/** * @file llstatbar.cpp * @brief A little map of the world with network information * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ //#include "llviewerprecompiledheaders.h" #include "linden_common.h" #include "llstatbar.h" #include "llmath.h" #include "llui.h" #include "llgl.h" #include "llfontgl.h" #include "lluictrlfactory.h" #include "lltracerecording.h" #include "llcriticaldamp.h" #include "lltooltip.h" #include "lllocalcliprect.h" #include #include "lltrans.h" // rate at which to update display of value that is rapidly changing const F32 MEAN_VALUE_UPDATE_TIME = 1.f / 4.f; // time between value changes that qualifies as a "rapid change" const F32Seconds RAPID_CHANGE_THRESHOLD(0.2f); // maximum number of rapid changes in RAPID_CHANGE_WINDOW before switching over to displaying the mean // instead of latest value const S32 MAX_RAPID_CHANGES_PER_SEC = 10; // period of time over which to measure rapid changes const F32Seconds RAPID_CHANGE_WINDOW(1.f); F32 calc_tick_value(F32 min, F32 max) { F32 range = max - min; const S32 DIVISORS[] = {6, 8, 10, 4, 5}; // try storing S32 best_decimal_digit_count = S32_MAX; S32 best_divisor = 10; for (U32 divisor_idx = 0; divisor_idx < LL_ARRAY_SIZE(DIVISORS); divisor_idx++) { S32 divisor = DIVISORS[divisor_idx]; F32 possible_tick_value = range / divisor; S32 num_whole_digits = llceil(logf(llabs(min + possible_tick_value)) * OO_LN10); for (S32 digit_count = -(num_whole_digits - 1); digit_count < 6; digit_count++) { F32 test_tick_value = min + (possible_tick_value * (F32)pow(10.0, digit_count)); if (is_approx_equal((F32)(S32)test_tick_value, test_tick_value)) { if (digit_count < best_decimal_digit_count) { best_decimal_digit_count = digit_count; best_divisor = divisor; } break; } } } return is_approx_equal(range, 0.f) ? 0.f : range / best_divisor; } void calc_auto_scale_range(F32& min, F32& max, F32& tick) { min = llmin(0.f, min, max); max = llmax(0.f, min, max); const F32 RANGES[] = {0.f, 1.f, 1.5f, 2.f, 3.f, 5.f, 10.f}; const F32 TICKS[] = {0.f, 0.25f, 0.5f, 1.f, 1.f, 1.f, 2.f }; const S32 num_digits_max = is_approx_equal(llabs(max), 0.f) ? S32_MIN + 1 : llceil(logf(llabs(max)) * OO_LN10); const S32 num_digits_min = is_approx_equal(llabs(min), 0.f) ? S32_MIN + 1 : llceil(logf(llabs(min)) * OO_LN10); const S32 num_digits = llmax(num_digits_max, num_digits_min); const F32 power_of_10 = (F32)pow(10.0, num_digits - 1); const F32 starting_max = power_of_10 * ((max < 0.f) ? -1 : 1); const F32 starting_min = power_of_10 * ((min < 0.f) ? -1 : 1); F32 cur_max = starting_max; F32 cur_min = starting_min; F32 out_max = max; F32 out_min = min; F32 cur_tick_min = 0.f; F32 cur_tick_max = 0.f; for (S32 range_idx = 0; range_idx < LL_ARRAY_SIZE(RANGES); range_idx++) { cur_max = starting_max * RANGES[range_idx]; cur_min = starting_min * RANGES[range_idx]; if (min > 0.f && cur_min <= min) { out_min = cur_min; cur_tick_min = TICKS[range_idx]; } if (max < 0.f && cur_max >= max) { out_max = cur_max; cur_tick_max = TICKS[range_idx]; } } cur_max = starting_max; cur_min = starting_min; for (S32 range_idx = LL_ARRAY_SIZE(RANGES) - 1; range_idx >= 0; range_idx--) { cur_max = starting_max * RANGES[range_idx]; cur_min = starting_min * RANGES[range_idx]; if (min < 0.f && cur_min <= min) { out_min = cur_min; cur_tick_min = TICKS[range_idx]; } if (max > 0.f && cur_max >= max) { out_max = cur_max; cur_tick_max = TICKS[range_idx]; } } tick = power_of_10 * llmax(cur_tick_min, cur_tick_max); min = out_min; max = out_max; } LLStatBar::Params::Params() : label("label"), unit_label("unit_label"), bar_min("bar_min", 0.f), bar_max("bar_max", 0.f), tick_spacing("tick_spacing", 0.f), decimal_digits("decimal_digits", 3), show_bar("show_bar", false), show_median("show_median", false), show_history("show_history", false), scale_range("scale_range", true), num_frames("num_frames", 200), num_frames_short("num_frames_short", 20), max_height("max_height", 100), stat("stat"), orientation("orientation", VERTICAL) { changeDefault(follows.flags, FOLLOWS_TOP | FOLLOWS_LEFT); } /////////////////////////////////////////////////////////////////////////////////// LLStatBar::LLStatBar(const Params& p) : LLView(p), mLabel(p.label), mUnitLabel(p.unit_label), mTargetMinBar(llmin(p.bar_min, p.bar_max)), mTargetMaxBar(llmax(p.bar_max, p.bar_min)), mCurMaxBar(p.bar_max), mCurMinBar(0), mDecimalDigits(p.decimal_digits), mNumHistoryFrames(p.num_frames), mNumShortHistoryFrames(p.num_frames_short), mMaxHeight(p.max_height), mDisplayBar(p.show_bar), mShowMedian(p.show_median), mDisplayHistory(p.show_history), mOrientation(p.orientation), mAutoScaleMax(!p.bar_max.isProvided()), mAutoScaleMin(!p.bar_min.isProvided()), mTickSpacing(p.tick_spacing), mLastDisplayValue(0.f), mStatType(STAT_NONE) { mFloatingTargetMinBar = mTargetMinBar; mFloatingTargetMaxBar = mTargetMaxBar; mStat.valid = NULL; // tick value will be automatically calculated later if (!p.tick_spacing.isProvided() && p.bar_min.isProvided() && p.bar_max.isProvided()) { mTickSpacing = calc_tick_value(mTargetMinBar, mTargetMaxBar); } setStat(p.stat); } bool LLStatBar::handleHover(S32 x, S32 y, MASK mask) { switch(mStatType) { case STAT_COUNT: LLToolTipMgr::instance().show(LLToolTip::Params().message(mStat.countStatp->getDescription()).sticky_rect(calcScreenRect())); break; case STAT_EVENT: LLToolTipMgr::instance().show(LLToolTip::Params().message(mStat.eventStatp->getDescription()).sticky_rect(calcScreenRect())); break; case STAT_SAMPLE: LLToolTipMgr::instance().show(LLToolTip::Params().message(mStat.sampleStatp->getDescription()).sticky_rect(calcScreenRect())); break; default: break; } return true; } bool LLStatBar::handleMouseDown(S32 x, S32 y, MASK mask) { bool handled = LLView::handleMouseDown(x, y, mask); if (!handled) { if (mDisplayBar) { if (mDisplayHistory || mOrientation == HORIZONTAL) { mDisplayBar = false; mDisplayHistory = false; } else { mDisplayHistory = true; } } else { mDisplayBar = true; if (mOrientation == HORIZONTAL) { mDisplayHistory = true; } } LLView* parent = getParent(); parent->reshape(parent->getRect().getWidth(), parent->getRect().getHeight(), false); } return true; } template S32 calc_num_rapid_changes(LLTrace::PeriodicRecording& periodic_recording, const T& stat, const F32Seconds time_period) { F32Seconds elapsed_time, time_since_value_changed; S32 num_rapid_changes = 0; const F32Seconds RAPID_CHANGE_THRESHOLD = F32Seconds(0.3f); F64 last_value = periodic_recording.getPrevRecording(1).getLastValue(stat); for (S32 i = 2; i < periodic_recording.getNumRecordedPeriods(); i++) { LLTrace::Recording& recording = periodic_recording.getPrevRecording(i); F64 cur_value = recording.getLastValue(stat); if (last_value != cur_value) { if (time_since_value_changed < RAPID_CHANGE_THRESHOLD) num_rapid_changes++; time_since_value_changed = (F32Seconds)0; } last_value = cur_value; elapsed_time += recording.getDuration(); if (elapsed_time > time_period) break; } return num_rapid_changes; } void LLStatBar::draw() { LLLocalClipRect _(getLocalRect()); LLTrace::PeriodicRecording& frame_recording = LLTrace::get_frame_recording(); LLTrace::Recording& last_frame_recording = frame_recording.getLastRecording(); std::string unit_label; F32 current = 0, min = 0, max = 0, mean = 0, display_value = 0; S32 num_frames = mDisplayHistory ? mNumHistoryFrames : mNumShortHistoryFrames; S32 num_rapid_changes = 0; S32 decimal_digits = mDecimalDigits; switch(mStatType) { case STAT_COUNT: { const LLTrace::StatType& count_stat = *mStat.countStatp; unit_label = std::string(count_stat.getUnitLabel()) + "/s"; current = (F32)last_frame_recording.getPerSec(count_stat); min = (F32)frame_recording.getPeriodMinPerSec(count_stat, num_frames); max = (F32)frame_recording.getPeriodMaxPerSec(count_stat, num_frames); mean = (F32)frame_recording.getPeriodMeanPerSec(count_stat, num_frames); if (mShowMedian) { display_value = (F32)frame_recording.getPeriodMedianPerSec(count_stat, num_frames); } else { display_value = mean; } } break; case STAT_EVENT: { const LLTrace::StatType& event_stat = *mStat.eventStatp; unit_label = mUnitLabel.empty() ? event_stat.getUnitLabel() : mUnitLabel; current = (F32)last_frame_recording.getLastValue(event_stat); min = (F32)frame_recording.getPeriodMin(event_stat, num_frames); max = (F32)frame_recording.getPeriodMax(event_stat, num_frames); mean = (F32)frame_recording.getPeriodMean(event_stat, num_frames); display_value = mean; } break; case STAT_SAMPLE: { const LLTrace::StatType& sample_stat = *mStat.sampleStatp; unit_label = mUnitLabel.empty() ? sample_stat.getUnitLabel() : mUnitLabel; current = (F32)last_frame_recording.getLastValue(sample_stat); min = (F32)frame_recording.getPeriodMin(sample_stat, num_frames); max = (F32)frame_recording.getPeriodMax(sample_stat, num_frames); mean = (F32)frame_recording.getPeriodMean(sample_stat, num_frames); num_rapid_changes = calc_num_rapid_changes(frame_recording, sample_stat, RAPID_CHANGE_WINDOW); if (mShowMedian) { display_value = (F32)frame_recording.getPeriodMedian(sample_stat, num_frames); } else if (num_rapid_changes / RAPID_CHANGE_WINDOW.value() > MAX_RAPID_CHANGES_PER_SEC) { display_value = mean; } else { display_value = current; // always display current value, don't rate limit mLastDisplayValue = current; if (is_approx_equal((F32)(S32)display_value, display_value)) { decimal_digits = 0; } } } break; default: break; } LLRect bar_rect; if (mOrientation == HORIZONTAL) { bar_rect.mTop = llmax(5, getRect().getHeight() - 15); bar_rect.mLeft = 0; bar_rect.mRight = getRect().getWidth() - 40; bar_rect.mBottom = llmin(bar_rect.mTop - 5, 0); } else // VERTICAL { bar_rect.mTop = llmax(5, getRect().getHeight() - 15); bar_rect.mLeft = 0; bar_rect.mRight = getRect().getWidth(); bar_rect.mBottom = llmin(bar_rect.mTop - 5, 20); } mCurMaxBar = LLSmoothInterpolation::lerp(mCurMaxBar, mTargetMaxBar, 0.05f); mCurMinBar = LLSmoothInterpolation::lerp(mCurMinBar, mTargetMinBar, 0.05f); // rate limited updates if (mLastDisplayValueTimer.getElapsedTimeF32() < MEAN_VALUE_UPDATE_TIME) { display_value = mLastDisplayValue; } else { mLastDisplayValueTimer.reset(); } drawLabelAndValue(display_value, unit_label, bar_rect, decimal_digits); mLastDisplayValue = display_value; if (mDisplayBar && mStat.valid) { // Draw the tick marks. LLGLSUIDefault gls_ui; gGL.getTexUnit(0)->unbind(LLTexUnit::TT_TEXTURE); F32 value_scale; if (mCurMaxBar == mCurMinBar) { value_scale = 0.f; } else { value_scale = (mOrientation == HORIZONTAL) ? (bar_rect.getHeight())/(mCurMaxBar - mCurMinBar) : (bar_rect.getWidth())/(mCurMaxBar - mCurMinBar); } drawTicks(min, max, value_scale, bar_rect); // draw background bar. gl_rect_2d(bar_rect.mLeft, bar_rect.mTop, bar_rect.mRight, bar_rect.mBottom, LLColor4(0.f, 0.f, 0.f, 0.25f)); // draw values if (!llisnan(display_value) && frame_recording.getNumRecordedPeriods() != 0) { // draw min and max S32 begin = (S32) ((min - mCurMinBar) * value_scale); if (begin < 0) { begin = 0; } S32 end = (S32) ((max - mCurMinBar) * value_scale); if (mOrientation == HORIZONTAL) { gl_rect_2d(bar_rect.mLeft, end, bar_rect.mRight, begin, LLColor4(1.f, 0.f, 0.f, 0.25f)); } else // VERTICAL { gl_rect_2d(begin, bar_rect.mTop, end, bar_rect.mBottom, LLColor4(1.f, 0.f, 0.f, 0.25f)); } F32 span = (mOrientation == HORIZONTAL) ? (F32)(bar_rect.getWidth()) : (F32)(bar_rect.getHeight()); if (mDisplayHistory && mStat.valid) { const S32 num_values = static_cast(frame_recording.getNumRecordedPeriods()) - 1; F32 min_value = 0.f, max_value = 0.f; gGL.color4f(1.f, 0.f, 0.f, 1.f); gGL.begin( LLRender::QUADS ); const S32 max_frame = llmin(num_frames, num_values); U32 num_samples = 0; for (S32 i = 1; i <= max_frame; i++) { F32 offset = ((F32)i / (F32)num_frames) * span; LLTrace::Recording& recording = frame_recording.getPrevRecording(i); switch(mStatType) { case STAT_COUNT: min_value = (F32)recording.getPerSec(*mStat.countStatp); max_value = min_value; num_samples = recording.getSampleCount(*mStat.countStatp); break; case STAT_EVENT: min_value = (F32)recording.getMin(*mStat.eventStatp); max_value = (F32)recording.getMax(*mStat.eventStatp); num_samples = recording.getSampleCount(*mStat.eventStatp); break; case STAT_SAMPLE: min_value = (F32)recording.getMin(*mStat.sampleStatp); max_value = (F32)recording.getMax(*mStat.sampleStatp); num_samples = recording.getSampleCount(*mStat.sampleStatp); break; default: break; } if (!num_samples) continue; F32 min = (min_value - mCurMinBar) * value_scale; F32 max = llmax(min + 1, (max_value - mCurMinBar) * value_scale); if (mOrientation == HORIZONTAL) { gGL.vertex2f((F32)bar_rect.mRight - offset, max); gGL.vertex2f((F32)bar_rect.mRight - offset, min); gGL.vertex2f((F32)bar_rect.mRight - offset - 1, min); gGL.vertex2f((F32)bar_rect.mRight - offset - 1, max); } else { gGL.vertex2f(min, (F32)bar_rect.mBottom + offset + 1); gGL.vertex2f(min, (F32)bar_rect.mBottom + offset); gGL.vertex2f(max, (F32)bar_rect.mBottom + offset); gGL.vertex2f(max, (F32)bar_rect.mBottom + offset + 1 ); } } gGL.end(); } else { S32 begin = (S32) ((current - mCurMinBar) * value_scale) - 1; S32 end = (S32) ((current - mCurMinBar) * value_scale) + 1; // draw current if (mOrientation == HORIZONTAL) { gl_rect_2d(bar_rect.mLeft, end, bar_rect.mRight, begin, LLColor4(1.f, 0.f, 0.f, 1.f)); } else { gl_rect_2d(begin, bar_rect.mTop, end, bar_rect.mBottom, LLColor4(1.f, 0.f, 0.f, 1.f)); } } // draw mean bar { const S32 begin = (S32) ((mean - mCurMinBar) * value_scale) - 1; const S32 end = (S32) ((mean - mCurMinBar) * value_scale) + 1; if (mOrientation == HORIZONTAL) { gl_rect_2d(bar_rect.mLeft - 2, begin, bar_rect.mRight + 2, end, LLColor4(0.f, 1.f, 0.f, 1.f)); } else { gl_rect_2d(begin, bar_rect.mTop + 2, end, bar_rect.mBottom - 2, LLColor4(0.f, 1.f, 0.f, 1.f)); } } } } LLView::draw(); } void LLStatBar::setStat(const std::string& stat_name) { using namespace LLTrace; if (auto count_stat = StatType::getInstance(stat_name)) { mStat.countStatp = count_stat.get(); mStatType = STAT_COUNT; } else if (auto event_stat = StatType::getInstance(stat_name)) { mStat.eventStatp = event_stat.get(); mStatType = STAT_EVENT; } else if (auto sample_stat = StatType::getInstance(stat_name)) { mStat.sampleStatp = sample_stat.get(); mStatType = STAT_SAMPLE; } } void LLStatBar::setRange(F32 bar_min, F32 bar_max) { mTargetMinBar = llmin(bar_min, bar_max); mTargetMaxBar = llmax(bar_min, bar_max); mFloatingTargetMinBar = mTargetMinBar; mFloatingTargetMaxBar = mTargetMaxBar; mTickSpacing = calc_tick_value(mTargetMinBar, mTargetMaxBar); } LLRect LLStatBar::getRequiredRect() { LLRect rect; if (mDisplayBar) { if (mDisplayHistory) { rect.mTop = mMaxHeight; } else { rect.mTop = 40; } } else { rect.mTop = 14; } return rect; } void LLStatBar::drawLabelAndValue( F32 value, std::string &label, LLRect &bar_rect, S32 decimal_digits ) { LLFontGL::getFontMonospace()->renderUTF8(mLabel, 0, 0, getRect().getHeight(), LLColor4(1.f, 1.f, 1.f, 1.f), LLFontGL::LEFT, LLFontGL::TOP); std::string value_str = !llisnan(value) ? llformat("%10.*f %s", decimal_digits, value, label.c_str()) : LLTrans::getString("na"); // Draw the current value. if (mOrientation == HORIZONTAL) { LLFontGL::getFontMonospace()->renderUTF8(value_str, 0, bar_rect.mRight, getRect().getHeight(), LLColor4(1.f, 1.f, 1.f, 1.f), LLFontGL::RIGHT, LLFontGL::TOP); } else { LLFontGL::getFontMonospace()->renderUTF8(value_str, 0, bar_rect.mRight, getRect().getHeight(), LLColor4(1.f, 1.f, 1.f, 1.f), LLFontGL::RIGHT, LLFontGL::TOP); } } void LLStatBar::drawTicks( F32 min, F32 max, F32 value_scale, LLRect &bar_rect ) { if (!llisnan(min) && (mAutoScaleMax || mAutoScaleMin)) { F32 u = LLSmoothInterpolation::getInterpolant(10.f); mFloatingTargetMinBar = llmin(min, lerp(mFloatingTargetMinBar, min, u)); mFloatingTargetMaxBar = llmax(max, lerp(mFloatingTargetMaxBar, max, u)); F32 range_min = mAutoScaleMin ? mFloatingTargetMinBar : mTargetMinBar; F32 range_max = mAutoScaleMax ? mFloatingTargetMaxBar : mTargetMaxBar; F32 tick_value = 0.f; calc_auto_scale_range(range_min, range_max, tick_value); if (mAutoScaleMin) { mTargetMinBar = range_min; } if (mAutoScaleMax) { mTargetMaxBar = range_max; } if (mAutoScaleMin && mAutoScaleMax) { mTickSpacing = tick_value; } else { mTickSpacing = calc_tick_value(mTargetMinBar, mTargetMaxBar); } } // start counting from actual min, not current, animating min, so that ticks don't float between numbers // ensure ticks always hit 0 S32 last_tick = S32_MIN; S32 last_label = S32_MIN; if (mTickSpacing > 0.f && value_scale > 0.f) { const S32 MIN_TICK_SPACING = mOrientation == HORIZONTAL ? 20 : 30; const S32 MIN_LABEL_SPACING = mOrientation == HORIZONTAL ? 30 : 60; const S32 TICK_LENGTH = 4; const S32 TICK_WIDTH = 1; F32 start = mCurMinBar < 0.f ? llceil(-mCurMinBar / mTickSpacing) * -mTickSpacing : 0.f; for (F32 tick_value = start; ;tick_value += mTickSpacing) { // clamp to S32_MAX / 2 to avoid floating point to integer overflow resulting in S32_MIN const S32 tick_begin = llfloor(llmin((F32)(S32_MAX / 2), (tick_value - mCurMinBar)*value_scale)); const S32 tick_end = tick_begin + TICK_WIDTH; if (tick_begin < last_tick + MIN_TICK_SPACING) { continue; } last_tick = tick_begin; S32 decimal_digits = mDecimalDigits; if (is_approx_equal((F32)(S32)tick_value, tick_value)) { decimal_digits = 0; } std::string tick_label = llformat("%.*f", decimal_digits, tick_value); S32 tick_label_width = LLFontGL::getFontMonospace()->getWidth(tick_label); if (mOrientation == HORIZONTAL) { if (tick_begin > last_label + MIN_LABEL_SPACING) { gl_rect_2d(bar_rect.mLeft, tick_end, bar_rect.mRight - TICK_LENGTH, tick_begin, LLColor4(1.f, 1.f, 1.f, 0.25f)); LLFontGL::getFontMonospace()->renderUTF8(tick_label, 0, bar_rect.mRight, tick_begin, LLColor4(1.f, 1.f, 1.f, 0.5f), LLFontGL::LEFT, LLFontGL::VCENTER); last_label = tick_begin; } else { gl_rect_2d(bar_rect.mLeft, tick_end, bar_rect.mRight - TICK_LENGTH/2, tick_begin, LLColor4(1.f, 1.f, 1.f, 0.1f)); } } else { if (tick_begin > last_label + MIN_LABEL_SPACING) { gl_rect_2d(tick_begin, bar_rect.mTop, tick_end, bar_rect.mBottom - TICK_LENGTH, LLColor4(1.f, 1.f, 1.f, 0.25f)); S32 label_pos = tick_begin - ll_round((F32)tick_label_width * ((F32)tick_begin / (F32)bar_rect.getWidth())); LLFontGL::getFontMonospace()->renderUTF8(tick_label, 0, label_pos, bar_rect.mBottom - TICK_LENGTH, LLColor4(1.f, 1.f, 1.f, 0.5f), LLFontGL::LEFT, LLFontGL::TOP); last_label = label_pos; } else { gl_rect_2d(tick_begin, bar_rect.mTop, tick_end, bar_rect.mBottom - TICK_LENGTH/2, LLColor4(1.f, 1.f, 1.f, 0.1f)); } } // always draw one tick value past tick_end, so we can see part of the text, if possible if (tick_value > mCurMaxBar) { break; } } } }