/** * @file llxmlnode.cpp * @author Tom Yedwab * @brief LLXMLNode implementation * * $LicenseInfo:firstyear=2005&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" #include <iostream> #include <map> #include "llxmlnode.h" #include "v3color.h" #include "v4color.h" #include "v4coloru.h" #include "v3math.h" #include "v3dmath.h" #include "v4math.h" #include "llquaternion.h" #include "llstring.h" #include "lluuid.h" #include "lldir.h" const S32 MAX_COLUMN_WIDTH = 80; // static BOOL LLXMLNode::sStripEscapedStrings = TRUE; BOOL LLXMLNode::sStripWhitespaceValues = FALSE; LLXMLNode::LLXMLNode() : mID(""), mParser(NULL), mIsAttribute(FALSE), mVersionMajor(0), mVersionMinor(0), mLength(0), mPrecision(64), mType(TYPE_CONTAINER), mEncoding(ENCODING_DEFAULT), mLineNumber(-1), mParent(NULL), mChildren(NULL), mAttributes(), mPrev(NULL), mNext(NULL), mName(NULL), mValue(""), mDefault(NULL) { } LLXMLNode::LLXMLNode(const char* name, BOOL is_attribute) : mID(""), mParser(NULL), mIsAttribute(is_attribute), mVersionMajor(0), mVersionMinor(0), mLength(0), mPrecision(64), mType(TYPE_CONTAINER), mEncoding(ENCODING_DEFAULT), mLineNumber(-1), mParent(NULL), mChildren(NULL), mAttributes(), mPrev(NULL), mNext(NULL), mValue(""), mDefault(NULL) { mName = gStringTable.addStringEntry(name); } LLXMLNode::LLXMLNode(LLStringTableEntry* name, BOOL is_attribute) : mID(""), mParser(NULL), mIsAttribute(is_attribute), mVersionMajor(0), mVersionMinor(0), mLength(0), mPrecision(64), mType(TYPE_CONTAINER), mEncoding(ENCODING_DEFAULT), mLineNumber(-1), mParent(NULL), mChildren(NULL), mAttributes(), mPrev(NULL), mNext(NULL), mName(name), mValue(""), mDefault(NULL) { } // copy constructor (except for the children) LLXMLNode::LLXMLNode(const LLXMLNode& rhs) : mID(rhs.mID), mIsAttribute(rhs.mIsAttribute), mVersionMajor(rhs.mVersionMajor), mVersionMinor(rhs.mVersionMinor), mLength(rhs.mLength), mPrecision(rhs.mPrecision), mType(rhs.mType), mEncoding(rhs.mEncoding), mLineNumber(0), mParser(NULL), mParent(NULL), mChildren(NULL), mAttributes(), mPrev(NULL), mNext(NULL), mName(rhs.mName), mValue(rhs.mValue), mDefault(rhs.mDefault) { } // returns a new copy of this node and all its children LLXMLNodePtr LLXMLNode::deepCopy() { LLXMLNodePtr newnode = LLXMLNodePtr(new LLXMLNode(*this)); if (mChildren.notNull()) { for (LLXMLChildList::iterator iter = mChildren->map.begin(); iter != mChildren->map.end(); ++iter) { newnode->addChild(iter->second->deepCopy()); } } for (LLXMLAttribList::iterator iter = mAttributes.begin(); iter != mAttributes.end(); ++iter) { newnode->addChild(iter->second->deepCopy()); } return newnode; } // virtual LLXMLNode::~LLXMLNode() { // Strictly speaking none of this should be required execept 'delete mChildren'... // Sadly, that's only true if we hadn't had reference-counted smart pointers linked // in three different directions. This entire class is a frightening, hard-to-maintain // mess. if (mChildren.notNull()) { for (LLXMLChildList::iterator iter = mChildren->map.begin(); iter != mChildren->map.end(); ++iter) { LLXMLNodePtr child = iter->second; child->mParent = NULL; child->mNext = NULL; child->mPrev = NULL; } mChildren->map.clear(); mChildren->head = NULL; mChildren->tail = NULL; mChildren = NULL; } for (LLXMLAttribList::iterator iter = mAttributes.begin(); iter != mAttributes.end(); ++iter) { LLXMLNodePtr attr = iter->second; attr->mParent = NULL; attr->mNext = NULL; attr->mPrev = NULL; } llassert(mParent == NULL); mDefault = NULL; } BOOL LLXMLNode::isNull() { return (mName == NULL); } // protected BOOL LLXMLNode::removeChild(LLXMLNode *target_child) { if (!target_child) { return FALSE; } if (target_child->mIsAttribute) { LLXMLAttribList::iterator children_itr = mAttributes.find(target_child->mName); if (children_itr != mAttributes.end()) { target_child->mParent = NULL; mAttributes.erase(children_itr); return TRUE; } } else if (mChildren.notNull()) { LLXMLChildList::iterator children_itr = mChildren->map.find(target_child->mName); while (children_itr != mChildren->map.end()) { if (target_child == children_itr->second) { if (target_child == mChildren->head) { mChildren->head = target_child->mNext; } if (target_child == mChildren->tail) { mChildren->tail = target_child->mPrev; } LLXMLNodePtr prev = target_child->mPrev; LLXMLNodePtr next = target_child->mNext; if (prev.notNull()) prev->mNext = next; if (next.notNull()) next->mPrev = prev; target_child->mPrev = NULL; target_child->mNext = NULL; target_child->mParent = NULL; mChildren->map.erase(children_itr); if (mChildren->map.empty()) { mChildren = NULL; } return TRUE; } else if (children_itr->first != target_child->mName) { break; } else { ++children_itr; } } } return FALSE; } void LLXMLNode::addChild(LLXMLNodePtr new_child, LLXMLNodePtr after_child) { if (new_child->mParent != NULL) { if (new_child->mParent == this) { return; } new_child->mParent->removeChild(new_child); } new_child->mParent = this; if (new_child->mIsAttribute) { mAttributes.insert(std::make_pair(new_child->mName, new_child)); } else { if (mChildren.isNull()) { mChildren = new LLXMLChildren(); mChildren->head = new_child; mChildren->tail = new_child; } mChildren->map.insert(std::make_pair(new_child->mName, new_child)); // if after_child is specified, it damn well better be in the list of children // for this node. I'm not going to assert that, because it would be expensive, // but don't specify that parameter if you didn't get the value for it from the // list of children of this node! if (after_child.isNull()) { if (mChildren->tail != new_child) { mChildren->tail->mNext = new_child; new_child->mPrev = mChildren->tail; mChildren->tail = new_child; } } // if after_child == parent, then put new_child at beginning else if (after_child == this) { // add to front of list new_child->mNext = mChildren->head; if (mChildren->head) { mChildren->head->mPrev = new_child; mChildren->head = new_child; } else // no children { mChildren->head = new_child; mChildren->tail = new_child; } } else { if (after_child->mNext.notNull()) { // if after_child was not the last item, fix up some pointers after_child->mNext->mPrev = new_child; new_child->mNext = after_child->mNext; } new_child->mPrev = after_child; after_child->mNext = new_child; if (mChildren->tail == after_child) { mChildren->tail = new_child; } } } new_child->updateDefault(); } // virtual LLXMLNodePtr LLXMLNode::createChild(const char* name, BOOL is_attribute) { return createChild(gStringTable.addStringEntry(name), is_attribute); } // virtual LLXMLNodePtr LLXMLNode::createChild(LLStringTableEntry* name, BOOL is_attribute) { LLXMLNode* ret = new LLXMLNode(name, is_attribute); ret->mID.clear(); addChild(ret); return ret; } BOOL LLXMLNode::deleteChild(LLXMLNode *child) { if (removeChild(child)) { return TRUE; } return FALSE; } void LLXMLNode::setParent(LLXMLNodePtr new_parent) { if (new_parent.notNull()) { new_parent->addChild(this); } else { if (mParent != NULL) { LLXMLNodePtr old_parent = mParent; mParent = NULL; old_parent->removeChild(this); } } } void LLXMLNode::updateDefault() { if (mParent != NULL && !mParent->mDefault.isNull()) { mDefault = NULL; // Find default value in parent's default tree if (!mParent->mDefault.isNull()) { findDefault(mParent->mDefault); } } if (mChildren.notNull()) { LLXMLChildList::const_iterator children_itr; LLXMLChildList::const_iterator children_end = mChildren->map.end(); for (children_itr = mChildren->map.begin(); children_itr != children_end; ++children_itr) { LLXMLNodePtr child = (*children_itr).second; child->updateDefault(); } } } void XMLCALL StartXMLNode(void *userData, const XML_Char *name, const XML_Char **atts) { // Create a new node LLXMLNode *new_node_ptr = new LLXMLNode(name, FALSE); LLXMLNodePtr new_node = new_node_ptr; new_node->mID.clear(); LLXMLNodePtr ptr_new_node = new_node; // Set the parent-child relationship with the current active node LLXMLNode* parent = (LLXMLNode *)userData; if (NULL == parent) { llwarns << "parent (userData) is NULL; aborting function" << llendl; return; } new_node_ptr->mParser = parent->mParser; new_node_ptr->setLineNumber(XML_GetCurrentLineNumber(*new_node_ptr->mParser)); // Set the current active node to the new node XML_Parser *parser = parent->mParser; XML_SetUserData(*parser, (void *)new_node_ptr); // Parse attributes U32 pos = 0; while (atts[pos] != NULL) { std::string attr_name = atts[pos]; std::string attr_value = atts[pos+1]; // Special cases if ('i' == attr_name[0] && "id" == attr_name) { new_node->mID = attr_value; } else if ('v' == attr_name[0] && "version" == attr_name) { U32 version_major = 0; U32 version_minor = 0; if (sscanf(attr_value.c_str(), "%d.%d", &version_major, &version_minor) > 0) { new_node->mVersionMajor = version_major; new_node->mVersionMinor = version_minor; } } else if (('s' == attr_name[0] && "size" == attr_name) || ('l' == attr_name[0] && "length" == attr_name)) { U32 length; if (sscanf(attr_value.c_str(), "%d", &length) > 0) { new_node->mLength = length; } } else if ('p' == attr_name[0] && "precision" == attr_name) { U32 precision; if (sscanf(attr_value.c_str(), "%d", &precision) > 0) { new_node->mPrecision = precision; } } else if ('t' == attr_name[0] && "type" == attr_name) { if ("boolean" == attr_value) { new_node->mType = LLXMLNode::TYPE_BOOLEAN; } else if ("integer" == attr_value) { new_node->mType = LLXMLNode::TYPE_INTEGER; } else if ("float" == attr_value) { new_node->mType = LLXMLNode::TYPE_FLOAT; } else if ("string" == attr_value) { new_node->mType = LLXMLNode::TYPE_STRING; } else if ("uuid" == attr_value) { new_node->mType = LLXMLNode::TYPE_UUID; } else if ("noderef" == attr_value) { new_node->mType = LLXMLNode::TYPE_NODEREF; } } else if ('e' == attr_name[0] && "encoding" == attr_name) { if ("decimal" == attr_value) { new_node->mEncoding = LLXMLNode::ENCODING_DECIMAL; } else if ("hex" == attr_value) { new_node->mEncoding = LLXMLNode::ENCODING_HEX; } /*else if (attr_value == "base32") { new_node->mEncoding = LLXMLNode::ENCODING_BASE32; }*/ } // only one attribute child per description LLXMLNodePtr attr_node; if (!new_node->getAttribute(attr_name.c_str(), attr_node, FALSE)) { attr_node = new LLXMLNode(attr_name.c_str(), TRUE); attr_node->setLineNumber(XML_GetCurrentLineNumber(*new_node_ptr->mParser)); } attr_node->setValue(attr_value); new_node->addChild(attr_node); pos += 2; } if (parent) { parent->addChild(new_node); } } void XMLCALL EndXMLNode(void *userData, const XML_Char *name) { // [FUGLY] Set the current active node to the current node's parent LLXMLNode *node = (LLXMLNode *)userData; XML_Parser *parser = node->mParser; XML_SetUserData(*parser, (void *)node->mParent); // SJB: total hack: if (LLXMLNode::sStripWhitespaceValues) { std::string value = node->getValue(); BOOL is_empty = TRUE; for (std::string::size_type s = 0; s < value.length(); s++) { char c = value[s]; if (c != ' ' && c != '\t' && c != '\n') { is_empty = FALSE; break; } } if (is_empty) { value.clear(); node->setValue(value); } } } void XMLCALL XMLData(void *userData, const XML_Char *s, int len) { LLXMLNode* current_node = (LLXMLNode *)userData; std::string value = current_node->getValue(); if (LLXMLNode::sStripEscapedStrings) { if (s[0] == '\"' && s[len-1] == '\"') { // Special-case: Escaped string. std::string unescaped_string; for (S32 pos=1; pos<len-1; ++pos) { if (s[pos] == '\\' && s[pos+1] == '\\') { unescaped_string.append("\\"); ++pos; } else if (s[pos] == '\\' && s[pos+1] == '\"') { unescaped_string.append("\""); ++pos; } else { unescaped_string.append(&s[pos], 1); } } value.append(unescaped_string); current_node->setValue(value); return; } } value.append(std::string(s, len)); current_node->setValue(value); } // static bool LLXMLNode::updateNode( LLXMLNodePtr& node, LLXMLNodePtr& update_node) { if (!node || !update_node) { llwarns << "Node invalid" << llendl; return FALSE; } //update the node value node->mValue = update_node->mValue; //update all attribute values LLXMLAttribList::const_iterator itor; for(itor = update_node->mAttributes.begin(); itor != update_node->mAttributes.end(); ++itor) { const LLStringTableEntry* attribNameEntry = (*itor).first; LLXMLNodePtr updateAttribNode = (*itor).second; LLXMLNodePtr attribNode; node->getAttribute(attribNameEntry, attribNode, 0); if (attribNode) { attribNode->mValue = updateAttribNode->mValue; } } //update all of node's children with updateNodes children that match name LLXMLNodePtr child; LLXMLNodePtr updateChild; for (updateChild = update_node->getFirstChild(); updateChild.notNull(); updateChild = updateChild->getNextSibling()) { for (child = node->getFirstChild(); child.notNull(); child = child->getNextSibling()) { std::string nodeName; std::string updateName; updateChild->getAttributeString("name", updateName); child->getAttributeString("name", nodeName); //if it's a combobox there's no name, but there is a value if (updateName.empty()) { updateChild->getAttributeString("value", updateName); child->getAttributeString("value", nodeName); } if ((nodeName != "") && (updateName == nodeName)) { updateNode(child, updateChild); break; } } } return TRUE; } // static LLXMLNodePtr LLXMLNode::replaceNode(LLXMLNodePtr node, LLXMLNodePtr update_node) { if (!node || !update_node) { llwarns << "Node invalid" << llendl; return node; } LLXMLNodePtr cloned_node = update_node->deepCopy(); node->mParent->addChild(cloned_node, node); // add after node LLXMLNodePtr parent = node->mParent; parent->removeChild(node); parent->updateDefault(); return cloned_node; } // static bool LLXMLNode::parseFile(const std::string& filename, LLXMLNodePtr& node, LLXMLNode* defaults_tree) { // Read file LL_DEBUGS("XMLNode") << "parsing XML file: " << filename << LL_ENDL; LLFILE* fp = LLFile::fopen(filename, "rb"); /* Flawfinder: ignore */ if (fp == NULL) { node = new LLXMLNode(); return false; } fseek(fp, 0, SEEK_END); U32 length = ftell(fp); fseek(fp, 0, SEEK_SET); U8* buffer = new U8[length+1]; size_t nread = fread(buffer, 1, length, fp); buffer[nread] = 0; fclose(fp); bool rv = parseBuffer(buffer, nread, node, defaults_tree); delete [] buffer; return rv; } // static bool LLXMLNode::parseBuffer( U8* buffer, U32 length, LLXMLNodePtr& node, LLXMLNode* defaults) { // Init XML_Parser my_parser = XML_ParserCreate(NULL); XML_SetElementHandler(my_parser, StartXMLNode, EndXMLNode); XML_SetCharacterDataHandler(my_parser, XMLData); // Create a root node LLXMLNode *file_node_ptr = new LLXMLNode("XML", FALSE); LLXMLNodePtr file_node = file_node_ptr; file_node->mParser = &my_parser; XML_SetUserData(my_parser, (void *)file_node_ptr); // Do the parsing if (XML_Parse(my_parser, (const char *)buffer, length, TRUE) != XML_STATUS_OK) { llwarns << "Error parsing xml error code: " << XML_ErrorString(XML_GetErrorCode(my_parser)) << " on line " << XML_GetCurrentLineNumber(my_parser) << llendl; } // Deinit XML_ParserFree(my_parser); if (!file_node->mChildren || file_node->mChildren->map.size() != 1) { llwarns << "Parse failure - wrong number of top-level nodes xml." << llendl; node = new LLXMLNode(); return false; } LLXMLNode *return_node = file_node->mChildren->map.begin()->second; return_node->setDefault(defaults); return_node->updateDefault(); node = return_node; return true; } // static bool LLXMLNode::parseStream( std::istream& str, LLXMLNodePtr& node, LLXMLNode* defaults) { // Init XML_Parser my_parser = XML_ParserCreate(NULL); XML_SetElementHandler(my_parser, StartXMLNode, EndXMLNode); XML_SetCharacterDataHandler(my_parser, XMLData); // Create a root node LLXMLNode *file_node_ptr = new LLXMLNode("XML", FALSE); LLXMLNodePtr file_node = file_node_ptr; file_node->mParser = &my_parser; XML_SetUserData(my_parser, (void *)file_node_ptr); const int BUFSIZE = 1024; U8* buffer = new U8[BUFSIZE]; while(str.good()) { str.read((char*)buffer, BUFSIZE); int count = str.gcount(); if (XML_Parse(my_parser, (const char *)buffer, count, !str.good()) != XML_STATUS_OK) { llwarns << "Error parsing xml error code: " << XML_ErrorString(XML_GetErrorCode(my_parser)) << " on lne " << XML_GetCurrentLineNumber(my_parser) << llendl; break; } } delete [] buffer; // Deinit XML_ParserFree(my_parser); if (!file_node->mChildren || file_node->mChildren->map.size() != 1) { llwarns << "Parse failure - wrong number of top-level nodes xml." << llendl; node = new LLXMLNode(); return false; } LLXMLNode *return_node = file_node->mChildren->map.begin()->second; return_node->setDefault(defaults); return_node->updateDefault(); node = return_node; return true; } BOOL LLXMLNode::isFullyDefault() { if (mDefault.isNull()) { return FALSE; } BOOL has_default_value = (mValue == mDefault->mValue); BOOL has_default_attribute = (mIsAttribute == mDefault->mIsAttribute); BOOL has_default_type = mIsAttribute || (mType == mDefault->mType); BOOL has_default_encoding = mIsAttribute || (mEncoding == mDefault->mEncoding); BOOL has_default_precision = mIsAttribute || (mPrecision == mDefault->mPrecision); BOOL has_default_length = mIsAttribute || (mLength == mDefault->mLength); if (has_default_value && has_default_type && has_default_encoding && has_default_precision && has_default_length && has_default_attribute) { if (mChildren.notNull()) { LLXMLChildList::const_iterator children_itr; LLXMLChildList::const_iterator children_end = mChildren->map.end(); for (children_itr = mChildren->map.begin(); children_itr != children_end; ++children_itr) { LLXMLNodePtr child = (*children_itr).second; if (!child->isFullyDefault()) { return FALSE; } } } return TRUE; } return FALSE; } // static bool LLXMLNode::getLayeredXMLNode(LLXMLNodePtr& root, const std::vector<std::string>& paths) { if (paths.empty()) return false; std::string filename = paths.front(); if (filename.empty()) { return false; } if (!LLXMLNode::parseFile(filename, root, NULL)) { llwarns << "Problem reading UI description file: " << filename << llendl; return false; } LLXMLNodePtr updateRoot; std::vector<std::string>::const_iterator itor; for (itor = paths.begin(), ++itor; itor != paths.end(); ++itor) { std::string nodeName; std::string updateName; std::string layer_filename = *itor; if(layer_filename.empty()) { // no localized version of this file, that's ok, keep looking continue; } if (!LLXMLNode::parseFile(layer_filename, updateRoot, NULL)) { llwarns << "Problem reading localized UI description file: " << layer_filename << llendl; return false; } updateRoot->getAttributeString("name", updateName); root->getAttributeString("name", nodeName); if (updateName == nodeName) { LLXMLNode::updateNode(root, updateRoot); } } return true; } // static void LLXMLNode::writeHeaderToFile(LLFILE *out_file) { fprintf(out_file, "<?xml version=\"1.0\" encoding=\"utf-8\" standalone=\"yes\" ?>\n"); } void LLXMLNode::writeToFile(LLFILE *out_file, const std::string& indent, bool use_type_decorations) { if (isFullyDefault()) { // Don't write out nodes that are an exact match to defaults return; } std::ostringstream ostream; writeToOstream(ostream, indent, use_type_decorations); std::string outstring = ostream.str(); size_t written = fwrite(outstring.c_str(), 1, outstring.length(), out_file); if (written != outstring.length()) { llwarns << "Short write" << llendl; } } void LLXMLNode::writeToOstream(std::ostream& output_stream, const std::string& indent, bool use_type_decorations) { if (isFullyDefault()) { // Don't write out nodes that are an exact match to defaults return; } BOOL has_default_type = mDefault.isNull()?FALSE:(mType == mDefault->mType); BOOL has_default_encoding = mDefault.isNull()?FALSE:(mEncoding == mDefault->mEncoding); BOOL has_default_precision = mDefault.isNull()?FALSE:(mPrecision == mDefault->mPrecision); BOOL has_default_length = mDefault.isNull()?FALSE:(mLength == mDefault->mLength); // stream the name output_stream << indent << "<" << mName->mString << "\n"; if (use_type_decorations) { // ID if (mID != "") { output_stream << indent << " id=\"" << mID << "\"\n"; } // Type if (!has_default_type) { switch (mType) { case TYPE_BOOLEAN: output_stream << indent << " type=\"boolean\"\n"; break; case TYPE_INTEGER: output_stream << indent << " type=\"integer\"\n"; break; case TYPE_FLOAT: output_stream << indent << " type=\"float\"\n"; break; case TYPE_STRING: output_stream << indent << " type=\"string\"\n"; break; case TYPE_UUID: output_stream << indent << " type=\"uuid\"\n"; break; case TYPE_NODEREF: output_stream << indent << " type=\"noderef\"\n"; break; default: // default on switch(enum) eliminates a warning on linux break; }; } // Encoding if (!has_default_encoding) { switch (mEncoding) { case ENCODING_DECIMAL: output_stream << indent << " encoding=\"decimal\"\n"; break; case ENCODING_HEX: output_stream << indent << " encoding=\"hex\"\n"; break; /*case ENCODING_BASE32: output_stream << indent << " encoding=\"base32\"\n"; break;*/ default: // default on switch(enum) eliminates a warning on linux break; }; } // Precision if (!has_default_precision && (mType == TYPE_INTEGER || mType == TYPE_FLOAT)) { output_stream << indent << " precision=\"" << mPrecision << "\"\n"; } // Version if (mVersionMajor > 0 || mVersionMinor > 0) { output_stream << indent << " version=\"" << mVersionMajor << "." << mVersionMinor << "\"\n"; } // Array length if (!has_default_length && mLength > 0) { output_stream << indent << " length=\"" << mLength << "\"\n"; } } { // Write out attributes LLXMLAttribList::const_iterator attr_itr; LLXMLAttribList::const_iterator attr_end = mAttributes.end(); for (attr_itr = mAttributes.begin(); attr_itr != attr_end; ++attr_itr) { LLXMLNodePtr child = (*attr_itr).second; if (child->mDefault.isNull() || child->mDefault->mValue != child->mValue) { std::string attr = child->mName->mString; if (use_type_decorations && (attr == "id" || attr == "type" || attr == "encoding" || attr == "precision" || attr == "version" || attr == "length")) { continue; // skip built-in attributes } std::string attr_str = llformat(" %s=\"%s\"", attr.c_str(), escapeXML(child->mValue).c_str()); output_stream << indent << attr_str << "\n"; } } } // erase last \n before attaching final > or /> output_stream.seekp(-1, std::ios::cur); if (mChildren.isNull() && mValue == "") { output_stream << " />\n"; return; } else { output_stream << ">\n"; if (mChildren.notNull()) { // stream non-attributes std::string next_indent = indent + " "; for (LLXMLNode* child = getFirstChild(); child; child = child->getNextSibling()) { child->writeToOstream(output_stream, next_indent, use_type_decorations); } } if (!mValue.empty()) { std::string contents = getTextContents(); output_stream << indent << " " << escapeXML(contents) << "\n"; } output_stream << indent << "</" << mName->mString << ">\n"; } } void LLXMLNode::findName(const std::string& name, LLXMLNodeList &results) { LLStringTableEntry* name_entry = gStringTable.checkStringEntry(name); if (name_entry == mName) { results.insert(std::make_pair(this->mName->mString, this)); return; } if (mChildren.notNull()) { LLXMLChildList::const_iterator children_itr; LLXMLChildList::const_iterator children_end = mChildren->map.end(); for (children_itr = mChildren->map.begin(); children_itr != children_end; ++children_itr) { LLXMLNodePtr child = (*children_itr).second; child->findName(name_entry, results); } } } void LLXMLNode::findName(LLStringTableEntry* name, LLXMLNodeList &results) { if (name == mName) { results.insert(std::make_pair(this->mName->mString, this)); return; } if (mChildren.notNull()) { LLXMLChildList::const_iterator children_itr; LLXMLChildList::const_iterator children_end = mChildren->map.end(); for (children_itr = mChildren->map.begin(); children_itr != children_end; ++children_itr) { LLXMLNodePtr child = (*children_itr).second; child->findName(name, results); } } } void LLXMLNode::findID(const std::string& id, LLXMLNodeList &results) { if (id == mID) { results.insert(std::make_pair(this->mName->mString, this)); return; } if (mChildren.notNull()) { LLXMLChildList::const_iterator children_itr; LLXMLChildList::const_iterator children_end = mChildren->map.end(); for (children_itr = mChildren->map.begin(); children_itr != children_end; ++children_itr) { LLXMLNodePtr child = (*children_itr).second; child->findID(id, results); } } } void LLXMLNode::scrubToTree(LLXMLNode *tree) { if (!tree || tree->mChildren.isNull()) { return; } if (mChildren.notNull()) { std::vector<LLXMLNodePtr> to_delete_list; LLXMLChildList::iterator itor = mChildren->map.begin(); while (itor != mChildren->map.end()) { LLXMLNodePtr child = itor->second; LLXMLNodePtr child_tree = NULL; // Look for this child in the default's children bool found = false; LLXMLChildList::iterator itor2 = tree->mChildren->map.begin(); while (itor2 != tree->mChildren->map.end()) { if (child->mName == itor2->second->mName) { child_tree = itor2->second; found = true; } ++itor2; } if (!found) { to_delete_list.push_back(child); } else { child->scrubToTree(child_tree); } ++itor; } std::vector<LLXMLNodePtr>::iterator itor3; for (itor3=to_delete_list.begin(); itor3!=to_delete_list.end(); ++itor3) { (*itor3)->setParent(NULL); } } } bool LLXMLNode::getChild(const char* name, LLXMLNodePtr& node, BOOL use_default_if_missing) { return getChild(gStringTable.checkStringEntry(name), node, use_default_if_missing); } bool LLXMLNode::getChild(const LLStringTableEntry* name, LLXMLNodePtr& node, BOOL use_default_if_missing) { if (mChildren.notNull()) { LLXMLChildList::const_iterator child_itr = mChildren->map.find(name); if (child_itr != mChildren->map.end()) { node = (*child_itr).second; return true; } } if (use_default_if_missing && !mDefault.isNull()) { return mDefault->getChild(name, node, FALSE); } node = new LLXMLNode(); return false; } void LLXMLNode::getChildren(const char* name, LLXMLNodeList &children, BOOL use_default_if_missing) const { getChildren(gStringTable.checkStringEntry(name), children, use_default_if_missing); } void LLXMLNode::getChildren(const LLStringTableEntry* name, LLXMLNodeList &children, BOOL use_default_if_missing) const { if (mChildren.notNull()) { LLXMLChildList::const_iterator child_itr = mChildren->map.find(name); if (child_itr != mChildren->map.end()) { LLXMLChildList::const_iterator children_end = mChildren->map.end(); while (child_itr != children_end) { LLXMLNodePtr child = (*child_itr).second; if (name != child->mName) { break; } children.insert(std::make_pair(child->mName->mString, child)); child_itr++; } } } if (children.size() == 0 && use_default_if_missing && !mDefault.isNull()) { mDefault->getChildren(name, children, FALSE); } } // recursively walks the tree and returns all children at all nesting levels matching the name void LLXMLNode::getDescendants(const LLStringTableEntry* name, LLXMLNodeList &children) const { if (mChildren.notNull()) { for (LLXMLChildList::const_iterator child_itr = mChildren->map.begin(); child_itr != mChildren->map.end(); ++child_itr) { LLXMLNodePtr child = (*child_itr).second; if (name == child->mName) { children.insert(std::make_pair(child->mName->mString, child)); } // and check each child as well child->getDescendants(name, children); } } } bool LLXMLNode::getAttribute(const char* name, LLXMLNodePtr& node, BOOL use_default_if_missing) { return getAttribute(gStringTable.checkStringEntry(name), node, use_default_if_missing); } bool LLXMLNode::getAttribute(const LLStringTableEntry* name, LLXMLNodePtr& node, BOOL use_default_if_missing) { LLXMLAttribList::const_iterator child_itr = mAttributes.find(name); if (child_itr != mAttributes.end()) { node = (*child_itr).second; return true; } if (use_default_if_missing && !mDefault.isNull()) { return mDefault->getAttribute(name, node, FALSE); } node = new LLXMLNode(); return false; } bool LLXMLNode::setAttributeString(const char* attr, const std::string& value) { LLStringTableEntry* name = gStringTable.checkStringEntry(attr); LLXMLAttribList::const_iterator child_itr = mAttributes.find(name); if (child_itr != mAttributes.end()) { LLXMLNodePtr node = (*child_itr).second; node->setValue(value); return true; } return false; } BOOL LLXMLNode::hasAttribute(const char* name ) { LLXMLNodePtr node; return getAttribute(name, node); } // the structure of these getAttribute_ functions is ugly, but it's because the // underlying system is based on BOOL and LLString; if we change // so that they're based on more generic mechanisms, these will be // simplified. bool LLXMLNode::getAttribute_bool(const char* name, bool& value ) { LLXMLNodePtr node; if (!getAttribute(name, node)) { return false; } BOOL temp; bool retval = node->getBoolValue(1, &temp); value = temp; return retval; } BOOL LLXMLNode::getAttributeBOOL(const char* name, BOOL& value ) { LLXMLNodePtr node; return (getAttribute(name, node) && node->getBoolValue(1, &value)); } BOOL LLXMLNode::getAttributeU8(const char* name, U8& value ) { LLXMLNodePtr node; return (getAttribute(name, node) && node->getByteValue(1, &value)); } BOOL LLXMLNode::getAttributeS8(const char* name, S8& value ) { LLXMLNodePtr node; S32 val; if (!(getAttribute(name, node) && node->getIntValue(1, &val))) { return false; } value = val; return true; } BOOL LLXMLNode::getAttributeU16(const char* name, U16& value ) { LLXMLNodePtr node; U32 val; if (!(getAttribute(name, node) && node->getUnsignedValue(1, &val))) { return false; } value = val; return true; } BOOL LLXMLNode::getAttributeS16(const char* name, S16& value ) { LLXMLNodePtr node; S32 val; if (!(getAttribute(name, node) && node->getIntValue(1, &val))) { return false; } value = val; return true; } BOOL LLXMLNode::getAttributeU32(const char* name, U32& value ) { LLXMLNodePtr node; return (getAttribute(name, node) && node->getUnsignedValue(1, &value)); } BOOL LLXMLNode::getAttributeS32(const char* name, S32& value ) { LLXMLNodePtr node; return (getAttribute(name, node) && node->getIntValue(1, &value)); } BOOL LLXMLNode::getAttributeF32(const char* name, F32& value ) { LLXMLNodePtr node; return (getAttribute(name, node) && node->getFloatValue(1, &value)); } BOOL LLXMLNode::getAttributeF64(const char* name, F64& value ) { LLXMLNodePtr node; return (getAttribute(name, node) && node->getDoubleValue(1, &value)); } BOOL LLXMLNode::getAttributeColor(const char* name, LLColor4& value ) { LLXMLNodePtr node; return (getAttribute(name, node) && node->getFloatValue(4, value.mV)); } BOOL LLXMLNode::getAttributeColor4(const char* name, LLColor4& value ) { LLXMLNodePtr node; return (getAttribute(name, node) && node->getFloatValue(4, value.mV)); } BOOL LLXMLNode::getAttributeColor4U(const char* name, LLColor4U& value ) { LLXMLNodePtr node; return (getAttribute(name, node) && node->getByteValue(4, value.mV)); } BOOL LLXMLNode::getAttributeVector3(const char* name, LLVector3& value ) { LLXMLNodePtr node; return (getAttribute(name, node) && node->getFloatValue(3, value.mV)); } BOOL LLXMLNode::getAttributeVector3d(const char* name, LLVector3d& value ) { LLXMLNodePtr node; return (getAttribute(name, node) && node->getDoubleValue(3, value.mdV)); } BOOL LLXMLNode::getAttributeQuat(const char* name, LLQuaternion& value ) { LLXMLNodePtr node; return (getAttribute(name, node) && node->getFloatValue(4, value.mQ)); } BOOL LLXMLNode::getAttributeUUID(const char* name, LLUUID& value ) { LLXMLNodePtr node; return (getAttribute(name, node) && node->getUUIDValue(1, &value)); } BOOL LLXMLNode::getAttributeString(const char* name, std::string& value ) { LLXMLNodePtr node; if (!getAttribute(name, node)) { return false; } value = node->getValue(); return true; } LLXMLNodePtr LLXMLNode::getRoot() { if (mParent == NULL) { return this; } return mParent->getRoot(); } /*static */ const char *LLXMLNode::skipWhitespace(const char *str) { // skip whitespace characters while (str[0] == ' ' || str[0] == '\t' || str[0] == '\n') ++str; return str; } /*static */ const char *LLXMLNode::skipNonWhitespace(const char *str) { // skip non-whitespace characters while (str[0] != ' ' && str[0] != '\t' && str[0] != '\n' && str[0] != 0) ++str; return str; } /*static */ const char *LLXMLNode::parseInteger(const char *str, U64 *dest, BOOL *is_negative, U32 precision, Encoding encoding) { *dest = 0; *is_negative = FALSE; str = skipWhitespace(str); if (str[0] == 0) return NULL; if (encoding == ENCODING_DECIMAL || encoding == ENCODING_DEFAULT) { if (str[0] == '+') { ++str; } if (str[0] == '-') { *is_negative = TRUE; ++str; } str = skipWhitespace(str); U64 ret = 0; while (str[0] >= '0' && str[0] <= '9') { ret *= 10; ret += str[0] - '0'; ++str; } if (str[0] == '.') { // If there is a fractional part, skip it str = skipNonWhitespace(str); } *dest = ret; return str; } if (encoding == ENCODING_HEX) { U64 ret = 0; str = skipWhitespace(str); for (U32 pos=0; pos<(precision/4); ++pos) { ret <<= 4; str = skipWhitespace(str); if (str[0] >= '0' && str[0] <= '9') { ret += str[0] - '0'; } else if (str[0] >= 'a' && str[0] <= 'f') { ret += str[0] - 'a' + 10; } else if (str[0] >= 'A' && str[0] <= 'F') { ret += str[0] - 'A' + 10; } else { return NULL; } ++str; } *dest = ret; return str; } return NULL; } // 25 elements - decimal expansions of 1/(2^n), multiplied by 10 each iteration const U64 float_coeff_table[] = { 5, 25, 125, 625, 3125, 15625, 78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125, 6103515625LL, 30517578125LL, 152587890625LL, 762939453125LL, 3814697265625LL, 19073486328125LL, 95367431640625LL, 476837158203125LL, 2384185791015625LL, 11920928955078125LL, 59604644775390625LL, 298023223876953125LL }; // 36 elements - decimal expansions of 1/(2^n) after the last 28, truncated, no multiply each iteration const U64 float_coeff_table_2[] = { 149011611938476562LL,74505805969238281LL, 37252902984619140LL, 18626451492309570LL, 9313225746154785LL, 4656612873077392LL, 2328306436538696LL, 1164153218269348LL, 582076609134674LL, 291038304567337LL, 145519152283668LL, 72759576141834LL, 36379788070917LL, 18189894035458LL, 9094947017729LL, 4547473508864LL, 2273736754432LL, 1136868377216LL, 568434188608LL, 284217094304LL, 142108547152LL, 71054273576LL, 35527136788LL, 17763568394LL, 8881784197LL, 4440892098LL, 2220446049LL, 1110223024LL, 555111512LL, 277555756LL, 138777878, 69388939, 34694469, 17347234, 8673617, 4336808, 2168404, 1084202, 542101, 271050, 135525, 67762, }; /*static */ const char *LLXMLNode::parseFloat(const char *str, F64 *dest, U32 precision, Encoding encoding) { str = skipWhitespace(str); if (str[0] == 0) return NULL; if (encoding == ENCODING_DECIMAL || encoding == ENCODING_DEFAULT) { str = skipWhitespace(str); if (memcmp(str, "inf", 3) == 0) { *(U64 *)dest = 0x7FF0000000000000ll; return str + 3; } if (memcmp(str, "-inf", 4) == 0) { *(U64 *)dest = 0xFFF0000000000000ll; return str + 4; } if (memcmp(str, "1.#INF", 6) == 0) { *(U64 *)dest = 0x7FF0000000000000ll; return str + 6; } if (memcmp(str, "-1.#INF", 7) == 0) { *(U64 *)dest = 0xFFF0000000000000ll; return str + 7; } F64 negative = 1.0f; if (str[0] == '+') { ++str; } if (str[0] == '-') { negative = -1.0f; ++str; } const char* base_str = str; str = skipWhitespace(str); // Parse the integer part of the expression U64 int_part = 0; while (str[0] >= '0' && str[0] <= '9') { int_part *= 10; int_part += U64(str[0] - '0'); ++str; } U64 f_part = 0;//, f_decimal = 1; if (str[0] == '.') { ++str; U64 remainder = 0; U32 pos = 0; // Parse the decimal part of the expression while (str[0] >= '0' && str[0] <= '9' && pos < 25) { remainder = (remainder*10) + U64(str[0] - '0'); f_part <<= 1; //f_decimal <<= 1; // Check the n'th bit if (remainder >= float_coeff_table[pos]) { remainder -= float_coeff_table[pos]; f_part |= 1; } ++pos; ++str; } if (pos == 25) { // Drop any excessive digits while (str[0] >= '0' && str[0] <= '9') { ++str; } } else { while (pos < 25) { remainder *= 10; f_part <<= 1; //f_decimal <<= 1; // Check the n'th bit if (remainder >= float_coeff_table[pos]) { remainder -= float_coeff_table[pos]; f_part |= 1; } ++pos; } } pos = 0; while (pos < 36) { f_part <<= 1; //f_decimal <<= 1; if (remainder >= float_coeff_table_2[pos]) { remainder -= float_coeff_table_2[pos]; f_part |= 1; } ++pos; } } F64 ret = F64(int_part) + (F64(f_part)/F64(1LL<<61)); F64 exponent = 1.f; if (str[0] == 'e') { // Scientific notation! ++str; U64 exp; BOOL is_negative; str = parseInteger(str, &exp, &is_negative, 64, ENCODING_DECIMAL); if (str == NULL) { exp = 1; } F64 exp_d = F64(exp) * (is_negative?-1:1); exponent = pow(10.0, exp_d); } if (str == base_str) { // no digits parsed return NULL; } else { *dest = ret*negative*exponent; return str; } } if (encoding == ENCODING_HEX) { U64 bytes_dest; BOOL is_negative; str = parseInteger(str, (U64 *)&bytes_dest, &is_negative, precision, ENCODING_HEX); // Upcast to F64 switch (precision) { case 32: { U32 short_dest = (U32)bytes_dest; F32 ret_val = *(F32 *)&short_dest; *dest = ret_val; } break; case 64: *dest = *(F64 *)&bytes_dest; break; default: return NULL; } return str; } return NULL; } U32 LLXMLNode::getBoolValue(U32 expected_length, BOOL *array) { llassert(array); // Check type - accept booleans or strings if (mType != TYPE_BOOLEAN && mType != TYPE_STRING && mType != TYPE_UNKNOWN) { return 0; } std::string *str_array = new std::string[expected_length]; U32 length = getStringValue(expected_length, str_array); U32 ret_length = 0; for (U32 i=0; i<length; ++i) { LLStringUtil::toLower(str_array[i]); if (str_array[i] == "false") { array[ret_length++] = FALSE; } else if (str_array[i] == "true") { array[ret_length++] = TRUE; } } delete[] str_array; #if LL_DEBUG if (ret_length != expected_length) { lldebugs << "LLXMLNode::getBoolValue() failed for node named '" << mName->mString << "' -- expected " << expected_length << " but " << "only found " << ret_length << llendl; } #endif return ret_length; } U32 LLXMLNode::getByteValue(U32 expected_length, U8 *array, Encoding encoding) { llassert(array); // Check type - accept bytes or integers (below 256 only) if (mType != TYPE_INTEGER && mType != TYPE_UNKNOWN) { return 0; } if (mLength > 0 && mLength != expected_length) { llwarns << "XMLNode::getByteValue asked for " << expected_length << " elements, while node has " << mLength << llendl; return 0; } if (encoding == ENCODING_DEFAULT) { encoding = mEncoding; } const char *value_string = mValue.c_str(); U32 i; for (i=0; i<expected_length; ++i) { U64 value; BOOL is_negative; value_string = parseInteger(value_string, &value, &is_negative, 8, encoding); if (value_string == NULL) { break; } if (value > 255 || is_negative) { llwarns << "getByteValue: Value outside of valid range." << llendl; break; } array[i] = U8(value); } #if LL_DEBUG if (i != expected_length) { lldebugs << "LLXMLNode::getByteValue() failed for node named '" << mName->mString << "' -- expected " << expected_length << " but " << "only found " << i << llendl; } #endif return i; } U32 LLXMLNode::getIntValue(U32 expected_length, S32 *array, Encoding encoding) { llassert(array); // Check type - accept bytes or integers if (mType != TYPE_INTEGER && mType != TYPE_UNKNOWN) { return 0; } if (mLength > 0 && mLength != expected_length) { llwarns << "XMLNode::getIntValue asked for " << expected_length << " elements, while node has " << mLength << llendl; return 0; } if (encoding == ENCODING_DEFAULT) { encoding = mEncoding; } const char *value_string = mValue.c_str(); U32 i = 0; for (i=0; i<expected_length; ++i) { U64 value; BOOL is_negative; value_string = parseInteger(value_string, &value, &is_negative, 32, encoding); if (value_string == NULL) { break; } if (value > 0x7fffffff) { llwarns << "getIntValue: Value outside of valid range." << llendl; break; } array[i] = S32(value) * (is_negative?-1:1); } #if LL_DEBUG if (i != expected_length) { lldebugs << "LLXMLNode::getIntValue() failed for node named '" << mName->mString << "' -- expected " << expected_length << " but " << "only found " << i << llendl; } #endif return i; } U32 LLXMLNode::getUnsignedValue(U32 expected_length, U32 *array, Encoding encoding) { llassert(array); // Check type - accept bytes or integers if (mType != TYPE_INTEGER && mType != TYPE_UNKNOWN) { return 0; } if (mLength > 0 && mLength != expected_length) { llwarns << "XMLNode::getUnsignedValue asked for " << expected_length << " elements, while node has " << mLength << llendl; return 0; } if (encoding == ENCODING_DEFAULT) { encoding = mEncoding; } const char *value_string = mValue.c_str(); U32 i = 0; // Int type for (i=0; i<expected_length; ++i) { U64 value; BOOL is_negative; value_string = parseInteger(value_string, &value, &is_negative, 32, encoding); if (value_string == NULL) { break; } if (is_negative || value > 0xffffffff) { llwarns << "getUnsignedValue: Value outside of valid range." << llendl; break; } array[i] = U32(value); } #if LL_DEBUG if (i != expected_length) { lldebugs << "LLXMLNode::getUnsignedValue() failed for node named '" << mName->mString << "' -- expected " << expected_length << " but " << "only found " << i << llendl; } #endif return i; } U32 LLXMLNode::getLongValue(U32 expected_length, U64 *array, Encoding encoding) { llassert(array); // Check type - accept bytes or integers if (mType != TYPE_INTEGER && mType != TYPE_UNKNOWN) { return 0; } if (mLength > 0 && mLength != expected_length) { llwarns << "XMLNode::getLongValue asked for " << expected_length << " elements, while node has " << mLength << llendl; return 0; } if (encoding == ENCODING_DEFAULT) { encoding = mEncoding; } const char *value_string = mValue.c_str(); U32 i = 0; // Int type for (i=0; i<expected_length; ++i) { U64 value; BOOL is_negative; value_string = parseInteger(value_string, &value, &is_negative, 64, encoding); if (value_string == NULL) { break; } if (is_negative) { llwarns << "getLongValue: Value outside of valid range." << llendl; break; } array[i] = value; } #if LL_DEBUG if (i != expected_length) { lldebugs << "LLXMLNode::getLongValue() failed for node named '" << mName->mString << "' -- expected " << expected_length << " but " << "only found " << i << llendl; } #endif return i; } U32 LLXMLNode::getFloatValue(U32 expected_length, F32 *array, Encoding encoding) { llassert(array); // Check type - accept only floats or doubles if (mType != TYPE_FLOAT && mType != TYPE_UNKNOWN) { return 0; } if (mLength > 0 && mLength != expected_length) { llwarns << "XMLNode::getFloatValue asked for " << expected_length << " elements, while node has " << mLength << llendl; return 0; } if (encoding == ENCODING_DEFAULT) { encoding = mEncoding; } const char *value_string = mValue.c_str(); U32 i; for (i=0; i<expected_length; ++i) { F64 value; value_string = parseFloat(value_string, &value, 32, encoding); if (value_string == NULL) { break; } array[i] = F32(value); } #if LL_DEBUG if (i != expected_length) { lldebugs << "LLXMLNode::getFloatValue() failed for node named '" << mName->mString << "' -- expected " << expected_length << " but " << "only found " << i << llendl; } #endif return i; } U32 LLXMLNode::getDoubleValue(U32 expected_length, F64 *array, Encoding encoding) { llassert(array); // Check type - accept only floats or doubles if (mType != TYPE_FLOAT && mType != TYPE_UNKNOWN) { return 0; } if (mLength > 0 && mLength != expected_length) { llwarns << "XMLNode::getDoubleValue asked for " << expected_length << " elements, while node has " << mLength << llendl; return 0; } if (encoding == ENCODING_DEFAULT) { encoding = mEncoding; } const char *value_string = mValue.c_str(); U32 i; for (i=0; i<expected_length; ++i) { F64 value; value_string = parseFloat(value_string, &value, 64, encoding); if (value_string == NULL) { break; } array[i] = value; } #if LL_DEBUG if (i != expected_length) { lldebugs << "LLXMLNode::getDoubleValue() failed for node named '" << mName->mString << "' -- expected " << expected_length << " but " << "only found " << i << llendl; } #endif return i; } U32 LLXMLNode::getStringValue(U32 expected_length, std::string *array) { llassert(array); // Can always return any value as a string if (mLength > 0 && mLength != expected_length) { llwarns << "XMLNode::getStringValue asked for " << expected_length << " elements, while node has " << mLength << llendl; return 0; } U32 num_returned_strings = 0; // Array of strings is whitespace-separated const std::string sep(" \n\t"); std::string::size_type n = 0; std::string::size_type m = 0; while(1) { if (num_returned_strings >= expected_length) { break; } n = mValue.find_first_not_of(sep, m); m = mValue.find_first_of(sep, n); if (m == std::string::npos) { break; } array[num_returned_strings++] = mValue.substr(n,m-n); } if (n != std::string::npos && num_returned_strings < expected_length) { array[num_returned_strings++] = mValue.substr(n); } #if LL_DEBUG if (num_returned_strings != expected_length) { lldebugs << "LLXMLNode::getStringValue() failed for node named '" << mName->mString << "' -- expected " << expected_length << " but " << "only found " << num_returned_strings << llendl; } #endif return num_returned_strings; } U32 LLXMLNode::getUUIDValue(U32 expected_length, LLUUID *array) { llassert(array); // Check type if (mType != TYPE_UUID && mType != TYPE_UNKNOWN) { return 0; } const char *value_string = mValue.c_str(); U32 i; for (i=0; i<expected_length; ++i) { LLUUID uuid_value; value_string = skipWhitespace(value_string); if (strlen(value_string) < (UUID_STR_LENGTH-1)) /* Flawfinder: ignore */ { break; } char uuid_string[UUID_STR_LENGTH]; /* Flawfinder: ignore */ memcpy(uuid_string, value_string, (UUID_STR_LENGTH-1)); /* Flawfinder: ignore */ uuid_string[(UUID_STR_LENGTH-1)] = 0; if (!LLUUID::parseUUID(std::string(uuid_string), &uuid_value)) { break; } value_string = &value_string[(UUID_STR_LENGTH-1)]; array[i] = uuid_value; } #if LL_DEBUG if (i != expected_length) { lldebugs << "LLXMLNode::getUUIDValue() failed for node named '" << mName->mString << "' -- expected " << expected_length << " but " << "only found " << i << llendl; } #endif return i; } U32 LLXMLNode::getNodeRefValue(U32 expected_length, LLXMLNode **array) { llassert(array); // Check type if (mType != TYPE_NODEREF && mType != TYPE_UNKNOWN) { return 0; } std::string *string_array = new std::string[expected_length]; U32 num_strings = getStringValue(expected_length, string_array); U32 num_returned_refs = 0; LLXMLNodePtr root = getRoot(); for (U32 strnum=0; strnum<num_strings; ++strnum) { LLXMLNodeList node_list; root->findID(string_array[strnum], node_list); if (node_list.empty()) { llwarns << "XML: Could not find node ID: " << string_array[strnum] << llendl; } else if (node_list.size() > 1) { llwarns << "XML: Node ID not unique: " << string_array[strnum] << llendl; } else { LLXMLNodeList::const_iterator list_itr = node_list.begin(); if (list_itr != node_list.end()) { LLXMLNode* child = (*list_itr).second; array[num_returned_refs++] = child; } } } delete[] string_array; return num_returned_refs; } void LLXMLNode::setBoolValue(U32 length, const BOOL *array) { if (length == 0) return; std::string new_value; for (U32 pos=0; pos<length; ++pos) { if (pos > 0) { new_value = llformat("%s %s", new_value.c_str(), array[pos]?"true":"false"); } else { new_value = array[pos]?"true":"false"; } } mValue = new_value; mEncoding = ENCODING_DEFAULT; mLength = length; mType = TYPE_BOOLEAN; } void LLXMLNode::setByteValue(U32 length, const U8* const array, Encoding encoding) { if (length == 0) return; std::string new_value; if (encoding == ENCODING_DEFAULT || encoding == ENCODING_DECIMAL) { for (U32 pos=0; pos<length; ++pos) { if (pos > 0) { new_value.append(llformat(" %u", array[pos])); } else { new_value = llformat("%u", array[pos]); } } } if (encoding == ENCODING_HEX) { for (U32 pos=0; pos<length; ++pos) { if (pos > 0 && pos % 16 == 0) { new_value.append(llformat(" %02X", array[pos])); } else { new_value.append(llformat("%02X", array[pos])); } } } // TODO -- Handle Base32 mValue = new_value; mEncoding = encoding; mLength = length; mType = TYPE_INTEGER; mPrecision = 8; } void LLXMLNode::setIntValue(U32 length, const S32 *array, Encoding encoding) { if (length == 0) return; std::string new_value; if (encoding == ENCODING_DEFAULT || encoding == ENCODING_DECIMAL) { for (U32 pos=0; pos<length; ++pos) { if (pos > 0) { new_value.append(llformat(" %d", array[pos])); } else { new_value = llformat("%d", array[pos]); } } mValue = new_value; } else if (encoding == ENCODING_HEX) { for (U32 pos=0; pos<length; ++pos) { if (pos > 0 && pos % 16 == 0) { new_value.append(llformat(" %08X", ((U32 *)array)[pos])); } else { new_value.append(llformat("%08X", ((U32 *)array)[pos])); } } mValue = new_value; } else { mValue = new_value; } // TODO -- Handle Base32 mEncoding = encoding; mLength = length; mType = TYPE_INTEGER; mPrecision = 32; } void LLXMLNode::setUnsignedValue(U32 length, const U32* array, Encoding encoding) { if (length == 0) return; std::string new_value; if (encoding == ENCODING_DEFAULT || encoding == ENCODING_DECIMAL) { for (U32 pos=0; pos<length; ++pos) { if (pos > 0) { new_value.append(llformat(" %u", array[pos])); } else { new_value = llformat("%u", array[pos]); } } } if (encoding == ENCODING_HEX) { for (U32 pos=0; pos<length; ++pos) { if (pos > 0 && pos % 16 == 0) { new_value.append(llformat(" %08X", array[pos])); } else { new_value.append(llformat("%08X", array[pos])); } } mValue = new_value; } // TODO -- Handle Base32 mValue = new_value; mEncoding = encoding; mLength = length; mType = TYPE_INTEGER; mPrecision = 32; } #if LL_WINDOWS #define PU64 "I64u" #else #define PU64 "llu" #endif void LLXMLNode::setLongValue(U32 length, const U64* array, Encoding encoding) { if (length == 0) return; std::string new_value; if (encoding == ENCODING_DEFAULT || encoding == ENCODING_DECIMAL) { for (U32 pos=0; pos<length; ++pos) { if (pos > 0) { new_value.append(llformat(" %" PU64, array[pos])); } else { new_value = llformat("%" PU64, array[pos]); } } mValue = new_value; } if (encoding == ENCODING_HEX) { for (U32 pos=0; pos<length; ++pos) { U32 upper_32 = U32(array[pos]>>32); U32 lower_32 = U32(array[pos]&0xffffffff); if (pos > 0 && pos % 8 == 0) { new_value.append(llformat(" %08X%08X", upper_32, lower_32)); } else { new_value.append(llformat("%08X%08X", upper_32, lower_32)); } } mValue = new_value; } else { mValue = new_value; } // TODO -- Handle Base32 mEncoding = encoding; mLength = length; mType = TYPE_INTEGER; mPrecision = 64; } void LLXMLNode::setFloatValue(U32 length, const F32 *array, Encoding encoding, U32 precision) { if (length == 0) return; std::string new_value; if (encoding == ENCODING_DEFAULT || encoding == ENCODING_DECIMAL) { std::string format_string; if (precision > 0) { if (precision > 25) { precision = 25; } format_string = llformat( "%%.%dg", precision); } else { format_string = llformat( "%%g"); } for (U32 pos=0; pos<length; ++pos) { if (pos > 0) { new_value.append(" "); new_value.append(llformat(format_string.c_str(), array[pos])); } else { new_value.assign(llformat(format_string.c_str(), array[pos])); } } mValue = new_value; } else if (encoding == ENCODING_HEX) { U32 *byte_array = (U32 *)array; setUnsignedValue(length, byte_array, ENCODING_HEX); } else { mValue = new_value; } mEncoding = encoding; mLength = length; mType = TYPE_FLOAT; mPrecision = 32; } void LLXMLNode::setDoubleValue(U32 length, const F64 *array, Encoding encoding, U32 precision) { if (length == 0) return; std::string new_value; if (encoding == ENCODING_DEFAULT || encoding == ENCODING_DECIMAL) { std::string format_string; if (precision > 0) { if (precision > 25) { precision = 25; } format_string = llformat( "%%.%dg", precision); } else { format_string = llformat( "%%g"); } for (U32 pos=0; pos<length; ++pos) { if (pos > 0) { new_value.append(" "); new_value.append(llformat(format_string.c_str(), array[pos])); } else { new_value.assign(llformat(format_string.c_str(), array[pos])); } } mValue = new_value; } if (encoding == ENCODING_HEX) { U64 *byte_array = (U64 *)array; setLongValue(length, byte_array, ENCODING_HEX); } else { mValue = new_value; } // TODO -- Handle Base32 mEncoding = encoding; mLength = length; mType = TYPE_FLOAT; mPrecision = 64; } // static std::string LLXMLNode::escapeXML(const std::string& xml) { std::string out; for (std::string::size_type i = 0; i < xml.size(); ++i) { char c = xml[i]; switch(c) { case '"': out.append("""); break; case '\'': out.append("'"); break; case '&': out.append("&"); break; case '<': out.append("<"); break; case '>': out.append(">"); break; default: out.push_back(c); break; } } return out; } void LLXMLNode::setStringValue(U32 length, const std::string *strings) { if (length == 0) return; std::string new_value; for (U32 pos=0; pos<length; ++pos) { // *NOTE: Do not escape strings here - do it on output new_value.append( strings[pos] ); if (pos < length-1) new_value.append(" "); } mValue = new_value; mEncoding = ENCODING_DEFAULT; mLength = length; mType = TYPE_STRING; } void LLXMLNode::setUUIDValue(U32 length, const LLUUID *array) { if (length == 0) return; std::string new_value; for (U32 pos=0; pos<length; ++pos) { new_value.append(array[pos].asString()); if (pos < length-1) new_value.append(" "); } mValue = new_value; mEncoding = ENCODING_DEFAULT; mLength = length; mType = TYPE_UUID; } void LLXMLNode::setNodeRefValue(U32 length, const LLXMLNode **array) { if (length == 0) return; std::string new_value; for (U32 pos=0; pos<length; ++pos) { if (array[pos]->mID != "") { new_value.append(array[pos]->mID); } else { new_value.append("(null)"); } if (pos < length-1) new_value.append(" "); } mValue = new_value; mEncoding = ENCODING_DEFAULT; mLength = length; mType = TYPE_NODEREF; } void LLXMLNode::setValue(const std::string& value) { if (TYPE_CONTAINER == mType) { mType = TYPE_UNKNOWN; } mValue = value; } void LLXMLNode::setDefault(LLXMLNode *default_node) { mDefault = default_node; } void LLXMLNode::findDefault(LLXMLNode *defaults_list) { if (defaults_list) { LLXMLNodeList children; defaults_list->getChildren(mName->mString, children); LLXMLNodeList::const_iterator children_itr; LLXMLNodeList::const_iterator children_end = children.end(); for (children_itr = children.begin(); children_itr != children_end; ++children_itr) { LLXMLNode* child = (*children_itr).second; if (child->mVersionMajor == mVersionMajor && child->mVersionMinor == mVersionMinor) { mDefault = child; return; } } } mDefault = NULL; } BOOL LLXMLNode::deleteChildren(const std::string& name) { U32 removed_count = 0; LLXMLNodeList node_list; findName(name, node_list); if (!node_list.empty()) { // TODO -- use multimap::find() // TODO -- need to watch out for invalid iterators LLXMLNodeList::iterator children_itr; for (children_itr = node_list.begin(); children_itr != node_list.end(); ++children_itr) { LLXMLNode* child = (*children_itr).second; if (deleteChild(child)) { removed_count++; } } } return removed_count > 0 ? TRUE : FALSE; } BOOL LLXMLNode::deleteChildren(LLStringTableEntry* name) { U32 removed_count = 0; LLXMLNodeList node_list; findName(name, node_list); if (!node_list.empty()) { // TODO -- use multimap::find() // TODO -- need to watch out for invalid iterators LLXMLNodeList::iterator children_itr; for (children_itr = node_list.begin(); children_itr != node_list.end(); ++children_itr) { LLXMLNode* child = (*children_itr).second; if (deleteChild(child)) { removed_count++; } } } return removed_count > 0 ? TRUE : FALSE; } void LLXMLNode::setAttributes(LLXMLNode::ValueType type, U32 precision, LLXMLNode::Encoding encoding, U32 length) { mType = type; mEncoding = encoding; mPrecision = precision; mLength = length; } void LLXMLNode::setName(const std::string& name) { setName(gStringTable.addStringEntry(name)); } void LLXMLNode::setName(LLStringTableEntry* name) { LLXMLNode* old_parent = mParent; if (mParent) { // we need to remove and re-add to the parent so that // the multimap key agrees with this node's name mParent->removeChild(this); } mName = name; if (old_parent) { old_parent->addChild(this); } } // Unused // void LLXMLNode::appendValue(const std::string& value) // { // mValue.append(value); // } U32 LLXMLNode::getChildCount() const { if (mChildren.notNull()) { return mChildren->map.size(); } return 0; } //*************************************************** // UNIT TESTING //*************************************************** U32 get_rand(U32 max_value) { U32 random_num = rand() + ((U32)rand() << 16); return (random_num % max_value); } LLXMLNode *get_rand_node(LLXMLNode *node) { if (node->mChildren.notNull()) { U32 num_children = node->mChildren->map.size(); if (get_rand(2) == 0) { while (true) { S32 child_num = S32(get_rand(num_children*2)) - num_children; LLXMLChildList::iterator itor = node->mChildren->map.begin(); while (child_num > 0) { --child_num; ++itor; } if (!itor->second->mIsAttribute) { return get_rand_node(itor->second); } } } } return node; } void LLXMLNode::createUnitTest(S32 max_num_children) { // Random ID std::string rand_id; U32 rand_id_len = get_rand(10)+5; for (U32 pos = 0; pos<rand_id_len; ++pos) { char c = 'a' + get_rand(26); rand_id.append(1, c); } mID = rand_id; if (max_num_children < 2) { setStringValue(1, &mID); return; } // Checksums U32 integer_checksum = 0; U64 long_checksum = 0; U32 bool_true_count = 0; LLUUID uuid_checksum; U32 noderef_checksum = 0; U32 float_checksum = 0; // Create a random number of children U32 num_children = get_rand(max_num_children)+1; for (U32 child_num=0; child_num<num_children; ++child_num) { // Random Name std::string child_name; U32 child_name_len = get_rand(10)+5; for (U32 pos = 0; pos<child_name_len; ++pos) { char c = 'a' + get_rand(26); child_name.append(1, c); } LLXMLNode *new_child = createChild(child_name.c_str(), FALSE); // Random ID std::string child_id; U32 child_id_len = get_rand(10)+5; for (U32 pos=0; pos<child_id_len; ++pos) { char c = 'a' + get_rand(26); child_id.append(1, c); } new_child->mID = child_id; // Random Length U32 array_size = get_rand(28)+1; // Random Encoding Encoding new_encoding = get_rand(2)?ENCODING_DECIMAL:ENCODING_HEX; // Random Type int type = get_rand(8); switch (type) { case 0: // TYPE_CONTAINER new_child->createUnitTest(max_num_children/2); break; case 1: // TYPE_BOOLEAN { BOOL random_bool_values[30]; for (U32 value=0; value<array_size; ++value) { random_bool_values[value] = get_rand(2); if (random_bool_values[value]) { ++bool_true_count; } } new_child->setBoolValue(array_size, random_bool_values); } break; case 2: // TYPE_INTEGER (32-bit) { U32 random_int_values[30]; for (U32 value=0; value<array_size; ++value) { random_int_values[value] = get_rand(0xffffffff); integer_checksum ^= random_int_values[value]; } new_child->setUnsignedValue(array_size, random_int_values, new_encoding); } break; case 3: // TYPE_INTEGER (64-bit) { U64 random_int_values[30]; for (U64 value=0; value<array_size; ++value) { random_int_values[value] = (U64(get_rand(0xffffffff)) << 32) + get_rand(0xffffffff); long_checksum ^= random_int_values[value]; } new_child->setLongValue(array_size, random_int_values, new_encoding); } break; case 4: // TYPE_FLOAT (32-bit) { F32 random_float_values[30]; for (U32 value=0; value<array_size; ++value) { S32 exponent = get_rand(256) - 128; S32 fractional_part = get_rand(0xffffffff); S32 sign = get_rand(2) * 2 - 1; random_float_values[value] = F32(fractional_part) / F32(0xffffffff) * exp(F32(exponent)) * F32(sign); U32 *float_bits = &((U32 *)random_float_values)[value]; if (*float_bits == 0x80000000) { *float_bits = 0x00000000; } float_checksum ^= (*float_bits & 0xfffff000); } new_child->setFloatValue(array_size, random_float_values, new_encoding, 12); } break; case 5: // TYPE_FLOAT (64-bit) { F64 random_float_values[30]; for (U32 value=0; value<array_size; ++value) { S32 exponent = get_rand(2048) - 1024; S32 fractional_part = get_rand(0xffffffff); S32 sign = get_rand(2) * 2 - 1; random_float_values[value] = F64(fractional_part) / F64(0xffffffff) * exp(F64(exponent)) * F64(sign); U64 *float_bits = &((U64 *)random_float_values)[value]; if (*float_bits == 0x8000000000000000ll) { *float_bits = 0x0000000000000000ll; } float_checksum ^= ((*float_bits & 0xfffffff000000000ll) >> 32); } new_child->setDoubleValue(array_size, random_float_values, new_encoding, 12); } break; case 6: // TYPE_UUID { LLUUID random_uuid_values[30]; for (U32 value=0; value<array_size; ++value) { random_uuid_values[value].generate(); for (S32 byte=0; byte<UUID_BYTES; ++byte) { uuid_checksum.mData[byte] ^= random_uuid_values[value].mData[byte]; } } new_child->setUUIDValue(array_size, random_uuid_values); } break; case 7: // TYPE_NODEREF { LLXMLNode *random_node_array[30]; LLXMLNode *root = getRoot(); for (U32 value=0; value<array_size; ++value) { random_node_array[value] = get_rand_node(root); const char *node_name = random_node_array[value]->mName->mString; for (U32 pos=0; pos<strlen(node_name); ++pos) /* Flawfinder: ignore */ { U32 hash_contrib = U32(node_name[pos]) << ((pos % 4) * 8); noderef_checksum ^= hash_contrib; } } new_child->setNodeRefValue(array_size, (const LLXMLNode **)random_node_array); } break; } } createChild("integer_checksum", TRUE)->setUnsignedValue(1, &integer_checksum, LLXMLNode::ENCODING_HEX); createChild("long_checksum", TRUE)->setLongValue(1, &long_checksum, LLXMLNode::ENCODING_HEX); createChild("bool_true_count", TRUE)->setUnsignedValue(1, &bool_true_count, LLXMLNode::ENCODING_HEX); createChild("uuid_checksum", TRUE)->setUUIDValue(1, &uuid_checksum); createChild("noderef_checksum", TRUE)->setUnsignedValue(1, &noderef_checksum, LLXMLNode::ENCODING_HEX); createChild("float_checksum", TRUE)->setUnsignedValue(1, &float_checksum, LLXMLNode::ENCODING_HEX); } BOOL LLXMLNode::performUnitTest(std::string &error_buffer) { if (mChildren.isNull()) { error_buffer.append(llformat("ERROR Node %s: No children found.\n", mName->mString)); return FALSE; } // Checksums U32 integer_checksum = 0; U32 bool_true_count = 0; LLUUID uuid_checksum; U32 noderef_checksum = 0; U32 float_checksum = 0; U64 long_checksum = 0; LLXMLChildList::iterator itor; for (itor=mChildren->map.begin(); itor!=mChildren->map.end(); ++itor) { LLXMLNode *node = itor->second; if (node->mIsAttribute) { continue; } if (node->mType == TYPE_CONTAINER) { if (!node->performUnitTest(error_buffer)) { error_buffer.append(llformat("Child test failed for %s.\n", mName->mString)); //return FALSE; } continue; } if (node->mLength < 1 || node->mLength > 30) { error_buffer.append(llformat("ERROR Node %s: Invalid array length %d, child %s.\n", mName->mString, node->mLength, node->mName->mString)); return FALSE; } switch (node->mType) { case TYPE_CONTAINER: case TYPE_UNKNOWN: break; case TYPE_BOOLEAN: { BOOL bool_array[30]; if (node->getBoolValue(node->mLength, bool_array) < node->mLength) { error_buffer.append(llformat("ERROR Node %s: Could not read boolean array, child %s.\n", mName->mString, node->mName->mString)); return FALSE; } for (U32 pos=0; pos<(U32)node->mLength; ++pos) { if (bool_array[pos]) { ++bool_true_count; } } } break; case TYPE_INTEGER: { if (node->mPrecision == 32) { U32 integer_array[30]; if (node->getUnsignedValue(node->mLength, integer_array, node->mEncoding) < node->mLength) { error_buffer.append(llformat("ERROR Node %s: Could not read integer array, child %s.\n", mName->mString, node->mName->mString)); return FALSE; } for (U32 pos=0; pos<(U32)node->mLength; ++pos) { integer_checksum ^= integer_array[pos]; } } else { U64 integer_array[30]; if (node->getLongValue(node->mLength, integer_array, node->mEncoding) < node->mLength) { error_buffer.append(llformat("ERROR Node %s: Could not read long integer array, child %s.\n", mName->mString, node->mName->mString)); return FALSE; } for (U32 pos=0; pos<(U32)node->mLength; ++pos) { long_checksum ^= integer_array[pos]; } } } break; case TYPE_FLOAT: { if (node->mPrecision == 32) { F32 float_array[30]; if (node->getFloatValue(node->mLength, float_array, node->mEncoding) < node->mLength) { error_buffer.append(llformat("ERROR Node %s: Could not read float array, child %s.\n", mName->mString, node->mName->mString)); return FALSE; } for (U32 pos=0; pos<(U32)node->mLength; ++pos) { U32 float_bits = ((U32 *)float_array)[pos]; float_checksum ^= (float_bits & 0xfffff000); } } else { F64 float_array[30]; if (node->getDoubleValue(node->mLength, float_array, node->mEncoding) < node->mLength) { error_buffer.append(llformat("ERROR Node %s: Could not read float array, child %s.\n", mName->mString, node->mName->mString)); return FALSE; } for (U32 pos=0; pos<(U32)node->mLength; ++pos) { U64 float_bits = ((U64 *)float_array)[pos]; float_checksum ^= ((float_bits & 0xfffffff000000000ll) >> 32); } } } break; case TYPE_STRING: break; case TYPE_UUID: { LLUUID uuid_array[30]; if (node->getUUIDValue(node->mLength, uuid_array) < node->mLength) { error_buffer.append(llformat("ERROR Node %s: Could not read uuid array, child %s.\n", mName->mString, node->mName->mString)); return FALSE; } for (U32 pos=0; pos<(U32)node->mLength; ++pos) { for (S32 byte=0; byte<UUID_BYTES; ++byte) { uuid_checksum.mData[byte] ^= uuid_array[pos].mData[byte]; } } } break; case TYPE_NODEREF: { LLXMLNode *node_array[30]; if (node->getNodeRefValue(node->mLength, node_array) < node->mLength) { error_buffer.append(llformat("ERROR Node %s: Could not read node ref array, child %s.\n", mName->mString, node->mName->mString)); return FALSE; } for (U32 pos=0; pos<node->mLength; ++pos) { const char *node_name = node_array[pos]->mName->mString; for (U32 pos2=0; pos2<strlen(node_name); ++pos2) /* Flawfinder: ignore */ { U32 hash_contrib = U32(node_name[pos2]) << ((pos2 % 4) * 8); noderef_checksum ^= hash_contrib; } } } break; } } LLXMLNodePtr checksum_node; // Compare checksums { U32 node_integer_checksum = 0; if (!getAttribute("integer_checksum", checksum_node, FALSE) || checksum_node->getUnsignedValue(1, &node_integer_checksum, ENCODING_HEX) != 1) { error_buffer.append(llformat("ERROR Node %s: Integer checksum missing.\n", mName->mString)); return FALSE; } if (node_integer_checksum != integer_checksum) { error_buffer.append(llformat("ERROR Node %s: Integer checksum mismatch: read %X / calc %X.\n", mName->mString, node_integer_checksum, integer_checksum)); return FALSE; } } { U64 node_long_checksum = 0; if (!getAttribute("long_checksum", checksum_node, FALSE) || checksum_node->getLongValue(1, &node_long_checksum, ENCODING_HEX) != 1) { error_buffer.append(llformat("ERROR Node %s: Long Integer checksum missing.\n", mName->mString)); return FALSE; } if (node_long_checksum != long_checksum) { U32 *pp1 = (U32 *)&node_long_checksum; U32 *pp2 = (U32 *)&long_checksum; error_buffer.append(llformat("ERROR Node %s: Long Integer checksum mismatch: read %08X%08X / calc %08X%08X.\n", mName->mString, pp1[1], pp1[0], pp2[1], pp2[0])); return FALSE; } } { U32 node_bool_true_count = 0; if (!getAttribute("bool_true_count", checksum_node, FALSE) || checksum_node->getUnsignedValue(1, &node_bool_true_count, ENCODING_HEX) != 1) { error_buffer.append(llformat("ERROR Node %s: Boolean checksum missing.\n", mName->mString)); return FALSE; } if (node_bool_true_count != bool_true_count) { error_buffer.append(llformat("ERROR Node %s: Boolean checksum mismatch: read %X / calc %X.\n", mName->mString, node_bool_true_count, bool_true_count)); return FALSE; } } { LLUUID node_uuid_checksum; if (!getAttribute("uuid_checksum", checksum_node, FALSE) || checksum_node->getUUIDValue(1, &node_uuid_checksum) != 1) { error_buffer.append(llformat("ERROR Node %s: UUID checksum missing.\n", mName->mString)); return FALSE; } if (node_uuid_checksum != uuid_checksum) { error_buffer.append(llformat("ERROR Node %s: UUID checksum mismatch: read %s / calc %s.\n", mName->mString, node_uuid_checksum.asString().c_str(), uuid_checksum.asString().c_str())); return FALSE; } } { U32 node_noderef_checksum = 0; if (!getAttribute("noderef_checksum", checksum_node, FALSE) || checksum_node->getUnsignedValue(1, &node_noderef_checksum, ENCODING_HEX) != 1) { error_buffer.append(llformat("ERROR Node %s: Node Ref checksum missing.\n", mName->mString)); return FALSE; } if (node_noderef_checksum != noderef_checksum) { error_buffer.append(llformat("ERROR Node %s: Node Ref checksum mismatch: read %X / calc %X.\n", mName->mString, node_noderef_checksum, noderef_checksum)); return FALSE; } } { U32 node_float_checksum = 0; if (!getAttribute("float_checksum", checksum_node, FALSE) || checksum_node->getUnsignedValue(1, &node_float_checksum, ENCODING_HEX) != 1) { error_buffer.append(llformat("ERROR Node %s: Float checksum missing.\n", mName->mString)); return FALSE; } if (node_float_checksum != float_checksum) { error_buffer.append(llformat("ERROR Node %s: Float checksum mismatch: read %X / calc %X.\n", mName->mString, node_float_checksum, float_checksum)); return FALSE; } } return TRUE; } LLXMLNodePtr LLXMLNode::getFirstChild() const { if (mChildren.isNull()) return NULL; LLXMLNodePtr ret = mChildren->head; return ret; } LLXMLNodePtr LLXMLNode::getNextSibling() const { LLXMLNodePtr ret = mNext; return ret; } std::string LLXMLNode::getSanitizedValue() const { if (mIsAttribute) { return getValue() ; } else { return getTextContents(); } } std::string LLXMLNode::getTextContents() const { std::string msg; std::string contents = mValue; std::string::size_type n = contents.find_first_not_of(" \t\n"); if (n != std::string::npos && contents[n] == '\"') { // Case 1: node has quoted text S32 num_lines = 0; while(1) { // mContents[n] == '"' ++n; std::string::size_type t = n; std::string::size_type m = 0; // fix-up escaped characters while(1) { m = contents.find_first_of("\\\"", t); // find first \ or " if ((m == std::string::npos) || (contents[m] == '\"')) { break; } contents.erase(m,1); t = m+1; } if (m == std::string::npos) { break; } // mContents[m] == '"' num_lines++; msg += contents.substr(n,m-n) + "\n"; n = contents.find_first_of("\"", m+1); if (n == std::string::npos) { if (num_lines == 1) { msg.erase(msg.size()-1); // remove "\n" if only one line } break; } } } else { // Case 2: node has embedded text (beginning and trailing whitespace trimmed) std::string::size_type start = mValue.find_first_not_of(" \t\n"); if (start != mValue.npos) { std::string::size_type end = mValue.find_last_not_of(" \t\n"); if (end != mValue.npos) { msg = mValue.substr(start, end+1-start); } else { msg = mValue.substr(start); } } // Convert any internal CR to LF msg = utf8str_removeCRLF(msg); } return msg; } void LLXMLNode::setLineNumber(S32 line_number) { mLineNumber = line_number; } S32 LLXMLNode::getLineNumber() { return mLineNumber; }