/** * @file llvertexbuffer.cpp * @brief LLVertexBuffer implementation * * $LicenseInfo:firstyear=2003&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" #include #include "llsys.h" #include "llvertexbuffer.h" // #include "llrender.h" #include "llglheaders.h" #include "llrender.h" #include "llvector4a.h" #include "llshadermgr.h" #include "llglslshader.h" #include "llmemory.h" //Next Highest Power Of Two //helper function, returns first number > v that is a power of 2, or v if v is already a power of 2 U32 nhpo2(U32 v) { U32 r = 1; while (r < v) { r *= 2; } return r; } //which power of 2 is i? //assumes i is a power of 2 > 0 U32 wpo2(U32 i) { llassert(i > 0); llassert(nhpo2(i) == i); U32 r = 0; while (i >>= 1) ++r; return r; } const U32 LL_VBO_BLOCK_SIZE = 2048; const U32 LL_VBO_POOL_MAX_SEED_SIZE = 256*1024; U32 vbo_block_size(U32 size) { //what block size will fit size? U32 mod = size % LL_VBO_BLOCK_SIZE; return mod == 0 ? size : size + (LL_VBO_BLOCK_SIZE-mod); } U32 vbo_block_index(U32 size) { return vbo_block_size(size)/LL_VBO_BLOCK_SIZE; } const U32 LL_VBO_POOL_SEED_COUNT = vbo_block_index(LL_VBO_POOL_MAX_SEED_SIZE); //============================================================================ //static LLVBOPool LLVertexBuffer::sStreamVBOPool(GL_STREAM_DRAW_ARB, GL_ARRAY_BUFFER_ARB); LLVBOPool LLVertexBuffer::sDynamicVBOPool(GL_DYNAMIC_DRAW_ARB, GL_ARRAY_BUFFER_ARB); LLVBOPool LLVertexBuffer::sDynamicCopyVBOPool(GL_DYNAMIC_COPY_ARB, GL_ARRAY_BUFFER_ARB); LLVBOPool LLVertexBuffer::sStreamIBOPool(GL_STREAM_DRAW_ARB, GL_ELEMENT_ARRAY_BUFFER_ARB); LLVBOPool LLVertexBuffer::sDynamicIBOPool(GL_DYNAMIC_DRAW_ARB, GL_ELEMENT_ARRAY_BUFFER_ARB); U32 LLVBOPool::sBytesPooled = 0; U32 LLVBOPool::sIndexBytesPooled = 0; U32 LLVBOPool::sCurGLName = 1; std::list LLVertexBuffer::sAvailableVAOName; U32 LLVertexBuffer::sCurVAOName = 1; U32 LLVertexBuffer::sAllocatedIndexBytes = 0; U32 LLVertexBuffer::sIndexCount = 0; LLPrivateMemoryPool* LLVertexBuffer::sPrivatePoolp = NULL; U32 LLVertexBuffer::sBindCount = 0; U32 LLVertexBuffer::sSetCount = 0; S32 LLVertexBuffer::sCount = 0; S32 LLVertexBuffer::sGLCount = 0; S32 LLVertexBuffer::sMappedCount = 0; bool LLVertexBuffer::sDisableVBOMapping = false; bool LLVertexBuffer::sEnableVBOs = true; U32 LLVertexBuffer::sGLRenderBuffer = 0; U32 LLVertexBuffer::sGLRenderArray = 0; U32 LLVertexBuffer::sGLRenderIndices = 0; U32 LLVertexBuffer::sLastMask = 0; bool LLVertexBuffer::sVBOActive = false; bool LLVertexBuffer::sIBOActive = false; U32 LLVertexBuffer::sAllocatedBytes = 0; U32 LLVertexBuffer::sVertexCount = 0; bool LLVertexBuffer::sMapped = false; bool LLVertexBuffer::sUseStreamDraw = true; bool LLVertexBuffer::sUseVAO = false; bool LLVertexBuffer::sPreferStreamDraw = false; U32 LLVBOPool::genBuffer() { U32 ret = 0; if (mGLNamePool.empty()) { ret = sCurGLName++; } else { ret = mGLNamePool.front(); mGLNamePool.pop_front(); } return ret; } void LLVBOPool::deleteBuffer(U32 name) { if (gGLManager.mInited) { LLVertexBuffer::unbind(); glBindBufferARB(mType, name); glBufferDataARB(mType, 0, NULL, mUsage); llassert(std::find(mGLNamePool.begin(), mGLNamePool.end(), name) == mGLNamePool.end()); mGLNamePool.push_back(name); glBindBufferARB(mType, 0); } } LLVBOPool::LLVBOPool(U32 vboUsage, U32 vboType) : mUsage(vboUsage), mType(vboType) { mMissCount.resize(LL_VBO_POOL_SEED_COUNT); std::fill(mMissCount.begin(), mMissCount.end(), 0); } volatile U8* LLVBOPool::allocate(U32& name, U32 size, bool for_seed) { llassert(vbo_block_size(size) == size); volatile U8* ret = NULL; U32 i = vbo_block_index(size); if (mFreeList.size() <= i) { mFreeList.resize(i+1); } if (mFreeList[i].empty() || for_seed) { //make a new buffer name = genBuffer(); glBindBufferARB(mType, name); if (!for_seed && i < LL_VBO_POOL_SEED_COUNT) { //record this miss mMissCount[i]++; } if (mType == GL_ARRAY_BUFFER_ARB) { LLVertexBuffer::sAllocatedBytes += size; } else { LLVertexBuffer::sAllocatedIndexBytes += size; } if (LLVertexBuffer::sDisableVBOMapping || mUsage != GL_DYNAMIC_DRAW_ARB) { glBufferDataARB(mType, size, 0, mUsage); if (mUsage != GL_DYNAMIC_COPY_ARB) { //data will be provided by application ret = (U8*) ll_aligned_malloc(size, 64); } } else { //always use a true hint of static draw when allocating non-client-backed buffers glBufferDataARB(mType, size, 0, GL_STATIC_DRAW_ARB); } glBindBufferARB(mType, 0); if (for_seed) { //put into pool for future use llassert(mFreeList.size() > i); Record rec; rec.mGLName = name; rec.mClientData = ret; if (mType == GL_ARRAY_BUFFER_ARB) { sBytesPooled += size; } else { sIndexBytesPooled += size; } mFreeList[i].push_back(rec); } } else { name = mFreeList[i].front().mGLName; ret = mFreeList[i].front().mClientData; if (mType == GL_ARRAY_BUFFER_ARB) { sBytesPooled -= size; } else { sIndexBytesPooled -= size; } mFreeList[i].pop_front(); } return ret; } void LLVBOPool::release(U32 name, volatile U8* buffer, U32 size) { llassert(vbo_block_size(size) == size); deleteBuffer(name); ll_aligned_free((U8*) buffer); if (mType == GL_ARRAY_BUFFER_ARB) { LLVertexBuffer::sAllocatedBytes -= size; } else { LLVertexBuffer::sAllocatedIndexBytes -= size; } } void LLVBOPool::seedPool() { U32 dummy_name = 0; if (mFreeList.size() < LL_VBO_POOL_SEED_COUNT) { mFreeList.resize(LL_VBO_POOL_SEED_COUNT); } for (U32 i = 0; i < LL_VBO_POOL_SEED_COUNT; i++) { if (mMissCount[i] > mFreeList[i].size()) { U32 size = i*LL_VBO_BLOCK_SIZE; S32 count = mMissCount[i] - mFreeList[i].size(); for (U32 j = 0; j < count; ++j) { allocate(dummy_name, size, true); } } } } void LLVBOPool::cleanup() { U32 size = LL_VBO_BLOCK_SIZE; for (U32 i = 0; i < mFreeList.size(); ++i) { record_list_t& l = mFreeList[i]; while (!l.empty()) { Record& r = l.front(); deleteBuffer(r.mGLName); if (r.mClientData) { ll_aligned_free_16((void*) r.mClientData); } l.pop_front(); if (mType == GL_ARRAY_BUFFER_ARB) { sBytesPooled -= size; LLVertexBuffer::sAllocatedBytes -= size; } else { sIndexBytesPooled -= size; LLVertexBuffer::sAllocatedIndexBytes -= size; } } size += LL_VBO_BLOCK_SIZE; } //reset miss counts std::fill(mMissCount.begin(), mMissCount.end(), 0); } //NOTE: each component must be AT LEAST 4 bytes in size to avoid a performance penalty on AMD hardware S32 LLVertexBuffer::sTypeSize[LLVertexBuffer::TYPE_MAX] = { sizeof(LLVector4), // TYPE_VERTEX, sizeof(LLVector4), // TYPE_NORMAL, sizeof(LLVector2), // TYPE_TEXCOORD0, sizeof(LLVector2), // TYPE_TEXCOORD1, sizeof(LLVector2), // TYPE_TEXCOORD2, sizeof(LLVector2), // TYPE_TEXCOORD3, sizeof(LLColor4U), // TYPE_COLOR, sizeof(LLColor4U), // TYPE_EMISSIVE, only alpha is used currently sizeof(LLVector4), // TYPE_BINORMAL, sizeof(F32), // TYPE_WEIGHT, sizeof(LLVector4), // TYPE_WEIGHT4, sizeof(LLVector4), // TYPE_CLOTHWEIGHT, sizeof(LLVector4), // TYPE_TEXTURE_INDEX (actually exists as position.w), no extra data, but stride is 16 bytes }; U32 LLVertexBuffer::sGLMode[LLRender::NUM_MODES] = { GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_QUADS, GL_LINE_LOOP, }; //static U32 LLVertexBuffer::getVAOName() { U32 ret = 0; if (!sAvailableVAOName.empty()) { ret = sAvailableVAOName.front(); sAvailableVAOName.pop_front(); } else { #ifdef GL_ARB_vertex_array_object glGenVertexArrays(1, &ret); #endif } return ret; } //static void LLVertexBuffer::releaseVAOName(U32 name) { sAvailableVAOName.push_back(name); } //static void LLVertexBuffer::seedPools() { sStreamVBOPool.seedPool(); sDynamicVBOPool.seedPool(); sDynamicCopyVBOPool.seedPool(); sStreamIBOPool.seedPool(); sDynamicIBOPool.seedPool(); } //static void LLVertexBuffer::setupClientArrays(U32 data_mask) { if (sLastMask != data_mask) { bool error = false; if (gGLManager.mGLSLVersionMajor < 2 && gGLManager.mGLSLVersionMinor < 30) { //make sure texture index is disabled data_mask = data_mask & ~MAP_TEXTURE_INDEX; } if (LLGLSLShader::sNoFixedFunction) { for (U32 i = 0; i < TYPE_MAX; ++i) { S32 loc = i; U32 mask = 1 << i; if (sLastMask & (1 << i)) { //was enabled if (!(data_mask & mask)) { //needs to be disabled glDisableVertexAttribArrayARB(loc); } } else { //was disabled if (data_mask & mask) { //needs to be enabled glEnableVertexAttribArrayARB(loc); } } } } else { GLenum array[] = { GL_VERTEX_ARRAY, GL_NORMAL_ARRAY, GL_TEXTURE_COORD_ARRAY, GL_COLOR_ARRAY, }; GLenum mask[] = { MAP_VERTEX, MAP_NORMAL, MAP_TEXCOORD0, MAP_COLOR }; for (U32 i = 0; i < 4; ++i) { if (sLastMask & mask[i]) { //was enabled if (!(data_mask & mask[i])) { //needs to be disabled glDisableClientState(array[i]); } else if (gDebugGL) { //needs to be enabled, make sure it was (DEBUG) if (!glIsEnabled(array[i])) { if (gDebugSession) { error = true; gFailLog << "Bad client state! " << array[i] << " disabled." << std::endl; } else { llerrs << "Bad client state! " << array[i] << " disabled." << llendl; } } } } else { //was disabled if (data_mask & mask[i]) { //needs to be enabled glEnableClientState(array[i]); } else if (gDebugGL && glIsEnabled(array[i])) { //needs to be disabled, make sure it was (DEBUG TEMPORARY) if (gDebugSession) { error = true; gFailLog << "Bad client state! " << array[i] << " enabled." << std::endl; } else { llerrs << "Bad client state! " << array[i] << " enabled." << llendl; } } } } U32 map_tc[] = { MAP_TEXCOORD1, MAP_TEXCOORD2, MAP_TEXCOORD3 }; for (U32 i = 0; i < 3; i++) { if (sLastMask & map_tc[i]) { if (!(data_mask & map_tc[i])) { //disable glClientActiveTextureARB(GL_TEXTURE1_ARB+i); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glClientActiveTextureARB(GL_TEXTURE0_ARB); } } else if (data_mask & map_tc[i]) { glClientActiveTextureARB(GL_TEXTURE1_ARB+i); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glClientActiveTextureARB(GL_TEXTURE0_ARB); } } if (sLastMask & MAP_BINORMAL) { if (!(data_mask & MAP_BINORMAL)) { glClientActiveTextureARB(GL_TEXTURE2_ARB); glDisableClientState(GL_TEXTURE_COORD_ARRAY); glClientActiveTextureARB(GL_TEXTURE0_ARB); } } else if (data_mask & MAP_BINORMAL) { glClientActiveTextureARB(GL_TEXTURE2_ARB); glEnableClientState(GL_TEXTURE_COORD_ARRAY); glClientActiveTextureARB(GL_TEXTURE0_ARB); } } sLastMask = data_mask; } } //static void LLVertexBuffer::drawArrays(U32 mode, const std::vector& pos, const std::vector& norm) { llassert(!LLGLSLShader::sNoFixedFunction || LLGLSLShader::sCurBoundShaderPtr != NULL); gGL.syncMatrices(); U32 count = pos.size(); llassert(norm.size() >= pos.size()); llassert(count > 0); if( count == 0 ) { llwarns << "Called drawArrays with 0 vertices" << llendl; return; } if( norm.size() < pos.size() ) { llwarns << "Called drawArrays with #" << norm.size() << " normals and #" << pos.size() << " vertices" << llendl; return; } unbind(); setupClientArrays(MAP_VERTEX | MAP_NORMAL); LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr; if (shader) { S32 loc = LLVertexBuffer::TYPE_VERTEX; if (loc > -1) { glVertexAttribPointerARB(loc, 3, GL_FLOAT, GL_FALSE, 0, pos[0].mV); } loc = LLVertexBuffer::TYPE_NORMAL; if (loc > -1) { glVertexAttribPointerARB(loc, 3, GL_FLOAT, GL_FALSE, 0, norm[0].mV); } } else { glVertexPointer(3, GL_FLOAT, 0, pos[0].mV); glNormalPointer(GL_FLOAT, 0, norm[0].mV); } glDrawArrays(sGLMode[mode], 0, count); } //static void LLVertexBuffer::drawElements(U32 mode, const LLVector4a* pos, const LLVector2* tc, S32 num_indices, const U16* indicesp) { llassert(!LLGLSLShader::sNoFixedFunction || LLGLSLShader::sCurBoundShaderPtr != NULL); gGL.syncMatrices(); U32 mask = LLVertexBuffer::MAP_VERTEX; if (tc) { mask = mask | LLVertexBuffer::MAP_TEXCOORD0; } unbind(); setupClientArrays(mask); if (LLGLSLShader::sNoFixedFunction) { S32 loc = LLVertexBuffer::TYPE_VERTEX; glVertexAttribPointerARB(loc, 3, GL_FLOAT, GL_FALSE, 16, pos); if (tc) { loc = LLVertexBuffer::TYPE_TEXCOORD0; glVertexAttribPointerARB(loc, 2, GL_FLOAT, GL_FALSE, 0, tc); } } else { glTexCoordPointer(2, GL_FLOAT, 0, tc); glVertexPointer(3, GL_FLOAT, 16, pos); } glDrawElements(sGLMode[mode], num_indices, GL_UNSIGNED_SHORT, indicesp); } void LLVertexBuffer::validateRange(U32 start, U32 end, U32 count, U32 indices_offset) const { if (start >= (U32) mNumVerts || end >= (U32) mNumVerts) { llerrs << "Bad vertex buffer draw range: [" << start << ", " << end << "] vs " << mNumVerts << llendl; } llassert(mNumIndices >= 0); if (indices_offset >= (U32) mNumIndices || indices_offset + count > (U32) mNumIndices) { llerrs << "Bad index buffer draw range: [" << indices_offset << ", " << indices_offset+count << "]" << llendl; } if (gDebugGL && !useVBOs()) { U16* idx = ((U16*) getIndicesPointer())+indices_offset; for (U32 i = 0; i < count; ++i) { if (idx[i] < start || idx[i] > end) { llerrs << "Index out of range: " << idx[i] << " not in [" << start << ", " << end << "]" << llendl; } } LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr; if (shader && shader->mFeatures.mIndexedTextureChannels > 1) { LLStrider v; //hack to get non-const reference LLVertexBuffer* vb = (LLVertexBuffer*) this; vb->getVertexStrider(v); for (U32 i = start; i < end; i++) { S32 idx = (S32) (v[i][3]+0.25f); if (idx < 0 || idx >= shader->mFeatures.mIndexedTextureChannels) { llerrs << "Bad texture index found in vertex data stream." << llendl; } } } } } void LLVertexBuffer::drawRange(U32 mode, U32 start, U32 end, U32 count, U32 indices_offset) const { validateRange(start, end, count, indices_offset); mMappable = false; gGL.syncMatrices(); llassert(mNumVerts >= 0); llassert(!LLGLSLShader::sNoFixedFunction || LLGLSLShader::sCurBoundShaderPtr != NULL); if (mGLArray) { if (mGLArray != sGLRenderArray) { llerrs << "Wrong vertex array bound." << llendl; } } else { if (mGLIndices != sGLRenderIndices) { llerrs << "Wrong index buffer bound." << llendl; } if (mGLBuffer != sGLRenderBuffer) { llerrs << "Wrong vertex buffer bound." << llendl; } } if (gDebugGL && !mGLArray && useVBOs()) { GLint elem = 0; glGetIntegerv(GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB, &elem); if (elem != mGLIndices) { llerrs << "Wrong index buffer bound!" << llendl; } } if (mode >= LLRender::NUM_MODES) { llerrs << "Invalid draw mode: " << mode << llendl; return; } U16* idx = ((U16*) getIndicesPointer())+indices_offset; stop_glerror(); glDrawRangeElements(sGLMode[mode], start, end, count, GL_UNSIGNED_SHORT, idx); stop_glerror(); placeFence(); } void LLVertexBuffer::draw(U32 mode, U32 count, U32 indices_offset) const { llassert(!LLGLSLShader::sNoFixedFunction || LLGLSLShader::sCurBoundShaderPtr != NULL); mMappable = false; gGL.syncMatrices(); llassert(mNumIndices >= 0); if (indices_offset >= (U32) mNumIndices || indices_offset + count > (U32) mNumIndices) { llerrs << "Bad index buffer draw range: [" << indices_offset << ", " << indices_offset+count << "]" << llendl; } if (mGLArray) { if (mGLArray != sGLRenderArray) { llerrs << "Wrong vertex array bound." << llendl; } } else { if (mGLIndices != sGLRenderIndices) { llerrs << "Wrong index buffer bound." << llendl; } if (mGLBuffer != sGLRenderBuffer) { llerrs << "Wrong vertex buffer bound." << llendl; } } if (mode >= LLRender::NUM_MODES) { llerrs << "Invalid draw mode: " << mode << llendl; return; } stop_glerror(); glDrawElements(sGLMode[mode], count, GL_UNSIGNED_SHORT, ((U16*) getIndicesPointer()) + indices_offset); stop_glerror(); placeFence(); } void LLVertexBuffer::drawArrays(U32 mode, U32 first, U32 count) const { llassert(!LLGLSLShader::sNoFixedFunction || LLGLSLShader::sCurBoundShaderPtr != NULL); mMappable = false; gGL.syncMatrices(); llassert(mNumVerts >= 0); if (first >= (U32) mNumVerts || first + count > (U32) mNumVerts) { llerrs << "Bad vertex buffer draw range: [" << first << ", " << first+count << "]" << llendl; } if (mGLArray) { if (mGLArray != sGLRenderArray) { llerrs << "Wrong vertex array bound." << llendl; } } else { if (mGLBuffer != sGLRenderBuffer || useVBOs() != sVBOActive) { llerrs << "Wrong vertex buffer bound." << llendl; } } if (mode >= LLRender::NUM_MODES) { llerrs << "Invalid draw mode: " << mode << llendl; return; } stop_glerror(); glDrawArrays(sGLMode[mode], first, count); stop_glerror(); placeFence(); } //static void LLVertexBuffer::initClass(bool use_vbo, bool no_vbo_mapping) { sEnableVBOs = use_vbo && gGLManager.mHasVertexBufferObject; sDisableVBOMapping = sEnableVBOs && no_vbo_mapping; if (!sPrivatePoolp) { sPrivatePoolp = LLPrivateMemoryPoolManager::getInstance()->newPool(LLPrivateMemoryPool::STATIC); } } //static void LLVertexBuffer::unbind() { if (sGLRenderArray) { #if GL_ARB_vertex_array_object glBindVertexArray(0); #endif sGLRenderArray = 0; sGLRenderIndices = 0; sIBOActive = false; } if (sVBOActive) { glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); sVBOActive = false; } if (sIBOActive) { glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0); sIBOActive = false; } sGLRenderBuffer = 0; sGLRenderIndices = 0; setupClientArrays(0); } //static void LLVertexBuffer::cleanupClass() { unbind(); sStreamIBOPool.cleanup(); sDynamicIBOPool.cleanup(); sStreamVBOPool.cleanup(); sDynamicVBOPool.cleanup(); sDynamicCopyVBOPool.cleanup(); if(sPrivatePoolp) { LLPrivateMemoryPoolManager::getInstance()->deletePool(sPrivatePoolp); sPrivatePoolp = NULL; } } //---------------------------------------------------------------------------- S32 LLVertexBuffer::determineUsage(S32 usage) { S32 ret_usage = usage; if (!sEnableVBOs) { ret_usage = 0; } if (ret_usage == GL_STREAM_DRAW_ARB && !sUseStreamDraw) { ret_usage = 0; } if (ret_usage == GL_DYNAMIC_DRAW_ARB && sPreferStreamDraw) { ret_usage = GL_STREAM_DRAW_ARB; } if (ret_usage == 0 && LLRender::sGLCoreProfile) { //MUST use VBOs for all rendering ret_usage = GL_STREAM_DRAW_ARB; } if (ret_usage && ret_usage != GL_STREAM_DRAW_ARB) { //only stream_draw and dynamic_draw are supported when using VBOs, dynamic draw is the default if (ret_usage != GL_DYNAMIC_COPY_ARB) { if (sDisableVBOMapping) { //always use stream draw if VBO mapping is disabled ret_usage = GL_STREAM_DRAW_ARB; } else { ret_usage = GL_DYNAMIC_DRAW_ARB; } } } return ret_usage; } LLVertexBuffer::LLVertexBuffer(U32 typemask, S32 usage) : LLRefCount(), mNumVerts(0), mNumIndices(0), mAlignedOffset(0), mAlignedIndexOffset(0), mSize(0), mIndicesSize(0), mTypeMask(typemask), mUsage(LLVertexBuffer::determineUsage(usage)), mGLBuffer(0), mGLIndices(0), mGLArray(0), mMappedData(NULL), mMappedIndexData(NULL), mMappedDataUsingVBOs(false), mMappedIndexDataUsingVBOs(false), mVertexLocked(false), mIndexLocked(false), mFinal(false), mEmpty(true), mMappable(false), mFence(NULL) { mMappable = (mUsage == GL_DYNAMIC_DRAW_ARB && !sDisableVBOMapping); //zero out offsets for (U32 i = 0; i < TYPE_MAX; i++) { mOffsets[i] = 0; } sCount++; } //static S32 LLVertexBuffer::calcOffsets(const U32& typemask, S32* offsets, S32 num_vertices) { S32 offset = 0; for (S32 i=0; iplaceFence(); }*/ } void LLVertexBuffer::waitFence() const { /*if (mFence) { mFence->wait(); }*/ } //---------------------------------------------------------------------------- void LLVertexBuffer::genBuffer(U32 size) { mSize = vbo_block_size(size); if (mUsage == GL_STREAM_DRAW_ARB) { mMappedData = sStreamVBOPool.allocate(mGLBuffer, mSize); } else if (mUsage == GL_DYNAMIC_DRAW_ARB) { mMappedData = sDynamicVBOPool.allocate(mGLBuffer, mSize); } else { mMappedData = sDynamicCopyVBOPool.allocate(mGLBuffer, mSize); } sGLCount++; } void LLVertexBuffer::genIndices(U32 size) { mIndicesSize = vbo_block_size(size); if (mUsage == GL_STREAM_DRAW_ARB) { mMappedIndexData = sStreamIBOPool.allocate(mGLIndices, mIndicesSize); } else { mMappedIndexData = sDynamicIBOPool.allocate(mGLIndices, mIndicesSize); } sGLCount++; } void LLVertexBuffer::releaseBuffer() { if (mUsage == GL_STREAM_DRAW_ARB) { sStreamVBOPool.release(mGLBuffer, mMappedData, mSize); } else { sDynamicVBOPool.release(mGLBuffer, mMappedData, mSize); } mGLBuffer = 0; mMappedData = NULL; sGLCount--; } void LLVertexBuffer::releaseIndices() { if (mUsage == GL_STREAM_DRAW_ARB) { sStreamIBOPool.release(mGLIndices, mMappedIndexData, mIndicesSize); } else { sDynamicIBOPool.release(mGLIndices, mMappedIndexData, mIndicesSize); } mGLIndices = 0; mMappedIndexData = NULL; sGLCount--; } void LLVertexBuffer::createGLBuffer(U32 size) { if (mGLBuffer) { destroyGLBuffer(); } if (size == 0) { return; } mEmpty = true; mMappedDataUsingVBOs = useVBOs(); if (mMappedDataUsingVBOs) { genBuffer(size); } else { static int gl_buffer_idx = 0; mGLBuffer = ++gl_buffer_idx; mMappedData = (U8*)ALLOCATE_MEM(sPrivatePoolp, size); mSize = size; } } void LLVertexBuffer::createGLIndices(U32 size) { if (mGLIndices) { destroyGLIndices(); } if (size == 0) { return; } mEmpty = true; //pad by 16 bytes for aligned copies size += 16; mMappedIndexDataUsingVBOs = useVBOs(); if (mMappedIndexDataUsingVBOs) { //pad by another 16 bytes for VBO pointer adjustment size += 16; genIndices(size); } else { mMappedIndexData = (U8*)ALLOCATE_MEM(sPrivatePoolp, size); static int gl_buffer_idx = 0; mGLIndices = ++gl_buffer_idx; mIndicesSize = size; } } void LLVertexBuffer::destroyGLBuffer() { if (mGLBuffer) { if (mMappedDataUsingVBOs) { releaseBuffer(); } else { FREE_MEM(sPrivatePoolp, (void*) mMappedData); mMappedData = NULL; mEmpty = true; } } mGLBuffer = 0; //unbind(); } void LLVertexBuffer::destroyGLIndices() { if (mGLIndices) { if (mMappedIndexDataUsingVBOs) { releaseIndices(); } else { FREE_MEM(sPrivatePoolp, (void*) mMappedIndexData); mMappedIndexData = NULL; mEmpty = true; } } mGLIndices = 0; //unbind(); } void LLVertexBuffer::updateNumVerts(S32 nverts) { llassert(nverts >= 0); if (nverts > 65536) { llwarns << "Vertex buffer overflow!" << llendl; nverts = 65536; } U32 needed_size = calcOffsets(mTypeMask, mOffsets, nverts); if (needed_size > mSize || needed_size <= mSize/2) { createGLBuffer(needed_size); } sVertexCount -= mNumVerts; mNumVerts = nverts; sVertexCount += mNumVerts; } void LLVertexBuffer::updateNumIndices(S32 nindices) { llassert(nindices >= 0); U32 needed_size = sizeof(U16) * nindices; if (needed_size > mIndicesSize || needed_size <= mIndicesSize/2) { createGLIndices(needed_size); } sIndexCount -= mNumIndices; mNumIndices = nindices; sIndexCount += mNumIndices; } void LLVertexBuffer::allocateBuffer(S32 nverts, S32 nindices, bool create) { stop_glerror(); if (nverts < 0 || nindices < 0 || nverts > 65536) { llerrs << "Bad vertex buffer allocation: " << nverts << " : " << nindices << llendl; } updateNumVerts(nverts); updateNumIndices(nindices); if (create && (nverts || nindices)) { //actually allocate space for the vertex buffer if using VBO mapping flush(); if (gGLManager.mHasVertexArrayObject && useVBOs() && (sUseVAO)) { #if GL_ARB_vertex_array_object mGLArray = getVAOName(); #endif setupVertexArray(); } } } static LLFastTimer::DeclareTimer FTM_SETUP_VERTEX_ARRAY("Setup VAO"); void LLVertexBuffer::setupVertexArray() { if (!mGLArray) { return; } LLFastTimer t(FTM_SETUP_VERTEX_ARRAY); #if GL_ARB_vertex_array_object glBindVertexArray(mGLArray); #endif sGLRenderArray = mGLArray; U32 attrib_size[] = { 3, //TYPE_VERTEX, 3, //TYPE_NORMAL, 2, //TYPE_TEXCOORD0, 2, //TYPE_TEXCOORD1, 2, //TYPE_TEXCOORD2, 2, //TYPE_TEXCOORD3, 4, //TYPE_COLOR, 4, //TYPE_EMISSIVE, 3, //TYPE_BINORMAL, 1, //TYPE_WEIGHT, 4, //TYPE_WEIGHT4, 4, //TYPE_CLOTHWEIGHT, 1, //TYPE_TEXTURE_INDEX }; U32 attrib_type[] = { GL_FLOAT, //TYPE_VERTEX, GL_FLOAT, //TYPE_NORMAL, GL_FLOAT, //TYPE_TEXCOORD0, GL_FLOAT, //TYPE_TEXCOORD1, GL_FLOAT, //TYPE_TEXCOORD2, GL_FLOAT, //TYPE_TEXCOORD3, GL_UNSIGNED_BYTE, //TYPE_COLOR, GL_UNSIGNED_BYTE, //TYPE_EMISSIVE, GL_FLOAT, //TYPE_BINORMAL, GL_FLOAT, //TYPE_WEIGHT, GL_FLOAT, //TYPE_WEIGHT4, GL_FLOAT, //TYPE_CLOTHWEIGHT, GL_UNSIGNED_INT, //TYPE_TEXTURE_INDEX }; bool attrib_integer[] = { false, //TYPE_VERTEX, false, //TYPE_NORMAL, false, //TYPE_TEXCOORD0, false, //TYPE_TEXCOORD1, false, //TYPE_TEXCOORD2, false, //TYPE_TEXCOORD3, false, //TYPE_COLOR, false, //TYPE_EMISSIVE, false, //TYPE_BINORMAL, false, //TYPE_WEIGHT, false, //TYPE_WEIGHT4, false, //TYPE_CLOTHWEIGHT, true, //TYPE_TEXTURE_INDEX }; U32 attrib_normalized[] = { GL_FALSE, //TYPE_VERTEX, GL_FALSE, //TYPE_NORMAL, GL_FALSE, //TYPE_TEXCOORD0, GL_FALSE, //TYPE_TEXCOORD1, GL_FALSE, //TYPE_TEXCOORD2, GL_FALSE, //TYPE_TEXCOORD3, GL_TRUE, //TYPE_COLOR, GL_TRUE, //TYPE_EMISSIVE, GL_FALSE, //TYPE_BINORMAL, GL_FALSE, //TYPE_WEIGHT, GL_FALSE, //TYPE_WEIGHT4, GL_FALSE, //TYPE_CLOTHWEIGHT, GL_FALSE, //TYPE_TEXTURE_INDEX }; bindGLBuffer(true); bindGLIndices(true); for (U32 i = 0; i < TYPE_MAX; ++i) { if (mTypeMask & (1 << i)) { glEnableVertexAttribArrayARB(i); if (attrib_integer[i]) { #if !LL_DARWIN //glVertexattribIPointer requires GLSL 1.30 or later if (gGLManager.mGLSLVersionMajor > 1 || gGLManager.mGLSLVersionMinor >= 30) { glVertexAttribIPointer(i, attrib_size[i], attrib_type[i], sTypeSize[i], (void*) mOffsets[i]); } #endif } else { glVertexAttribPointerARB(i, attrib_size[i], attrib_type[i], attrib_normalized[i], sTypeSize[i], (void*) mOffsets[i]); } } else { glDisableVertexAttribArrayARB(i); } } //draw a dummy triangle to set index array pointer //glDrawElements(GL_TRIANGLES, 0, GL_UNSIGNED_SHORT, NULL); unbind(); } void LLVertexBuffer::resizeBuffer(S32 newnverts, S32 newnindices) { llassert(newnverts >= 0); llassert(newnindices >= 0); updateNumVerts(newnverts); updateNumIndices(newnindices); if (useVBOs()) { flush(); if (mGLArray) { //if size changed, offsets changed setupVertexArray(); } } } bool LLVertexBuffer::useVBOs() const { //it's generally ineffective to use VBO for things that are streaming on apple return (mUsage != 0); } //---------------------------------------------------------------------------- bool expand_region(LLVertexBuffer::MappedRegion& region, S32 start, S32 end) { if (end < region.mIndex || start > region.mEnd) { //gap exists, do not merge return false; } region.mEnd = llmax(end, region.mEnd); region.mIndex = llmin(start, region.mIndex); region.mCount = region.mEnd-region.mIndex; return true; } static LLFastTimer::DeclareTimer FTM_VBO_MAP_BUFFER_RANGE("VBO Map Range"); static LLFastTimer::DeclareTimer FTM_VBO_MAP_BUFFER("VBO Map"); // Map for data access volatile U8* LLVertexBuffer::mapVertexBuffer(S32 type, S32 index, S32 count, bool map_range) { if (mFinal) { llerrs << "LLVertexBuffer::mapVeretxBuffer() called on a finalized buffer." << llendl; } if (!useVBOs() && !mMappedData && !mMappedIndexData) { llerrs << "LLVertexBuffer::mapVertexBuffer() called on unallocated buffer." << llendl; } if (useVBOs()) { if (!mMappable || gGLManager.mHasMapBufferRange || gGLManager.mHasFlushBufferRange) { if (count == -1) { count = mNumVerts-index; } bool mapped = false; //see if range is already mapped S32 start_index = mOffsets[type]+index*sTypeSize[type]; S32 end_index = start_index+count*sTypeSize[type]; for (std::vector::iterator iter = mMappedVertexRegions.begin(), end = mMappedVertexRegions.end(); iter != end; ++iter) { MappedRegion& region = *iter; if (expand_region(region, index, end_index)) { mapped = true; break; } } if (!mapped) { //not already mapped, map new region MappedRegion region(mMappable && map_range ? -1 : start_index, end_index-start_index); mMappedVertexRegions.push_back(region); } } if (mVertexLocked && map_range) { llerrs << "Attempted to map a specific range of a buffer that was already mapped." << llendl; } if (!mVertexLocked) { mVertexLocked = true; sMappedCount++; stop_glerror(); if(!mMappable) { map_range = false; } else { volatile U8* src = NULL; waitFence(); bindGLBuffer(); if (gGLManager.mHasMapBufferRange) { if (map_range) { #ifdef GL_ARB_map_buffer_range LLFastTimer t(FTM_VBO_MAP_BUFFER_RANGE); S32 offset = mOffsets[type] + sTypeSize[type]*index; S32 length = (sTypeSize[type]*count+0xF) & ~0xF; src = (U8*) glMapBufferRange(GL_ARRAY_BUFFER_ARB, offset, length, GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT | GL_MAP_INVALIDATE_RANGE_BIT); #endif } else { #ifdef GL_ARB_map_buffer_range if (gDebugGL) { GLint size = 0; glGetBufferParameterivARB(GL_ARRAY_BUFFER_ARB, GL_BUFFER_SIZE_ARB, &size); if (size < mSize) { llerrs << "Invalid buffer size." << llendl; } } LLFastTimer t(FTM_VBO_MAP_BUFFER); src = (U8*) glMapBufferRange(GL_ARRAY_BUFFER_ARB, 0, mSize, GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT); #endif } } else if (gGLManager.mHasFlushBufferRange) { if (map_range) { glBufferParameteriAPPLE(GL_ARRAY_BUFFER_ARB, GL_BUFFER_SERIALIZED_MODIFY_APPLE, GL_FALSE); glBufferParameteriAPPLE(GL_ARRAY_BUFFER_ARB, GL_BUFFER_FLUSHING_UNMAP_APPLE, GL_FALSE); src = (U8*) glMapBufferARB(GL_ARRAY_BUFFER_ARB, GL_WRITE_ONLY_ARB); } else { src = (U8*) glMapBufferARB(GL_ARRAY_BUFFER_ARB, GL_WRITE_ONLY_ARB); } } else { map_range = false; src = (U8*) glMapBufferARB(GL_ARRAY_BUFFER_ARB, GL_WRITE_ONLY_ARB); } llassert(src != NULL); mMappedData = LL_NEXT_ALIGNED_ADDRESS(src); mAlignedOffset = mMappedData - src; stop_glerror(); } if (!mMappedData) { log_glerror(); //check the availability of memory LLMemory::logMemoryInfo(true); if(mMappable) { //-------------------- //print out more debug info before crash llinfos << "vertex buffer size: (num verts : num indices) = " << getNumVerts() << " : " << getNumIndices() << llendl; GLint size; glGetBufferParameterivARB(GL_ARRAY_BUFFER_ARB, GL_BUFFER_SIZE_ARB, &size); llinfos << "GL_ARRAY_BUFFER_ARB size is " << size << llendl; //-------------------- GLint buff; glGetIntegerv(GL_ARRAY_BUFFER_BINDING_ARB, &buff); if ((GLuint)buff != mGLBuffer) { llerrs << "Invalid GL vertex buffer bound: " << buff << llendl; } llerrs << "glMapBuffer returned NULL (no vertex data)" << llendl; } else { llerrs << "memory allocation for vertex data failed." << llendl; } } } } else { map_range = false; } if (map_range && gGLManager.mHasMapBufferRange && mMappable) { return mMappedData; } else { return mMappedData+mOffsets[type]+sTypeSize[type]*index; } } static LLFastTimer::DeclareTimer FTM_VBO_MAP_INDEX_RANGE("IBO Map Range"); static LLFastTimer::DeclareTimer FTM_VBO_MAP_INDEX("IBO Map"); volatile U8* LLVertexBuffer::mapIndexBuffer(S32 index, S32 count, bool map_range) { if (mFinal) { llerrs << "LLVertexBuffer::mapIndexBuffer() called on a finalized buffer." << llendl; } if (!useVBOs() && !mMappedData && !mMappedIndexData) { llerrs << "LLVertexBuffer::mapIndexBuffer() called on unallocated buffer." << llendl; } if (useVBOs()) { if (!mMappable || gGLManager.mHasMapBufferRange || gGLManager.mHasFlushBufferRange) { if (count == -1) { count = mNumIndices-index; } S32 end = index+count; bool mapped = false; //see if range is already mapped for (U32 i = 0; i < mMappedIndexRegions.size(); ++i) { MappedRegion& region = mMappedIndexRegions[i]; if (expand_region(region, index, end)) { mapped = true; break; } } if (!mapped) { //not already mapped, map new region MappedRegion region(mMappable && map_range ? -1 : index, count); mMappedIndexRegions.push_back(region); } } if (mIndexLocked && map_range) { llerrs << "Attempted to map a specific range of a buffer that was already mapped." << llendl; } if (!mIndexLocked) { mIndexLocked = true; sMappedCount++; stop_glerror(); if(!mMappable) { map_range = false; } else { bindGLIndices(); if (gDebugGL && useVBOs()) { GLint elem = 0; glGetIntegerv(GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB, &elem); if (elem != mGLIndices) { llerrs << "Wrong index buffer bound!" << llendl; } } volatile U8* src = NULL; waitFence(); if (gGLManager.mHasMapBufferRange) { if (map_range) { #ifdef GL_ARB_map_buffer_range LLFastTimer t(FTM_VBO_MAP_INDEX_RANGE); S32 offset = sizeof(U16)*index; S32 length = sizeof(U16)*count; src = (U8*) glMapBufferRange(GL_ELEMENT_ARRAY_BUFFER_ARB, offset, length, GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT | GL_MAP_INVALIDATE_RANGE_BIT); #endif } else { #ifdef GL_ARB_map_buffer_range LLFastTimer t(FTM_VBO_MAP_INDEX); src = (U8*) glMapBufferRange(GL_ELEMENT_ARRAY_BUFFER_ARB, 0, sizeof(U16)*mNumIndices, GL_MAP_WRITE_BIT | GL_MAP_FLUSH_EXPLICIT_BIT); #endif } } else if (gGLManager.mHasFlushBufferRange) { if (map_range) { glBufferParameteriAPPLE(GL_ELEMENT_ARRAY_BUFFER_ARB, GL_BUFFER_SERIALIZED_MODIFY_APPLE, GL_FALSE); glBufferParameteriAPPLE(GL_ELEMENT_ARRAY_BUFFER_ARB, GL_BUFFER_FLUSHING_UNMAP_APPLE, GL_FALSE); src = (U8*) glMapBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, GL_WRITE_ONLY_ARB); } else { src = (U8*) glMapBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, GL_WRITE_ONLY_ARB); } } else { LLFastTimer t(FTM_VBO_MAP_INDEX); map_range = false; src = (U8*) glMapBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, GL_WRITE_ONLY_ARB); } llassert(src != NULL); mMappedIndexData = src; //LL_NEXT_ALIGNED_ADDRESS(src); mAlignedIndexOffset = mMappedIndexData - src; stop_glerror(); } } if (!mMappedIndexData) { log_glerror(); LLMemory::logMemoryInfo(true); if(mMappable) { GLint buff; glGetIntegerv(GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB, &buff); if ((GLuint)buff != mGLIndices) { llerrs << "Invalid GL index buffer bound: " << buff << llendl; } llerrs << "glMapBuffer returned NULL (no index data)" << llendl; } else { llerrs << "memory allocation for Index data failed. " << llendl; } } } else { map_range = false; } if (map_range && gGLManager.mHasMapBufferRange && mMappable) { return mMappedIndexData; } else { return mMappedIndexData + sizeof(U16)*index; } } static LLFastTimer::DeclareTimer FTM_VBO_UNMAP("VBO Unmap"); static LLFastTimer::DeclareTimer FTM_VBO_FLUSH_RANGE("Flush VBO Range"); static LLFastTimer::DeclareTimer FTM_IBO_UNMAP("IBO Unmap"); static LLFastTimer::DeclareTimer FTM_IBO_FLUSH_RANGE("Flush IBO Range"); void LLVertexBuffer::unmapBuffer() { if (!useVBOs()) { return; //nothing to unmap } bool updated_all = false; if (mMappedData && mVertexLocked) { llassert(mUsage != GL_DYNAMIC_COPY_ARB); LLFastTimer t(FTM_VBO_UNMAP); bindGLBuffer(); updated_all = mIndexLocked; //both vertex and index buffers done updating if(!mMappable) { if (!mMappedVertexRegions.empty()) { stop_glerror(); for (U32 i = 0; i < mMappedVertexRegions.size(); ++i) { const MappedRegion& region = mMappedVertexRegions[i]; S32 offset = region.mIndex; S32 length = region.mCount; glBufferSubDataARB(GL_ARRAY_BUFFER_ARB, offset, length, (U8*) mMappedData+offset); stop_glerror(); } mMappedVertexRegions.clear(); } else { stop_glerror(); glBufferSubDataARB(GL_ARRAY_BUFFER_ARB, 0, getSize(), (U8*) mMappedData); stop_glerror(); } } else { if (gGLManager.mHasMapBufferRange || gGLManager.mHasFlushBufferRange) { if (!mMappedVertexRegions.empty()) { stop_glerror(); for (U32 i = 0; i < mMappedVertexRegions.size(); ++i) { const MappedRegion& region = mMappedVertexRegions[i]; S32 offset = region.mIndex; S32 length = region.mCount; if (gGLManager.mHasMapBufferRange) { LLFastTimer t(FTM_VBO_FLUSH_RANGE); #ifdef GL_ARB_map_buffer_range glFlushMappedBufferRange(GL_ARRAY_BUFFER_ARB, offset, length); #endif } else if (gGLManager.mHasFlushBufferRange) { glFlushMappedBufferRangeAPPLE(GL_ARRAY_BUFFER_ARB, offset, length); } stop_glerror(); } mMappedVertexRegions.clear(); } } stop_glerror(); glUnmapBufferARB(GL_ARRAY_BUFFER_ARB); stop_glerror(); mMappedData = NULL; } mVertexLocked = false; sMappedCount--; } if (mMappedIndexData && mIndexLocked) { LLFastTimer t(FTM_IBO_UNMAP); bindGLIndices(); if(!mMappable) { if (!mMappedIndexRegions.empty()) { for (U32 i = 0; i < mMappedIndexRegions.size(); ++i) { const MappedRegion& region = mMappedIndexRegions[i]; S32 offset = region.mIndex >= 0 ? sizeof(U16)*region.mIndex : 0; S32 length = sizeof(U16)*region.mCount; glBufferSubDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, offset, length, (U8*) mMappedIndexData+offset); stop_glerror(); } mMappedIndexRegions.clear(); } else { stop_glerror(); glBufferSubDataARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0, getIndicesSize(), (U8*) mMappedIndexData); stop_glerror(); } } else { if (gGLManager.mHasMapBufferRange || gGLManager.mHasFlushBufferRange) { if (!mMappedIndexRegions.empty()) { for (U32 i = 0; i < mMappedIndexRegions.size(); ++i) { const MappedRegion& region = mMappedIndexRegions[i]; S32 offset = region.mIndex >= 0 ? sizeof(U16)*region.mIndex : 0; S32 length = sizeof(U16)*region.mCount; if (gGLManager.mHasMapBufferRange) { LLFastTimer t(FTM_IBO_FLUSH_RANGE); #ifdef GL_ARB_map_buffer_range glFlushMappedBufferRange(GL_ELEMENT_ARRAY_BUFFER_ARB, offset, length); #endif } else if (gGLManager.mHasFlushBufferRange) { #ifdef GL_APPLE_flush_buffer_range glFlushMappedBufferRangeAPPLE(GL_ELEMENT_ARRAY_BUFFER_ARB, offset, length); #endif } stop_glerror(); } mMappedIndexRegions.clear(); } } stop_glerror(); glUnmapBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB); stop_glerror(); mMappedIndexData = NULL; } mIndexLocked = false; sMappedCount--; } if(updated_all) { mEmpty = false; } } //---------------------------------------------------------------------------- template struct VertexBufferStrider { typedef LLStrider strider_t; static bool get(LLVertexBuffer& vbo, strider_t& strider, S32 index, S32 count, bool map_range) { if (type == LLVertexBuffer::TYPE_INDEX) { volatile U8* ptr = vbo.mapIndexBuffer(index, count, map_range); if (ptr == NULL) { llwarns << "mapIndexBuffer failed!" << llendl; return false; } strider = (T*)ptr; strider.setStride(0); return true; } else if (vbo.hasDataType(type)) { S32 stride = LLVertexBuffer::sTypeSize[type]; volatile U8* ptr = vbo.mapVertexBuffer(type, index, count, map_range); if (ptr == NULL) { llwarns << "mapVertexBuffer failed!" << llendl; return false; } strider = (T*)ptr; strider.setStride(stride); return true; } else { llerrs << "VertexBufferStrider could not find valid vertex data." << llendl; } return false; } }; bool LLVertexBuffer::getVertexStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getVertexStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getIndexStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getTexCoord0Strider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getTexCoord1Strider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getNormalStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getBinormalStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getColorStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getEmissiveStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getWeightStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getWeight4Strider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getClothWeightStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } //---------------------------------------------------------------------------- static LLFastTimer::DeclareTimer FTM_BIND_GL_ARRAY("Bind Array"); bool LLVertexBuffer::bindGLArray() { if (mGLArray && sGLRenderArray != mGLArray) { { #if GL_ARB_vertex_array_object glBindVertexArray(mGLArray); #endif sGLRenderArray = mGLArray; } //really shouldn't be necessary, but some drivers don't properly restore the //state of GL_ELEMENT_ARRAY_BUFFER_BINDING bindGLIndices(); return true; } return false; } static LLFastTimer::DeclareTimer FTM_BIND_GL_BUFFER("Bind Buffer"); bool LLVertexBuffer::bindGLBuffer(bool force_bind) { bindGLArray(); bool ret = false; if (useVBOs() && (force_bind || (mGLBuffer && (mGLBuffer != sGLRenderBuffer || !sVBOActive)))) { //LLFastTimer t(FTM_BIND_GL_BUFFER); <-- this timer is showing up as a hotspot (irony) glBindBufferARB(GL_ARRAY_BUFFER_ARB, mGLBuffer); sGLRenderBuffer = mGLBuffer; sBindCount++; sVBOActive = true; llassert(!mGLArray || sGLRenderArray == mGLArray); ret = true; } return ret; } static LLFastTimer::DeclareTimer FTM_BIND_GL_INDICES("Bind Indices"); bool LLVertexBuffer::bindGLIndices(bool force_bind) { bindGLArray(); bool ret = false; if (useVBOs() && (force_bind || (mGLIndices && (mGLIndices != sGLRenderIndices || !sIBOActive)))) { LLFastTimer t(FTM_BIND_GL_INDICES); /*if (sMapped) { llerrs << "VBO bound while another VBO mapped!" << llendl; }*/ glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, mGLIndices); sGLRenderIndices = mGLIndices; stop_glerror(); sBindCount++; sIBOActive = true; ret = true; } return ret; } void LLVertexBuffer::flush() { if (useVBOs()) { unmapBuffer(); } } // bind for transform feedback (quick 'n dirty) void LLVertexBuffer::bindForFeedback(U32 channel, U32 type, U32 index, U32 count) { #ifdef GL_TRANSFORM_FEEDBACK_BUFFER U32 offset = mOffsets[type] + sTypeSize[type]*index; U32 size= (sTypeSize[type]*count); glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, channel, mGLBuffer, offset, size); #endif } // Set for rendering void LLVertexBuffer::setBuffer(U32 data_mask) { flush(); //set up pointers if the data mask is different ... bool setup = (sLastMask != data_mask); if (gDebugGL && data_mask != 0) { //make sure data requirements are fulfilled LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr; if (shader) { U32 required_mask = 0; for (U32 i = 0; i < LLVertexBuffer::TYPE_TEXTURE_INDEX; ++i) { if (shader->getAttribLocation(i) > -1) { U32 required = 1 << i; if ((data_mask & required) == 0) { llwarns << "Missing attribute: " << LLShaderMgr::instance()->mReservedAttribs[i] << llendl; } required_mask |= required; } } if ((data_mask & required_mask) != required_mask) { llerrs << "Shader consumption mismatches data provision." << llendl; } } } if (useVBOs()) { if (mGLArray) { bindGLArray(); setup = false; //do NOT perform pointer setup if using VAO } else { const bool bindBuffer = bindGLBuffer(); const bool bindIndices = bindGLIndices(); setup = setup || bindBuffer || bindIndices; } bool error = false; if (gDebugGL && !mGLArray) { GLint buff; glGetIntegerv(GL_ARRAY_BUFFER_BINDING_ARB, &buff); if ((GLuint)buff != mGLBuffer) { if (gDebugSession) { error = true; gFailLog << "Invalid GL vertex buffer bound: " << buff << std::endl; } else { llerrs << "Invalid GL vertex buffer bound: " << buff << llendl; } } if (mGLIndices) { glGetIntegerv(GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB, &buff); if ((GLuint)buff != mGLIndices) { if (gDebugSession) { error = true; gFailLog << "Invalid GL index buffer bound: " << buff << std::endl; } else { llerrs << "Invalid GL index buffer bound: " << buff << llendl; } } } } } else { if (sGLRenderArray) { #if GL_ARB_vertex_array_object glBindVertexArray(0); #endif sGLRenderArray = 0; sGLRenderIndices = 0; sIBOActive = false; } if (mGLBuffer) { if (sVBOActive) { glBindBufferARB(GL_ARRAY_BUFFER_ARB, 0); sBindCount++; sVBOActive = false; setup = true; // ... or a VBO is deactivated } if (sGLRenderBuffer != mGLBuffer) { sGLRenderBuffer = mGLBuffer; setup = true; // ... or a client memory pointer changed } } if (mGLIndices) { if (sIBOActive) { glBindBufferARB(GL_ELEMENT_ARRAY_BUFFER_ARB, 0); sBindCount++; sIBOActive = false; } sGLRenderIndices = mGLIndices; } } if (!mGLArray) { setupClientArrays(data_mask); } if (mGLBuffer) { if (data_mask && setup) { setupVertexBuffer(data_mask); // subclass specific setup (virtual function) sSetCount++; } } } // virtual (default) void LLVertexBuffer::setupVertexBuffer(U32 data_mask) { stop_glerror(); volatile U8* base = useVBOs() ? (U8*) mAlignedOffset : mMappedData; if (gDebugGL && ((data_mask & mTypeMask) != data_mask)) { llerrs << "LLVertexBuffer::setupVertexBuffer missing required components for supplied data mask." << llendl; } if (LLGLSLShader::sNoFixedFunction) { if (data_mask & MAP_NORMAL) { S32 loc = TYPE_NORMAL; void* ptr = (void*)(base + mOffsets[TYPE_NORMAL]); glVertexAttribPointerARB(loc, 3, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_NORMAL], ptr); } if (data_mask & MAP_TEXCOORD3) { S32 loc = TYPE_TEXCOORD3; void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD3]); glVertexAttribPointerARB(loc,2,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD3], ptr); } if (data_mask & MAP_TEXCOORD2) { S32 loc = TYPE_TEXCOORD2; void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD2]); glVertexAttribPointerARB(loc,2,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD2], ptr); } if (data_mask & MAP_TEXCOORD1) { S32 loc = TYPE_TEXCOORD1; void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD1]); glVertexAttribPointerARB(loc,2,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD1], ptr); } if (data_mask & MAP_BINORMAL) { S32 loc = TYPE_BINORMAL; void* ptr = (void*)(base + mOffsets[TYPE_BINORMAL]); glVertexAttribPointerARB(loc, 3,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_BINORMAL], ptr); } if (data_mask & MAP_TEXCOORD0) { S32 loc = TYPE_TEXCOORD0; void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD0]); glVertexAttribPointerARB(loc,2,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD0], ptr); } if (data_mask & MAP_COLOR) { S32 loc = TYPE_COLOR; void* ptr = (void*)(base + mOffsets[TYPE_COLOR]); glVertexAttribPointerARB(loc, 4, GL_UNSIGNED_BYTE, GL_TRUE, LLVertexBuffer::sTypeSize[TYPE_COLOR], ptr); } if (data_mask & MAP_EMISSIVE) { S32 loc = TYPE_EMISSIVE; void* ptr = (void*)(base + mOffsets[TYPE_EMISSIVE]); glVertexAttribPointerARB(loc, 4, GL_UNSIGNED_BYTE, GL_TRUE, LLVertexBuffer::sTypeSize[TYPE_EMISSIVE], ptr); } if (data_mask & MAP_WEIGHT) { S32 loc = TYPE_WEIGHT; void* ptr = (void*)(base + mOffsets[TYPE_WEIGHT]); glVertexAttribPointerARB(loc, 1, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_WEIGHT], ptr); } if (data_mask & MAP_WEIGHT4) { S32 loc = TYPE_WEIGHT4; void* ptr = (void*)(base+mOffsets[TYPE_WEIGHT4]); glVertexAttribPointerARB(loc, 4, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_WEIGHT4], ptr); } if (data_mask & MAP_CLOTHWEIGHT) { S32 loc = TYPE_CLOTHWEIGHT; void* ptr = (void*)(base + mOffsets[TYPE_CLOTHWEIGHT]); glVertexAttribPointerARB(loc, 4, GL_FLOAT, GL_TRUE, LLVertexBuffer::sTypeSize[TYPE_CLOTHWEIGHT], ptr); } if (data_mask & MAP_TEXTURE_INDEX && (gGLManager.mGLSLVersionMajor >= 2 || gGLManager.mGLSLVersionMinor >= 30)) //indexed texture rendering requires GLSL 1.30 or later { #if !LL_DARWIN S32 loc = TYPE_TEXTURE_INDEX; void *ptr = (void*) (base + mOffsets[TYPE_VERTEX] + 12); glVertexAttribIPointer(loc, 1, GL_UNSIGNED_INT, LLVertexBuffer::sTypeSize[TYPE_VERTEX], ptr); #endif } if (data_mask & MAP_VERTEX) { S32 loc = TYPE_VERTEX; void* ptr = (void*)(base + mOffsets[TYPE_VERTEX]); glVertexAttribPointerARB(loc, 3,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_VERTEX], ptr); } } else { if (data_mask & MAP_NORMAL) { glNormalPointer(GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_NORMAL], (void*)(base + mOffsets[TYPE_NORMAL])); } if (data_mask & MAP_TEXCOORD3) { glClientActiveTextureARB(GL_TEXTURE3_ARB); glTexCoordPointer(2,GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD3], (void*)(base + mOffsets[TYPE_TEXCOORD3])); glClientActiveTextureARB(GL_TEXTURE0_ARB); } if (data_mask & MAP_TEXCOORD2) { glClientActiveTextureARB(GL_TEXTURE2_ARB); glTexCoordPointer(2,GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD2], (void*)(base + mOffsets[TYPE_TEXCOORD2])); glClientActiveTextureARB(GL_TEXTURE0_ARB); } if (data_mask & MAP_TEXCOORD1) { glClientActiveTextureARB(GL_TEXTURE1_ARB); glTexCoordPointer(2,GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD1], (void*)(base + mOffsets[TYPE_TEXCOORD1])); glClientActiveTextureARB(GL_TEXTURE0_ARB); } if (data_mask & MAP_BINORMAL) { glClientActiveTextureARB(GL_TEXTURE2_ARB); glTexCoordPointer(3,GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_BINORMAL], (void*)(base + mOffsets[TYPE_BINORMAL])); glClientActiveTextureARB(GL_TEXTURE0_ARB); } if (data_mask & MAP_TEXCOORD0) { glTexCoordPointer(2,GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD0], (void*)(base + mOffsets[TYPE_TEXCOORD0])); } if (data_mask & MAP_COLOR) { glColorPointer(4, GL_UNSIGNED_BYTE, LLVertexBuffer::sTypeSize[TYPE_COLOR], (void*)(base + mOffsets[TYPE_COLOR])); } if (data_mask & MAP_VERTEX) { glVertexPointer(3,GL_FLOAT, LLVertexBuffer::sTypeSize[TYPE_VERTEX], (void*)(base + 0)); } } llglassertok(); } LLVertexBuffer::MappedRegion::MappedRegion(S32 index, S32 count) : mIndex(index), mCount(count) { mEnd = mIndex+mCount; }