunk->addByte(LSCRIPTOpCodes[LOPC_JUMP]);
			chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
			chunk->addJump(mIdentifier->mName);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		fprintf(fp, "br ");
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "\n");
		break;
	default:
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptLabel::getSize()
{
	return 0;
}

void LLScriptLabel::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "@");
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ";\n");
		break;
	case LSCP_EMIT_ASSEMBLY:
		fprintf(fp, "LABEL ");
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "\n");
		break;
	case LSCP_PRUNE:
		// Always clear this flag, to stop pruning after return statements.  A jump
		// might start up code at this label, so we need to stop pruning.
		prunearg = FALSE;
		break;
	case LSCP_SCOPE_PASS1:
		// add labels to scope
		if (scope->checkEntry(mIdentifier->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_LABEL, LST_NULL);
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			chunk->addLabel(mIdentifier->mName);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ":\n");
		break;
	default:
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

void add_return(LLScriptByteCodeChunk *chunk, LLScriptScopeEntry *entry)
{
	add_exit_pops(chunk, entry);
	chunk->addByte(LSCRIPTOpCodes[LOPC_RETURN]);
}

void print_return(LLFILE *fp, LLScriptScopeEntry *entry)
{
	print_exit_pops(fp, entry);
	fprintf(fp, "RETURN\n");
}


S32 LLScriptReturn::getSize()
{
	return 0;
}

void LLScriptReturn::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		if (mExpression)
		{
			fdotabs(fp, tabs, tabsize);
			fprintf(fp, "return ");
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, ";\n");
		}
		else
		{
			fdotabs(fp, tabs, tabsize);
			fprintf(fp, "return;\n");
		}
		break;
	case LSCP_EMIT_ASSEMBLY:
		if (mExpression)
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "%s\n", LSCRIPTTypeReturn[mType]);
		}
		print_return(fp, entry);
		break;
	case LSCP_PRUNE:
		if (  (ptype == LSPRUNE_GLOBAL_VOIDS)
			||(ptype == LSPRUNE_EVENTS))
		{
			if (mExpression)
			{
				gErrorToText.writeError(fp, this, LSERROR_INVALID_RETURN);
			}
		}
		else if (ptype == LSPRUNE_GLOBAL_NON_VOIDS)
		{
			if (!mExpression)
			{
				gErrorToText.writeError(fp, this, LSERROR_INVALID_VOID_RETURN);
			}
		}
		prunearg = TRUE;
	case LSCP_TYPE:
		// if there is a return expression, it must be promotable to the return type of the function
		if (mExpression)
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (!legal_assignment(basetype, type))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
			else
			{
				mType = basetype;
			}
		}
		else if (basetype != LST_NULL)
		{
		        gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		if (mExpression)
		{
			mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			switch(mType)
			{
			case LST_INTEGER:
			case LST_FLOATINGPOINT:
				chunk->addByte(LSCRIPTOpCodes[LOPC_LOADP]);
				chunk->addInteger(-12);
				break;
			case LST_STRING:
			case LST_KEY:
				// use normal store for reference counted types
				chunk->addByte(LSCRIPTOpCodes[LOPC_LOADSP]);
				chunk->addInteger(-12);
				break;
			case LST_LIST:
				// use normal store for reference counted types
				chunk->addByte(LSCRIPTOpCodes[LOPC_LOADLP]);
				chunk->addInteger(-12);
				break;
			case LST_VECTOR:
				chunk->addByte(LSCRIPTOpCodes[LOPC_LOADVP]);
				chunk->addInteger(-20);
				break;
			case LST_QUATERNION:
				chunk->addByte(LSCRIPTOpCodes[LOPC_LOADQP]);
				chunk->addInteger(-24);
				break;
			default:
				chunk->addByte(LSCRIPTOpCodes[LOPC_LOADP]);
				chunk->addInteger(-12);
				break;
			}
		}
		add_return(chunk, entry);
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		if (mExpression)
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_cast(fp, mExpression->mReturnType, mType);
		}
		fprintf(fp, "ret\n");
		break;
	default:
		if (mExpression)
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptExpressionStatement::getSize()
{
	return 0;
}

void LLScriptExpressionStatement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ";\n");
		break;
	case LSCP_EMIT_ASSEMBLY:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mExpression->mReturnType)
		{
			fprintf(fp, "%s\n", LSCRIPTTypePop[mExpression->mReturnType]);
		}
		break;
	case LSCP_PRUNE:
		prunearg = FALSE;
		break;
	case LSCP_EMIT_BYTE_CODE:
		mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		switch(mExpression->mReturnType)
		{
		case LST_INTEGER:
		case LST_FLOATINGPOINT:
			chunk->addByte(LSCRIPTOpCodes[LOPC_POP]);
			break;
		case LST_STRING:
		case LST_KEY:
			chunk->addByte(LSCRIPTOpCodes[LOPC_POPS]);
			break;
		case LST_LIST:
			chunk->addByte(LSCRIPTOpCodes[LOPC_POPL]);
			break;
		case LST_VECTOR:
			chunk->addByte(LSCRIPTOpCodes[LOPC_POPV]);
			break;
		case LST_QUATERNION:
			chunk->addByte(LSCRIPTOpCodes[LOPC_POPQ]);
			break;
		default:
			break;
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if(mExpression->mReturnType)
		{
			fprintf(fp, "pop\n");
		}
		break;
	default:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptIf::getSize()
{
	return 0;
}

static void print_cil_if_test(LLFILE* fp, LSCRIPTType type)
{
	switch(type)
	{
	case LST_INTEGER:
		break;
	case LST_FLOATINGPOINT:
		fprintf(fp, "ldc.r8 0\n");
		fprintf(fp, "ceq\n");
		fprintf(fp, "ldc.i4.0\n");
		fprintf(fp, "ceq\n");
		break;
	case LST_VECTOR:
		fprintf(fp, "ldc.r8 0\n");
		fprintf(fp, "ldc.r8 0\n");
		fprintf(fp, "ldc.r8 0\n");
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Vector class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateVector'(float32, float32, float32)\n");
		fprintf(fp, "call bool [LslUserScript]LindenLab.SecondLife.LslUserScript::'Equals'(class [ScriptTypes]LindenLab.SecondLife.Vector, class [ScriptTypes]LindenLab.SecondLife.Vector)\n");
		fprintf(fp, "ldc.i4.0\n");
		fprintf(fp, "ceq\n");
		break;
	case LST_QUATERNION:
		fprintf(fp, "ldc.r8 0\n");
		fprintf(fp, "ldc.r8 0\n");
		fprintf(fp, "ldc.r8 0\n");
		fprintf(fp, "ldc.r8 1\n");
		fprintf(fp, "call class [ScriptTypes]LindenLab.SecondLife.Quaternion class [LslUserScript]LindenLab.SecondLife.LslUserScript::'CreateQuaternion'(float32, float32, float32, float32)\n");
		fprintf(fp, "call bool [LslUserScript]LindenLab.SecondLife.LslUserScript::'Equals'(class [ScriptTypes]LindenLab.SecondLife.Quaternion, class [ScriptTypes]LindenLab.SecondLife.Quaternion)\n");
		fprintf(fp, "ldc.i4.0\n");
		fprintf(fp, "ceq\n");
		break;
	case LST_KEY:
		fprintf(fp, "call bool [LslUserScript]LindenLab.SecondLife.LslUserScript::'IsNonNullUuid'(valuetype [ScriptTypes]LindenLab.SecondLife.Key)\n");
		break;		
	case LST_STRING:
		fprintf(fp, "ldstr \"\"\n");
		fprintf(fp, "call bool string::op_Equality(string, string)\n");
		fprintf(fp, "ldc.i4.0\n");
		fprintf(fp, "ceq\n");
		break;
	case LST_LIST:
		fprintf(fp, "call class [mscorlib]System.Collections.ArrayList class [LslUserScript]LindenLab.SecondLife.LslUserScript::CreateList()\n");
		fprintf(fp, "call bool [LslUserScript]LindenLab.SecondLife.LslUserScript::Equals(class [mscorlib]System.Collections.ArrayList, class [mscorlib]System.Collections.ArrayList)\n");
		fprintf(fp, "ldc.i4.0\n");
		fprintf(fp, "ceq\n");
		break;		
	default:
		break;
	}

}

void LLScriptIf::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "if ( ");
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			S32 tjump =  gTempJumpCount++;
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "JUMPNIF ##Temp Jump %d##\n", tjump);
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump);
		}
		break;
	case LSCP_PRUNE:
		prunearg = FALSE;
		break;
	case LSCP_TYPE:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (type == LST_NULL)
		{
			gErrorToText.writeError(fp, mExpression, LSERROR_TYPE_MISMATCH);
		}
		mType = type;
		mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);		
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			char jumpname[32];	 	/*Flawfinder: ignore*/
			snprintf(jumpname, sizeof(jumpname),"##Temp Jump %d##", gTempJumpCount++); 	/* Flawfinder: ignore */

			mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_JUMPNIF]);
			chunk->addByte(LSCRIPTTypeByte[mType]);
			chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
			chunk->addJump(jumpname);
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addLabel(jumpname);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			S32 tjump = gTempJumpCount++;
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_if_test(fp, mExpression->mReturnType);
			fprintf(fp, "brfalse LabelTempJump%d\n", tjump);
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "LabelTempJump%d:\n", tjump);
		}
		break;
	default:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptIfElse::getSize()
{
	return 0;
}

void LLScriptIfElse::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "if ( ");
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		mStatement1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "else\n");
		mStatement2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			S32 tjump1 =  gTempJumpCount++;
			S32 tjump2 =  gTempJumpCount++;
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "JUMPNIF ##Temp Jump %d##\n", tjump1);
			mStatement1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "JUMP ##Temp Jump %d##\n", tjump2);
			fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump1);
			mStatement2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump2);
		}
		break;
	case LSCP_PRUNE:
		{
			BOOL arg1 = TRUE, arg2 = TRUE;
			mStatement1->recurse(fp, tabs, tabsize, pass, ptype, arg1, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mStatement2->recurse(fp, tabs, tabsize, pass, ptype, arg2, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			prunearg = arg1 && arg2;
		}
		break;
	case LSCP_TYPE:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (type == LST_NULL)
		{
			gErrorToText.writeError(fp, mExpression, LSERROR_TYPE_MISMATCH);
		}
		mType = type;
		mStatement1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mStatement2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			char jumpname1[32]; 				/*Flawfinder: ignore*/
			snprintf(jumpname1, sizeof(jumpname1), "##Temp Jump %d##", gTempJumpCount++); 	/* Flawfinder: ignore */
			char jumpname2[32];			 	/*Flawfinder: ignore*/
			snprintf(jumpname2, sizeof(jumpname2), "##Temp Jump %d##", gTempJumpCount++);	 /* Flawfinder: ignore */

			mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_JUMPNIF]);
			chunk->addByte(LSCRIPTTypeByte[mType]);
			chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
			chunk->addJump(jumpname1);
			mStatement1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_JUMP]);
			chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
			chunk->addJump(jumpname2);
			chunk->addLabel(jumpname1);
			mStatement2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addLabel(jumpname2);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			S32 tjump1 =  gTempJumpCount++;
			S32 tjump2 =  gTempJumpCount++;
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_if_test(fp, mExpression->mReturnType);
			fprintf(fp, "brfalse LabelTempJump%d\n", tjump1);
			mStatement1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "br LabelTempJump%d\n", tjump2);
			fprintf(fp, "LabelTempJump%d:\n", tjump1);
			mStatement2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "LabelTempJump%d:\n", tjump2);
		}
		break;
	default:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mStatement1->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mStatement2->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	};
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptFor::getSize()
{
	return 0;
}

void LLScriptFor::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "for ( ");
		if(mSequence)
			mSequence->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " ; ");
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " ; ");
		if(mExpressionList)
			mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		if(mStatement)
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			S32 tjump1 =  gTempJumpCount++;
			S32 tjump2 =  gTempJumpCount++;
			if(mSequence)
				mSequence->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump1);
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "JUMPNIF ##Temp Jump %d##\n", tjump2);
			if(mStatement)
				mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if(mExpressionList)
				mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "JUMP ##Temp Jump %d##\n", tjump1);
			fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump2);
		}
		break;
	case LSCP_PRUNE:
		prunearg = FALSE;
		break;
	case LSCP_TYPE:
		if(mSequence)
			mSequence->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (type == LST_NULL)
		{
			gErrorToText.writeError(fp, mExpression, LSERROR_TYPE_MISMATCH);
		}
		mType = type;
		if(mExpressionList)
			mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if(mStatement)
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			char jumpname1[32];		 	/*Flawfinder: ignore*/
			snprintf(jumpname1, sizeof(jumpname1), "##Temp Jump %d##", gTempJumpCount++); 	/* Flawfinder: ignore */
			char jumpname2[32];			 	/*Flawfinder: ignore*/
			snprintf(jumpname2, sizeof(jumpname2), "##Temp Jump %d##", gTempJumpCount++);	 	/* Flawfinder: ignore */

			if(mSequence)
				mSequence->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addLabel(jumpname1);
			mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_JUMPNIF]);
			chunk->addByte(LSCRIPTTypeByte[mType]);
			chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
			chunk->addJump(jumpname2);
			if(mStatement)
				mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if(mExpressionList)
				mExpressionList->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_JUMP]);
			chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
			chunk->addJump(jumpname1);
			chunk->addLabel(jumpname2);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			S32 tjump1 =  gTempJumpCount++;
			S32 tjump2 =  gTempJumpCount++;
			if(mSequence)
				mSequence->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "LabelTempJump%d:\n", tjump1);
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_if_test(fp, mExpression->mReturnType);
			fprintf(fp, "brfalse LabelTempJump%d\n", tjump2);
			if(mStatement)
				mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if(mExpressionList)
				mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "br LabelTempJump%d\n", tjump1);
			fprintf(fp, "LabelTempJump%d:\n", tjump2);
		}
		break;
	default:
		if(mSequence)
			mSequence->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if(mExpressionList)
			mExpressionList->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if(mStatement)
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptDoWhile::getSize()
{
	return 0;
}

void LLScriptDoWhile::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "do\n");
		mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "while( ");
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " );\n");
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			S32 tjump1 =  gTempJumpCount++;
			fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump1);
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "JUMPIF ##Temp Jump %d##\n", tjump1);
		}
		break;
	case LSCP_PRUNE:
		prunearg = FALSE;
		break;
	case LSCP_TYPE:
		mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (type == LST_NULL)
		{
			gErrorToText.writeError(fp, mExpression, LSERROR_TYPE_MISMATCH);
		}
		mType = type;
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			char jumpname1[32];	 	/*Flawfinder: ignore*/
			snprintf(jumpname1, sizeof(jumpname1), "##Temp Jump %d##", gTempJumpCount++);	 	/* Flawfinder: ignore */

			chunk->addLabel(jumpname1);
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_JUMPIF]);
			chunk->addByte(LSCRIPTTypeByte[mType]);
			chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
			chunk->addJump(jumpname1);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			S32 tjump1 =  gTempJumpCount++;
			fprintf(fp, "LabelTempJump%d:\n", tjump1);
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_if_test(fp, mExpression->mReturnType);
			fprintf(fp, "brtrue LabelTempJump%d\n", tjump1);
		}
		break;
	default:
		mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptWhile::getSize()
{
	return 0;
}

void LLScriptWhile::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "while( ");
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " )\n");
		mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		{
			S32 tjump1 =  gTempJumpCount++;
			S32 tjump2 =  gTempJumpCount++;
			fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump1);
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "JUMPNIF ##Temp Jump %d##\n", tjump2);
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "JUMP ##Temp Jump %d##\n", tjump1);
			fprintf(fp, "LABEL ##Temp Jump %d##\n", tjump2);
		}
		break;
	case LSCP_PRUNE:
		prunearg = FALSE;
		break;
	case LSCP_TYPE:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (type == LST_NULL)
		{
			gErrorToText.writeError(fp, mExpression, LSERROR_TYPE_MISMATCH);
		}
		mType = type;
		mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			char jumpname1[32]; 	/*Flawfinder: ignore*/
			snprintf(jumpname1, sizeof(jumpname1), "##Temp Jump %d##", gTempJumpCount++); 	/* Flawfinder: ignore */
			char jumpname2[32]; 	/*Flawfinder: ignore*/
			snprintf(jumpname2, sizeof(jumpname2), "##Temp Jump %d##", gTempJumpCount++); 	/* Flawfinder: ignore */

			chunk->addLabel(jumpname1);
			mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_JUMPNIF]);
			chunk->addByte(LSCRIPTTypeByte[mType]);
			chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
			chunk->addJump(jumpname2);
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			chunk->addByte(LSCRIPTOpCodes[LOPC_JUMP]);
			chunk->addBytes(LSCRIPTDataSize[LST_INTEGER]);
			chunk->addJump(jumpname1);
			chunk->addLabel(jumpname2);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			S32 tjump1 =  gTempJumpCount++;
			S32 tjump2 =  gTempJumpCount++;
			fprintf(fp, "LabelTempJump%d:\n", tjump1);
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_if_test(fp, mExpression->mReturnType);
			fprintf(fp, "brfalse LabelTempJump%d\n", tjump2);
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "br LabelTempJump%d\n", tjump1);
			fprintf(fp, "LabelTempJump%d:\n", tjump2);
		}
		break;
	default:
		mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptDeclaration::getSize()
{
	return mType->getSize();
}

void LLScriptDeclaration::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		if (mExpression)
		{
			fdotabs(fp, tabs, tabsize);
			mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "\t");
			mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, " = ");
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, ";\n");
		}
		else
		{
			fdotabs(fp, tabs, tabsize);
			mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "\t");
			mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, ";\n");
		}
		break;
	case LSCP_EMIT_ASSEMBLY:
		if (mExpression)
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
			{
				fprintf(fp, "%s%d [%s]\n", LSCRIPTTypeLocalDeclaration[mIdentifier->mScopeEntry->mType], mIdentifier->mScopeEntry->mOffset, mIdentifier->mName);
			}
			else if (mIdentifier->mScopeEntry->mIDType == LIT_GLOBAL)
			{
				gErrorToText.writeError(fp, this, LSERROR_UNDEFINED_NAME);
			}
		}
		break;
	case LSCP_PRUNE:
		prunearg = FALSE;
		break;
	case LSCP_SCOPE_PASS1:
		// Check to see if a declaration is valid here.
		if (!mAllowDeclarations)
		{
			gErrorToText.writeError(fp, this, LSERROR_NEED_NEW_SCOPE);
		}
		// add labels to scope
		else if (scope->checkEntry(mIdentifier->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			if (mExpression)
			{
				mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			}
			// this needs to go after expression decent to make sure that we don't add ourselves or something silly
			// check expression if it exists
			mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_VARIABLE, mType->mType);
		}
		break;
	case LSCP_TYPE:
		// if there is an expression, it must be promotable to variable type
		if (mExpression && mIdentifier->mScopeEntry)
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (!legal_assignment(mIdentifier->mScopeEntry->mType, type))
			{
				gErrorToText.writeError(fp, this, LSERROR_TYPE_MISMATCH);
			}
		}
		break;
	case LSCP_RESOURCE:
		{
			mIdentifier->mScopeEntry->mOffset = (S32)count;
			mIdentifier->mScopeEntry->mSize = mType->getSize();
			count += mIdentifier->mScopeEntry->mSize;
			// Index into locals is current number of locals. Stored in mCount member of mScopeEntry.
			mIdentifier->mScopeEntry->mCount = entry->mLocals.getNumber();
			entry->mLocals.addType(mType->mType);
			mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		if (mExpression)
		{
			mExpression->recurse(fp, tabs, tabsize, LSCP_TO_STACK, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (mExpression->mReturnType != mIdentifier->mScopeEntry->mType)
			{
				cast2stack(chunk, mExpression->mReturnType, mIdentifier->mScopeEntry->mType);
			}
			switch(mExpression->mReturnType)
			{
			case LST_INTEGER:
			case LST_FLOATINGPOINT:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_LOADP]);
				}
				break;
			case LST_STRING:
			case LST_KEY:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_LOADSP]);
				}
				break;
			case LST_LIST:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_LOADLP]);
				}
				break;
			case LST_VECTOR:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_LOADVP]);
				}
				break;
			case LST_QUATERNION:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_LOADQP]);
				}
				break;
			default:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_LOADP]);
				}
				break;
			}
			if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
			{
				S32 address = mIdentifier->mScopeEntry->mOffset;
				chunk->addInteger(address);
			}
		}
		else
		{
			switch(mIdentifier->mScopeEntry->mType)
			{
			case LST_INTEGER:
			case LST_FLOATINGPOINT:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
					chunk->addInteger(0);
					chunk->addByte(LSCRIPTOpCodes[LOPC_LOADP]);
				}
				break;
			case LST_STRING:
			case LST_KEY:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGS]);
					chunk->addBytes("", 1);
					chunk->addByte(LSCRIPTOpCodes[LOPC_LOADSP]);
				}
				break;
			case LST_LIST:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_STACKTOL]);
					chunk->addInteger(0);
					chunk->addByte(LSCRIPTOpCodes[LOPC_LOADLP]);
				}
				break;
			case LST_VECTOR:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGV]);
					chunk->addFloat(0);
					chunk->addFloat(0);
					chunk->addFloat(0);
					chunk->addByte(LSCRIPTOpCodes[LOPC_LOADVP]);
				}
				break;
			case LST_QUATERNION:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGQ]);
					chunk->addFloat(1);
					chunk->addFloat(0);
					chunk->addFloat(0);
					chunk->addFloat(0);
					chunk->addByte(LSCRIPTOpCodes[LOPC_LOADQP]);
				}
				break;
			default:
				if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
				{
					chunk->addByte(LSCRIPTOpCodes[LOPC_PUSHARGI]);
					chunk->addInteger(0);
					chunk->addByte(LSCRIPTOpCodes[LOPC_LOADP]);
				}
				break;
			}
			if (mIdentifier->mScopeEntry->mIDType == LIT_VARIABLE)
			{
				S32 address = mIdentifier->mScopeEntry->mOffset;
				chunk->addInteger(address);
			}
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		if (mExpression)
		{
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			print_cil_cast(fp, mExpression->mReturnType, mIdentifier->mScopeEntry->mType);
		}
		else
		{
			print_cil_init_variable(fp, mIdentifier->mScopeEntry->mType);
		}
		fprintf(fp, "stloc.s %d\n", mIdentifier->mScopeEntry->mCount);
		break;
	default:
		if (mExpression)
		{
			mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mExpression->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		else
		{
			mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

S32 LLScriptCompoundStatement::getSize()
{
	return 0;
}

void LLScriptCompoundStatement::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		if (mStatement)
		{
			fdotabs(fp, tabs, tabsize);
			fprintf(fp, "{\n");
			mStatement->recurse(fp, tabs + 1, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fdotabs(fp, tabs, tabsize);
			fprintf(fp, "}\n");
		}
		else
		{
			fdotabs(fp, tabs, tabsize);
			fprintf(fp, "{\n");
			fdotabs(fp, tabs, tabsize);
			fprintf(fp, "}\n");
		}
		break;
	case LSCP_EMIT_ASSEMBLY:
		if (mStatement)
		{
			mStatement->recurse(fp, tabs + 1, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_PRUNE:
		if (mStatement)
		{
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		else
		{
			prunearg = FALSE;
		}
		break;
	case LSCP_SCOPE_PASS1:
		// compound statements create a new scope
		if (mStatement)
		{
			mStatementScope = new LLScriptScope(gScopeStringTable);
			mStatementScope->addParentScope(scope);
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mStatementScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_SCOPE_PASS2:
		// compound statements create a new scope
		if (mStatement)
		{
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mStatementScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	default:
		if (mStatement)
		{
			mStatement->recurse(fp, tabs + 1, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

void LLScriptEventHandler::addEvent(LLScriptEventHandler *event)
{
	if (mNextp)
	{
		event->mNextp = mNextp;
	}
	mNextp = event;
}

void LLScriptEventHandler::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	default:
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
}

S32 LLScriptEventHandler::getSize()
{
	return mStackSpace;
}

U64 gCurrentHandler = 0;

static void print_cil_local_init(LLFILE* fp, LLScriptScopeEntry* scopeEntry)
{
	if(scopeEntry->mLocals.getNumber() > 0)
	{
		fprintf(fp, ".locals init (");
		for(int local = 0; local < scopeEntry->mLocals.getNumber(); ++local)
		{
			if(local > 0)
			{
				fprintf(fp, ", ");
			}
			print_cil_type(fp, scopeEntry->mLocals.getType(local));
		}
		fprintf(fp, ")\n");
	}
}

void LLScriptEventHandler::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mStatement)
		{
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		else
		{
			fdotabs(fp, tabs, tabsize);
			fprintf(fp, "{\n");
			fdotabs(fp, tabs, tabsize);
			fprintf(fp, "}\n");
		}
		break;
	case LSCP_EMIT_ASSEMBLY:
		mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mStatement)
		{
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, getSize(), mScopeEntry, entrycount, NULL);
		}
		if (mbNeedTrailingReturn)
		{
			print_return(fp, mScopeEntry);
		}
		fprintf(fp, "\n");
		break;
	case LSCP_PRUNE:
		mbNeedTrailingReturn = FALSE;
		prunearg = TRUE;
		mStatement->recurse(fp, tabs, tabsize, pass, LSPRUNE_EVENTS, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (!prunearg)
		{
			// this means that we didn't end with a return statement, need to add one
			mbNeedTrailingReturn = TRUE;
		}
		break;
	case LSCP_SCOPE_PASS1:
		// create event level scope
		mEventScope = new LLScriptScope(gScopeStringTable);
		mEventScope->addParentScope(scope);

		// add event parameters
		mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mEventScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);

		mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mEventScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_SCOPE_PASS2:
		mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mEventScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_TYPE:
		mScopeEntry = new LLScriptScopeEntry("Event", LIT_HANDLER, LST_NULL);
		switch(mEventp->mType)
		{
		case LSTT_STATE_ENTRY:
			break;
		case LSTT_STATE_EXIT:
			break;
		case LSTT_TOUCH_START:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			break;
		case LSTT_TOUCH:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			break;
		case LSTT_TOUCH_END:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			break;
		case LSTT_COLLISION_START:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			break;
		case LSTT_COLLISION:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			break;
		case LSTT_COLLISION_END:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			break;
		case LSTT_LAND_COLLISION_START:
			mScopeEntry->mFunctionArgs.addType(LST_VECTOR);
			break;
		case LSTT_LAND_COLLISION:
			mScopeEntry->mFunctionArgs.addType(LST_VECTOR);
			break;
		case LSTT_LAND_COLLISION_END:
			mScopeEntry->mFunctionArgs.addType(LST_VECTOR);
			break;
		case LSTT_INVENTORY:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			break;
		case LSTT_ATTACH:
			mScopeEntry->mFunctionArgs.addType(LST_KEY);
			break;
		case LSTT_DATASERVER:
			mScopeEntry->mFunctionArgs.addType(LST_KEY);
			mScopeEntry->mFunctionArgs.addType(LST_STRING);
			break;
		case LSTT_TIMER:
			break;
		case LSTT_MOVING_START:
			break;
		case LSTT_MOVING_END:
			break;
		case LSTT_OBJECT_REZ:
			mScopeEntry->mFunctionArgs.addType(LST_KEY);
			break;
		case LSTT_REMOTE_DATA:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			mScopeEntry->mFunctionArgs.addType(LST_KEY);
			mScopeEntry->mFunctionArgs.addType(LST_KEY);
			mScopeEntry->mFunctionArgs.addType(LST_STRING);
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			mScopeEntry->mFunctionArgs.addType(LST_STRING);
			break;
		case LSTT_CHAT:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			mScopeEntry->mFunctionArgs.addType(LST_STRING);
			mScopeEntry->mFunctionArgs.addType(LST_KEY);
			mScopeEntry->mFunctionArgs.addType(LST_STRING);
			break;
		case LSTT_SENSOR:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			break;
		case LSTT_CONTROL:
			mScopeEntry->mFunctionArgs.addType(LST_KEY);
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			break;
		case LSTT_LINK_MESSAGE:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			mScopeEntry->mFunctionArgs.addType(LST_STRING);
			mScopeEntry->mFunctionArgs.addType(LST_KEY);
			break;
		case LSTT_MONEY:
			mScopeEntry->mFunctionArgs.addType(LST_KEY);
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			break;
		case LSTT_EMAIL:
			mScopeEntry->mFunctionArgs.addType(LST_STRING);
			mScopeEntry->mFunctionArgs.addType(LST_STRING);
			mScopeEntry->mFunctionArgs.addType(LST_STRING);
			mScopeEntry->mFunctionArgs.addType(LST_STRING);
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			break;
		case LSTT_REZ:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			break;
		case LSTT_NO_SENSOR:
			break;
		case LSTT_AT_TARGET:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			mScopeEntry->mFunctionArgs.addType(LST_VECTOR);
			mScopeEntry->mFunctionArgs.addType(LST_VECTOR);
			break;
		case LSTT_NOT_AT_TARGET:
			break;
		case LSTT_AT_ROT_TARGET:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			mScopeEntry->mFunctionArgs.addType(LST_QUATERNION);
			mScopeEntry->mFunctionArgs.addType(LST_QUATERNION);
			break;
		case LSTT_NOT_AT_ROT_TARGET:
			break;
		case LSTT_RTPERMISSIONS:
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			break;
		case LSTT_HTTP_RESPONSE:
			mScopeEntry->mFunctionArgs.addType(LST_KEY);
			mScopeEntry->mFunctionArgs.addType(LST_INTEGER);
			mScopeEntry->mFunctionArgs.addType(LST_LIST);
			mScopeEntry->mFunctionArgs.addType(LST_STRING);
			break;
		case LSTT_HTTP_REQUEST:
			mScopeEntry->mFunctionArgs.addType(LST_KEY);
			mScopeEntry->mFunctionArgs.addType(LST_STRING);
			mScopeEntry->mFunctionArgs.addType(LST_STRING);
			break;

		default:
			break;
		}
		mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_RESOURCE:
		// first determine resource counts for globals
		count = 0;
		mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);

		// Store offset of first local as with global functions, so locals and arguments can be distinguished with is_parameter when compiling to CIL.
		mScopeEntry->mOffset = (S32) count;

		if (mStatement)
		{
			entrycount = 0;
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mScopeEntry, entrycount, NULL);

			const char *function_args = mScopeEntry->mFunctionArgs.mString;
			fprintf(fp, "Function Args: %s\n", function_args?function_args:"");

			const char *local_list = mScopeEntry->mLocals.mString;
			fprintf(fp, "Local List: %s\n", local_list?local_list:"");
		}
		mStackSpace = (S32)count;
		break;
	case LSCP_DETERMINE_HANDLERS:
		count |= LSCRIPTStateBitField[mEventp->mType];
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			llassert(mEventp);
			if (!mEventp) return;

			// order for event handler
			// set jump table value
			S32 jumpoffset;
			jumpoffset = LSCRIPTDataSize[LST_INTEGER]*get_event_handler_jump_position(gCurrentHandler, mEventp->mType)*2;

			integer2bytestream(chunk->mCodeChunk, jumpoffset, chunk->mCurrentOffset);

			// 0 - 3: offset to actual data
			S32 offsetoffset = chunk->mCurrentOffset;
			S32 offsetdelta = 0;
			chunk->addBytes(4);

			// null terminated event name and null terminated parameters
			LLScriptByteCodeChunk	*event = new LLScriptByteCodeChunk(FALSE);
			mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, event, heap, stacksize, entry, entrycount, NULL);
			chunk->addBytes(event->mCodeChunk, event->mCurrentOffset);
			delete event;
		
			chunk->addBytes(1);

			// now we're at the first opcode
			offsetdelta = chunk->mCurrentOffset - offsetoffset;
			integer2bytestream(chunk->mCodeChunk, offsetoffset, offsetdelta);

			// get ready to compute the number of bytes of opcode
			offsetdelta = chunk->mCurrentOffset;

			if (mStatement)
			{
				LLScriptByteCodeChunk	*statements = new LLScriptByteCodeChunk(TRUE);
				mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, statements, heap, getSize(), mScopeEntry, entrycount, NULL);
				statements->connectJumps();
				chunk->addBytes(statements->mCodeChunk, statements->mCurrentOffset);
				delete statements;
			}
			if (mbNeedTrailingReturn)
			{
				add_return(chunk, mScopeEntry);
			}
			// now stuff in the number of bytes of stack space that this routine needs
			integer2bytestream(chunk->mCodeChunk, jumpoffset, getSize());
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:

		// Method signature prefix.
		fprintf(fp, ".method public hidebysig instance default void ");

		// Mangle event handler name by prefixing it with state name.
		// Allows state changing by finding handlers prefixed with new
		// state name. Prefix disambiguates functions and event handlers.
		fprintf(fp, "e");
		fprintf(fp, "%s", entry->mIdentifier);

		// Handler name and arguments.
		mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);

		// Method signature postfix.
		fprintf(fp, " cil managed\n");

		// Function header.
		fprintf(fp,"{\n");
		fprintf(fp, ".maxstack 500\n"); // TODO: Calculated stack size...

		// Allocate space for locals.
		print_cil_local_init(fp, mScopeEntry);

		if (mStatement)
		{
			// Pass scope so identifiers can determine parameter or local.
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mScopeEntry, entrycount, NULL);
		}

		// Function footer.
		if (mbNeedTrailingReturn)
		{
			// TODO: throw exception?
			fprintf(fp, "ret\n");
		}
		fprintf(fp, "}\n");

		break;
	default:
		mEventp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mStatement)
		{
			mStatement->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

void LLScriptFunctionDec::addFunctionParameter(LLScriptFunctionDec *dec)
{
	if (mNextp)
	{
		dec->mNextp = mNextp;
	}
	mNextp = dec;
}

void LLScriptFunctionDec::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		if (mNextp)
		{
			fprintf(fp, ", ");
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_EMIT_ASSEMBLY:
		if (mNextp)
		{
			fprintf(fp, ", ");
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	default:
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}

}

S32 LLScriptFunctionDec::getSize()
{
	return 0;
}

void LLScriptFunctionDec::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " ");
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:
		mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " ");
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_SCOPE_PASS1:
		// add function names into global scope
		if (scope->checkEntry(mIdentifier->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_VARIABLE, mType->mType);
		}
		break;
	case LSCP_RESOURCE:
		{
			// we're just tryng to determine how much space the variable needs
			mIdentifier->mScopeEntry->mOffset = (S32)count;
			mIdentifier->mScopeEntry->mSize = mType->getSize();
			count += mIdentifier->mScopeEntry->mSize;
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			// return type
			char typereturn;
			if (mType)
			{
				typereturn = LSCRIPTTypeByte[mType->mType];
			}
			else
			{
				typereturn = LSCRIPTTypeByte[LST_NULL]; 
			}
			chunk->addBytes(&typereturn, 1);
			// name
#ifdef LSL_INCLUDE_DEBUG_INFO
			chunk->addBytes(mIdentifier->mName, strlen(mIdentifier->mName) + 1);
#else
			chunk->addBytes(1);
#endif
		}
		break;
	case LSCP_BUILD_FUNCTION_ARGS:
		{
			entry->mFunctionArgs.addType(mType->mType);
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, " ");
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if(NULL != mNextp)
		{
			fprintf(fp, ",");
		}
		break;
	default:
		mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

void LLScriptGlobalFunctions::addGlobalFunction(LLScriptGlobalFunctions *global)
{
	if (mNextp)
	{
		global->mNextp = mNextp;
	}
	mNextp = global;
}

void LLScriptGlobalFunctions::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	default:
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
}

S32 LLScriptGlobalFunctions::getSize()
{
	return 0;
}

void LLScriptGlobalFunctions::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		if (mType)
		{
			mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "\t");
		}
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mParameters)
		{
			fprintf(fp, "( ");
			mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, " )\n");
		}
		else
		{
			fprintf(fp, "()\n");
		}
		if (mStatements)
		{
			fdotabs(fp, tabs, tabsize);
			mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mIdentifier->mScopeEntry, entrycount, NULL);
		}
		else
		{
			fdotabs(fp, tabs, tabsize);
			fprintf(fp, "{\n");
			fdotabs(fp, tabs, tabsize);
			fprintf(fp, "}\n");
		}
		break;
	case LSCP_EMIT_ASSEMBLY:
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mParameters)
		{
			fprintf(fp, "( ");
			mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, " )\n");
		}
		else
		{
			fprintf(fp, "()\n");
		}
		if (mStatements)
		{
			mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, mIdentifier->mScopeEntry->mSize, mIdentifier->mScopeEntry, entrycount, NULL);
		}
		if (mbNeedTrailingReturn)
		{
			print_return(fp, mIdentifier->mScopeEntry);
		}
		fprintf(fp, "\n");
		break;
	case LSCP_PRUNE:
		mbNeedTrailingReturn = FALSE;
		if (mType)
		{
			prunearg = TRUE;
			mStatements->recurse(fp, tabs, tabsize, pass, LSPRUNE_GLOBAL_NON_VOIDS, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (!prunearg)
			{
				gErrorToText.writeError(fp, this, LSERROR_NO_RETURN);
			}
		}
		else
		{
			prunearg = TRUE;
			mStatements->recurse(fp, tabs, tabsize, pass, LSPRUNE_GLOBAL_VOIDS, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			if (!prunearg)
			{
				// this means that we didn't end with a return statement, need to add one
				mbNeedTrailingReturn = TRUE;
			}
		}
		break;
	case LSCP_SCOPE_PASS1:
		// add function names into global scope
		if (scope->checkEntry(mIdentifier->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			if (mType)
			{
				mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_FUNCTION, mType->mType);
			}
			else
			{
				mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_FUNCTION, LST_NULL);
			}
		}

		// create function level scope
		mFunctionScope = new LLScriptScope(gScopeStringTable);
		mFunctionScope->addParentScope(scope);

		// function parameters
		if (mParameters)
		{
			mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mFunctionScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}

		mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mFunctionScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_SCOPE_PASS2:
		mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mFunctionScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		
		if (mParameters)
		{
			if (mIdentifier->mScopeEntry)
			{
				mParameters->recurse(fp, tabs, tabsize, LSCP_BUILD_FUNCTION_ARGS, ptype, prunearg, mFunctionScope, type, basetype, count, chunk, heap, stacksize, mIdentifier->mScopeEntry, 0, NULL);
			}
		}
		break;
	case LSCP_TYPE:
		if (mType)
		{
			mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, mType->mType, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		else
		{
			type = LST_NULL;
			mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_RESOURCE:
		// first determine resource counts for globals
		count = 0;

		if (mParameters)
		{
			mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}

		if (mIdentifier->mScopeEntry)
		{
			// this isn't a bug . . . Offset is used to determine how much is params vs locals
			mIdentifier->mScopeEntry->mOffset = (S32)count;
		}

		if (mStatements)
		{
			entrycount = 0;
			mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mIdentifier->mScopeEntry, entrycount, NULL);
			fprintf(fp, "Function Args: %s\n", mIdentifier->mScopeEntry->mFunctionArgs.mString);
			fprintf(fp, "Local List: %s\n", mIdentifier->mScopeEntry->mLocals.mString);
			if (mIdentifier->mScopeEntry)
			{
				mIdentifier->mScopeEntry->mSize = (S32)count;
			}
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			// order for global functions
			// set jump table value
			S32 jumpoffset = LSCRIPTDataSize[LST_INTEGER]*mIdentifier->mScopeEntry->mCount + LSCRIPTDataSize[LST_INTEGER];
			integer2bytestream(chunk->mCodeChunk, jumpoffset, chunk->mCurrentOffset);

			// 0 - 3: offset to actual data
			S32 offsetoffset = chunk->mCurrentOffset;
			S32 offsetdelta = 0;
			chunk->addBytes(4);

			// null terminated function name
#ifdef LSL_INCLUDE_DEBUG_INFO
			chunk->addBytes(mIdentifier->mName, strlen(mIdentifier->mName) + 1);
#else
			chunk->addBytes(1);
#endif
			// return type
			char typereturn;
			if (mType)
			{
				typereturn = LSCRIPTTypeByte[mType->mType];
			}
			else
			{
				typereturn = LSCRIPTTypeByte[LST_NULL]; 
			}
			chunk->addBytes(&typereturn, 1);

			// null terminated parameters, followed by type
			if (mParameters)
			{
				LLScriptByteCodeChunk	*params = new LLScriptByteCodeChunk(FALSE);
				mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, params, heap, stacksize, entry, entrycount, NULL);
				chunk->addBytes(params->mCodeChunk, params->mCurrentOffset);
				delete params;
			}
			chunk->addBytes(1);

			// now we're at the first opcode
			offsetdelta = chunk->mCurrentOffset - offsetoffset;
			integer2bytestream(chunk->mCodeChunk, offsetoffset, offsetdelta);

			if (mStatements)
			{
				LLScriptByteCodeChunk	*statements = new LLScriptByteCodeChunk(TRUE);
				mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, statements, heap, mIdentifier->mScopeEntry->mSize, mIdentifier->mScopeEntry, entrycount, NULL);
				statements->connectJumps();
				chunk->addBytes(statements->mCodeChunk, statements->mCurrentOffset);
				delete statements;
			}
			if (mbNeedTrailingReturn)
			{
				add_return(chunk, mIdentifier->mScopeEntry);
			}
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			// Function header. Prefix function name with g to distinguish
			// from event handlers.
			fprintf(fp, ".method public hidebysig instance default ");
			print_cil_type(fp, mType ? mType->mType : LST_NULL);
			fprintf(fp, " 'g");
			fprintf(fp, "%s", mIdentifier->mName);
			fprintf(fp, "'");
			if (mParameters)
			{
				fprintf(fp, "( ");
				mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(fp, " )");
			}
			else
			{
				fprintf(fp, "()");
			}
			fprintf(fp, " cil managed\n{\n");
			fprintf(fp, ".maxstack 500\n"); // TODO: Calculated stack size...

			// Allocate space for locals.
			print_cil_local_init(fp, mIdentifier->mScopeEntry);

			if (mStatements)
			{
				mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, mIdentifier->mScopeEntry->mSize, mIdentifier->mScopeEntry, entrycount, NULL);
			}

			// Function footer.
			if (mbNeedTrailingReturn)
			{
				// TODO: throw exception?
				fprintf(fp, "ret\n");
			}
			fprintf(fp, "}\n");
			fprintf(fp, "\n");
		}
		break;
	default:
		if (mType)
		{
			mType->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mParameters)
		{
			mParameters->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		if (mStatements)
		{
			mStatements->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

void LLScriptState::addState(LLScriptState *state)
{
	if (mNextp)
	{
		state->mNextp = mNextp;
	}
	mNextp = state;
}

void LLScriptState::gonext(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	default:
		if (mNextp)
		{
			mNextp->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
}

S32 LLScriptState::getSize()
{
	return 0;
}

void LLScriptState::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		fdotabs(fp, tabs, tabsize);
		if (mType == LSSTYPE_DEFAULT)
		{
			mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "\n");
			fdotabs(fp, tabs, tabsize);
			fprintf(fp, "{\n");
		}
		else
		{
			fprintf(fp, "state ");
			mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "\n");
			fdotabs(fp, tabs, tabsize);
			fprintf(fp, "{\n");
		}
		if (mEvent)
		{
			mEvent->recurse(fp, tabs + 1, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		fdotabs(fp, tabs, tabsize);
		fprintf(fp, "}\n");
		break;
	case LSCP_EMIT_ASSEMBLY:
		mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, ":\n");
		if (mEvent)
		{
			fprintf(fp, "EVENTS\n");
			mEvent->recurse(fp, tabs + 1, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "\n");
		}
		break;
	case LSCP_SCOPE_PASS1:
		// add state name
		if (scope->checkEntry(mIdentifier->mName))
		{
			gErrorToText.writeError(fp, this, LSERROR_DUPLICATE_NAME);
		}
		else
		{
			mIdentifier->mScopeEntry = scope->addEntry(mIdentifier->mName, LIT_STATE, LST_NULL);
		}
		mStateScope = new LLScriptScope(gScopeStringTable);
		mStateScope->addParentScope(scope);
		// now do the events
		if (mEvent)
		{
			mEvent->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mStateScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_SCOPE_PASS2:
		if (mEvent)
		{
			mEvent->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_TYPE:
		if (mEvent)
		{
			mEvent->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			// order for states
			// set jump table value
			
			S32 jumpoffset;
			if (LSL2_CURRENT_MAJOR_VERSION == LSL2_MAJOR_VERSION_TWO)
			{
				jumpoffset = LSCRIPTDataSize[LST_INTEGER]*3*mIdentifier->mScopeEntry->mCount + LSCRIPTDataSize[LST_INTEGER];
			}
			else
			{
				jumpoffset = LSCRIPTDataSize[LST_INTEGER]*2*mIdentifier->mScopeEntry->mCount + LSCRIPTDataSize[LST_INTEGER];
			}
			integer2bytestream(chunk->mCodeChunk, jumpoffset, chunk->mCurrentOffset);

			// need to figure out what handlers this state has registered
			// we'll use to count to find it
			count = 0;

			if (mEvent)
			{
				mEvent->recurse(fp, tabs, tabsize, LSCP_DETERMINE_HANDLERS, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				gCurrentHandler = count;
			}

			// add description word into chunk
			if (LSL2_CURRENT_MAJOR_VERSION == LSL2_MAJOR_VERSION_TWO)
			{
				u642bytestream(chunk->mCodeChunk, jumpoffset, gCurrentHandler);
			}
			else
			{
				integer2bytestream(chunk->mCodeChunk, jumpoffset, (S32)gCurrentHandler);
			}


			// 0 - 3: offset to event jump table
			S32 offsetoffset = chunk->mCurrentOffset;
			S32 offsetdelta = 0;
			chunk->addBytes(4);

			// null terminated state name
#ifdef LSL_INCLUDE_DEBUG_INFO
			chunk->addBytes(mIdentifier->mName, strlen(mIdentifier->mName) + 1);
#else
			chunk->addBytes(1);
#endif
			// now we're at the jump table
			offsetdelta = chunk->mCurrentOffset - offsetoffset;
			integer2bytestream(chunk->mCodeChunk, offsetoffset, offsetdelta);

			// add the events themselves
			if (mEvent)
			{
				LLScriptByteCodeChunk	*events = new LLScriptByteCodeChunk(FALSE);
				// make space for event jump table
				events->addBytes(LSCRIPTDataSize[LST_INTEGER]*get_number_of_event_handlers(gCurrentHandler)*2);
				mEvent->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, events, heap, stacksize, entry, entrycount, NULL);
				chunk->addBytes(events->mCodeChunk, events->mCurrentOffset);
				delete events;
			}
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		if (mEvent)
		{
			// Entry not used at this level, so pass state scope as entry parameter, to allow event handlers to do name mangling.
			mEvent->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, mIdentifier->mScopeEntry, entrycount, NULL);
		}
		break;
	default:
		if (mType == LSSTYPE_DEFAULT)
		{
		}
		else
		{
			mIdentifier->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		if (mEvent)
		{
			mEvent->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		break;
	}
	gonext(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
}

// Converts string to a valid CIL class name and stores the result 
// in the supplied buffer, which should be at least 32 chars long.
// If the string starts with a UUID, all characters in the UUID are included
// in the generated name.
void to_class_name(char* buffer, const char* string)
{
	strcpy(buffer, "LSL-");
	strcat(buffer, string);
	char* current_char = buffer;
	while((*current_char) != 0)
	{
		if(isalnum(*current_char))
		{
			++current_char;
		}
		else if((*current_char) == '-')
		{
			(*current_char) = '_';
			++current_char;
		}
		else
		{
			(*current_char) = 0;
		}
	}
}

void LLScriptScript::setClassName(const char* class_name)
{
	to_class_name(mClassName, class_name);
}

S32 LLScriptScript::getSize()
{
	return 0;
}

LLScriptScript::LLScriptScript(LLScritpGlobalStorage *globals, 
							   LLScriptState *states) :
    LLScriptFilePosition(0, 0),
	mStates(states), mGlobalScope(NULL), mGlobals(NULL), mGlobalFunctions(NULL), mGodLike(FALSE)
{
	const char DEFAULT_BYTECODE_FILENAME[] = "lscript.lso";

	mBytecodeDest = DEFAULT_BYTECODE_FILENAME;
	LLScriptGlobalVariable	*tvar;
	LLScriptGlobalFunctions	*tfunc;
	LLScritpGlobalStorage *temp;

	temp = globals;
	while(temp)
	{
		if (temp->mbGlobalFunction)
		{
			if (!mGlobalFunctions)
			{
				mGlobalFunctions = (LLScriptGlobalFunctions *)temp->mGlobal;
			}
			else
			{
				tfunc = mGlobalFunctions;
				while(tfunc->mNextp)
				{
					tfunc = tfunc->mNextp;
				}
				tfunc->mNextp = (LLScriptGlobalFunctions *)temp->mGlobal;
			}
		}
		else
		{
			if (!mGlobals)
			{
				mGlobals = (LLScriptGlobalVariable *)temp->mGlobal;
			}
			else
			{
				tvar = mGlobals;
				while(tvar->mNextp)
				{
					tvar = tvar->mNextp;
				}
				tvar->mNextp = (LLScriptGlobalVariable *)temp->mGlobal;
			}
		}
		temp = temp->mNextp;
	}

	mClassName[0] = '\0';
}

void LLScriptScript::setBytecodeDest(const char* dst_filename)
{
	mBytecodeDest = ll_safe_string(dst_filename);
}

static void print_cil_globals(LLFILE* fp, LLScriptGlobalVariable* global)
{
	fprintf(fp, ".field public ");
	print_cil_type(fp, global->mType->mType);
	fprintf(fp, " '%s'\n", global->mIdentifier->mName);
	if(NULL != global->mNextp)
	{
		print_cil_globals(fp, global->mNextp);
	}
}

void LLScriptScript::recurse(LLFILE *fp, S32 tabs, S32 tabsize, LSCRIPTCompilePass pass, LSCRIPTPruneType ptype, BOOL &prunearg, LLScriptScope *scope, LSCRIPTType &type, LSCRIPTType basetype, U64 &count, LLScriptByteCodeChunk *chunk, LLScriptByteCodeChunk *heap, S32 stacksize, LLScriptScopeEntry *entry, S32 entrycount, LLScriptLibData **ldata)
{
	if (gErrorToText.getErrors())
	{
		return;
	}
	switch(pass)
	{
	case LSCP_PRETTY_PRINT:
		if (mGlobals)
		{
			fdotabs(fp, tabs, tabsize);
			mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}

		if (mGlobalFunctions)
		{
			fdotabs(fp, tabs, tabsize);
			mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}

		fdotabs(fp, tabs, tabsize);
		mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_PRUNE:
		if (mGlobalFunctions)
		{
			mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		}
		mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_SCOPE_PASS1:
		{
			mGlobalScope = new LLScriptScope(gScopeStringTable);
			// zeroth, add library functions to global scope
			U16 function_index = 0;
			const char *arg;
			LLScriptScopeEntry *sentry;
			for (std::vector<LLScriptLibraryFunction>::const_iterator i = gScriptLibrary.mFunctions.begin();
				 i != gScriptLibrary.mFunctions.end(); ++i)
			{
				// First, check to make sure this isn't a god only function, or that the viewer's agent is a god.
				if (!i->mGodOnly || mGodLike)
				{
					if (i->mReturnType)
						sentry = mGlobalScope->addEntry(i->mName, LIT_LIBRARY_FUNCTION, char2type(*i->mReturnType));
					else
						sentry = mGlobalScope->addEntry(i->mName, LIT_LIBRARY_FUNCTION, LST_NULL);
					sentry->mLibraryNumber = function_index;
					arg = i->mArgs;
					if (arg)
					{
						while (*arg)
						{
							sentry->mFunctionArgs.addType(char2type(*arg));
							sentry->mSize += LSCRIPTDataSize[char2type(*arg)];
							sentry->mOffset += LSCRIPTDataSize[char2type(*arg)];
							arg++;
						}
					}
				}
				function_index++;
			}
			// first go and collect all the global variables
			if (mGlobals)
				mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mGlobalScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			// second, do the global functions
			if (mGlobalFunctions)
				mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mGlobalScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			// now do states
			mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mGlobalScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			break;
		}
	case LSCP_SCOPE_PASS2:
		// now we're checking jumps, function calls, and state transitions
		if (mGlobalFunctions)
			mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mGlobalScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, mGlobalScope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_TYPE:
		// first we need to check global variables
		if (mGlobals)
			mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		// now do global functions and states
		if (mGlobalFunctions)
			mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_RESOURCE:
		// first determine resource counts for globals
		count = 0;
		if (mGlobals)
			mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		// now do locals
		if (mGlobalFunctions)
			mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	case LSCP_EMIT_ASSEMBLY:

		if (mGlobals)
		{
			fprintf(fp, "GLOBALS\n");
			fdotabs(fp, tabs, tabsize);
			mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "\n");
		}

		if (mGlobalFunctions)
		{
			fprintf(fp, "GLOBAL FUNCTIONS\n");
			fdotabs(fp, tabs, tabsize);
			mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(fp, "\n");
		}

		fprintf(fp, "STATES\n");
		fdotabs(fp, tabs, tabsize);
		mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		fprintf(fp, "\n");
		break;
	case LSCP_EMIT_BYTE_CODE:
		{
			// first, create data structure to hold the whole shebang
			LLScriptScriptCodeChunk	*code = new LLScriptScriptCodeChunk(TOP_OF_MEMORY);

			// ok, let's add the registers, all zeroes for now
			S32 i;
			S32 nooffset = 0;

			for (i = LREG_IP; i < LREG_EOF; i++)
			{
				if (i < LREG_NCE)
					code->mRegisters->addBytes(4);
				else if (LSL2_CURRENT_MAJOR_VERSION == LSL2_MAJOR_VERSION_TWO)
					code->mRegisters->addBytes(8);
			}
			// global variables
			if (mGlobals)
				mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, code->mGlobalVariables, code->mHeap, stacksize, entry, entrycount, NULL);

			// put the ending heap block onto the heap
			U8 *temp;
			S32 size = lsa_create_data_block(&temp, NULL, 0);
			code->mHeap->addBytes(temp, size);
			delete [] temp;

			// global functions
			// make space for global function jump table
			if (mGlobalFunctions)
			{
				code->mGlobalFunctions->addBytes(LSCRIPTDataSize[LST_INTEGER]*mGlobalScope->mFunctionCount + LSCRIPTDataSize[LST_INTEGER]);
				integer2bytestream(code->mGlobalFunctions->mCodeChunk, nooffset, mGlobalScope->mFunctionCount);
				mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, code->mGlobalFunctions, NULL, stacksize, entry, entrycount, NULL);
			}


			nooffset = 0;
			// states
			// make space for state jump/info table
			if (LSL2_CURRENT_MAJOR_VERSION == LSL2_MAJOR_VERSION_TWO)
			{
				code->mStates->addBytes(LSCRIPTDataSize[LST_INTEGER]*3*mGlobalScope->mStateCount + LSCRIPTDataSize[LST_INTEGER]);
			}
			else
			{
				code->mStates->addBytes(LSCRIPTDataSize[LST_INTEGER]*2*mGlobalScope->mStateCount + LSCRIPTDataSize[LST_INTEGER]);
			}
			integer2bytestream(code->mStates->mCodeChunk, nooffset, mGlobalScope->mStateCount);
			mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, code->mStates, NULL, stacksize, entry, entrycount, NULL);

			// now, put it all together and spit it out
			// we need 
			LLFILE* bcfp = LLFile::fopen(mBytecodeDest, "wb");		/*Flawfinder: ignore*/
			
			code->build(fp, bcfp);
			fclose(bcfp);
									   
			delete code;
		}
		break;
	case LSCP_EMIT_CIL_ASSEMBLY:
		{
			LLFILE *bcfp = LLFile::fopen(mBytecodeDest, "wb");

			// Output dependencies.
			fprintf(bcfp, ".assembly extern mscorlib {.ver 1:0:5000:0}\n");
			fprintf(bcfp, ".assembly extern LslLibrary {.ver 0:1:0:0}\n");
			fprintf(bcfp, ".assembly extern LslUserScript {.ver 0:1:0:0}\n");
			fprintf(bcfp, ".assembly extern ScriptTypes {.ver 0:1:0:0}\n");

			// Output assembly name.
			fprintf(bcfp, ".assembly '%s' {.ver 0:0:0:0}\n", gScriptp->getClassName());

			// Output class header.
			fprintf(bcfp, ".class public auto ansi serializable beforefieldinit %s extends [LslUserScript]LindenLab.SecondLife.LslUserScript\n", gScriptp->getClassName());
			fprintf(bcfp, "{\n");

			// Output globals as members.
			if(NULL != mGlobals)
			{
				print_cil_globals(bcfp, mGlobals);
			}

			// Output ctor header.
			fprintf(bcfp, ".method public hidebysig  specialname  rtspecialname instance default void .ctor ()  cil managed\n");
			fprintf(bcfp, "{\n");
			fprintf(bcfp, ".maxstack 500\n");

			// Initialise globals as members in ctor.
			if (mGlobals)
			{
				fdotabs(bcfp, tabs, tabsize);
				mGlobals->recurse(bcfp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(bcfp, "\n");
			}

			// Output ctor footer.
			fprintf(bcfp, "ldarg.0\n");
			fprintf(bcfp, "call instance void [LslUserScript]LindenLab.SecondLife.LslUserScript::.ctor()\n");
			fprintf(bcfp, "ret\n");
			fprintf(bcfp, "}\n");

			// Output functions as methods.
			if (mGlobalFunctions)
			{
				fdotabs(bcfp, tabs, tabsize);
				mGlobalFunctions->recurse(bcfp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
				fprintf(bcfp, "\n");
			}

			// Output states as name mangled methods.
			fdotabs(bcfp, tabs, tabsize);
			mStates->recurse(bcfp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
			fprintf(bcfp, "\n");

			// Output class footer.
			fprintf(bcfp, "}\n");

			// Close file.
			fclose(bcfp);
		}
		break;
	default:
		if (mGlobals)
			mGlobals->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		if (mGlobalFunctions)
			mGlobalFunctions->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		mStates->recurse(fp, tabs, tabsize, pass, ptype, prunearg, scope, type, basetype, count, chunk, heap, stacksize, entry, entrycount, NULL);
		break;
	}
}