/** * @file llvertexbuffer.cpp * @brief LLVertexBuffer implementation * * $LicenseInfo:firstyear=2003&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" #include "llfasttimer.h" #include "llsys.h" #include "llvertexbuffer.h" // #include "llrender.h" #include "llglheaders.h" #include "llrender.h" #include "llvector4a.h" #include "llshadermgr.h" #include "llglslshader.h" #include "llmemory.h" //Next Highest Power Of Two //helper function, returns first number > v that is a power of 2, or v if v is already a power of 2 U32 nhpo2(U32 v) { U32 r = 1; while (r < v) { r *= 2; } return r; } //which power of 2 is i? //assumes i is a power of 2 > 0 U32 wpo2(U32 i) { llassert(i > 0); llassert(nhpo2(i) == i); U32 r = 0; while (i >>= 1) ++r; return r; } struct CompareMappedRegion { bool operator()(const LLVertexBuffer::MappedRegion& lhs, const LLVertexBuffer::MappedRegion& rhs) { return lhs.mStart < rhs.mStart; } }; const U32 LL_VBO_BLOCK_SIZE = 2048; const U32 LL_VBO_POOL_MAX_SEED_SIZE = 256*1024; U32 vbo_block_size(U32 size) { //what block size will fit size? U32 mod = size % LL_VBO_BLOCK_SIZE; return mod == 0 ? size : size + (LL_VBO_BLOCK_SIZE-mod); } U32 vbo_block_index(U32 size) { U32 blocks = vbo_block_size(size)/LL_VBO_BLOCK_SIZE; // block count reqd llassert(blocks > 0); return blocks - 1; // Adj index, i.e. single-block allocations are at index 0, etc } const U32 LL_VBO_POOL_SEED_COUNT = vbo_block_index(LL_VBO_POOL_MAX_SEED_SIZE) + 1; #define ENABLE_GL_WORK_QUEUE 0 #if ENABLE_GL_WORK_QUEUE #define THREAD_COUNT 1 //============================================================================ // High performance WorkQueue for usage in real-time rendering work class GLWorkQueue { public: using Work = std::function; GLWorkQueue(); void post(const Work& value); size_t size(); bool done(); // Get the next element from the queue Work pop(); void runOne(); bool runPending(); void runUntilClose(); void close(); bool isClosed(); void syncGL(); private: std::mutex mMutex; std::condition_variable mCondition; std::queue mQueue; bool mClosed = false; }; GLWorkQueue::GLWorkQueue() { } void GLWorkQueue::syncGL() { /*if (mSync) { std::lock_guard lock(mMutex); glWaitSync(mSync, 0, GL_TIMEOUT_IGNORED); mSync = 0; }*/ } size_t GLWorkQueue::size() { LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD; std::lock_guard lock(mMutex); return mQueue.size(); } bool GLWorkQueue::done() { return size() == 0 && isClosed(); } void GLWorkQueue::post(const GLWorkQueue::Work& value) { LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD; { std::lock_guard lock(mMutex); mQueue.push(std::move(value)); } mCondition.notify_one(); } // Get the next element from the queue GLWorkQueue::Work GLWorkQueue::pop() { LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD; // Lock the mutex { std::unique_lock lock(mMutex); // Wait for a new element to become available or for the queue to close { mCondition.wait(lock, [=] { return !mQueue.empty() || mClosed; }); } } Work ret; { std::lock_guard lock(mMutex); // Get the next element from the queue if (mQueue.size() > 0) { ret = mQueue.front(); mQueue.pop(); } else { ret = []() {}; } } return ret; } void GLWorkQueue::runOne() { LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD; Work w = pop(); w(); //mSync = glFenceSync(GL_SYNC_GPU_COMMANDS_COMPLETE, 0); } void GLWorkQueue::runUntilClose() { while (!isClosed()) { runOne(); } } void GLWorkQueue::close() { LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD; { std::lock_guard lock(mMutex); mClosed = true; } mCondition.notify_all(); } bool GLWorkQueue::isClosed() { LL_PROFILE_ZONE_SCOPED_CATEGORY_THREAD; std::lock_guard lock(mMutex); return mClosed; } #include "llwindow.h" class LLGLWorkerThread : public LLThread { public: LLGLWorkerThread(const std::string& name, GLWorkQueue* queue, LLWindow* window) : LLThread(name) { mWindow = window; mContext = mWindow->createSharedContext(); mQueue = queue; } void run() override { mWindow->makeContextCurrent(mContext); gGL.init(false); mQueue->runUntilClose(); gGL.shutdown(); mWindow->destroySharedContext(mContext); } GLWorkQueue* mQueue; LLWindow* mWindow; void* mContext = nullptr; }; static LLGLWorkerThread* sVBOThread[THREAD_COUNT]; static GLWorkQueue* sQueue = nullptr; #endif //============================================================================ // Pool of reusable VertexBuffer state // batch calls to glGenBuffers static GLuint gen_buffer() { LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; constexpr U32 pool_size = 4096; thread_local static GLuint sNamePool[pool_size]; thread_local static U32 sIndex = 0; if (sIndex == 0) { LL_PROFILE_ZONE_NAMED_CATEGORY_VERTEX("gen buffer"); sIndex = pool_size; glGenBuffers(pool_size, sNamePool); } return sNamePool[--sIndex]; } class LLVBOPool { public: typedef std::chrono::steady_clock::time_point Time; struct Entry { U8* mData; GLuint mGLName; Time mAge; }; ~LLVBOPool() { clear(); } typedef std::unordered_map> Pool; Pool mVBOPool; Pool mIBOPool; U32 mMissCount = 0; void allocate(GLenum type, U32 size, GLuint& name, U8*& data) { LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; size = nhpo2(size); auto& pool = type == GL_ELEMENT_ARRAY_BUFFER ? mIBOPool : mVBOPool; auto& iter = pool.find(size); if (iter == pool.end()) { // cache miss, allocate a new buffer LL_PROFILE_ZONE_NAMED_CATEGORY_VERTEX("vbo pool miss"); LL_PROFILE_GPU_ZONE("vbo alloc"); ++mMissCount; if (mMissCount > 1024) { //clean cache on every 1024 misses mMissCount = 0; clean(); } name = gen_buffer(); glBindBuffer(type, name); glBufferData(type, size, nullptr, GL_DYNAMIC_DRAW); if (type == GL_ELEMENT_ARRAY_BUFFER) { LLVertexBuffer::sGLRenderIndices = name; } else { LLVertexBuffer::sGLRenderBuffer = name; } data = (U8*)ll_aligned_malloc_16(size); } else { std::list& entries = iter->second; Entry& entry = entries.back(); name = entry.mGLName; data = entry.mData; entries.pop_back(); if (entries.empty()) { pool.erase(iter); } } } void free(GLenum type, U32 size, GLuint name, U8* data) { size = nhpo2(size); auto& pool = type == GL_ELEMENT_ARRAY_BUFFER ? mIBOPool : mVBOPool; auto& iter = pool.find(size); if (iter == pool.end()) { std::list newlist; newlist.push_front({ data, name, std::chrono::steady_clock::now() }); pool[size] = newlist; } else { iter->second.push_front({ data, name, std::chrono::steady_clock::now() }); } } void clean() { LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; std::unordered_map>* pools[] = { &mVBOPool, &mIBOPool }; using namespace std::chrono_literals; Time cutoff = std::chrono::steady_clock::now() - 5s; for (auto* pool : pools) { for (Pool::iterator iter = pool->begin(); iter != pool->end(); ) { auto& entries = iter->second; while (!entries.empty() && entries.back().mAge < cutoff) { LL_PROFILE_ZONE_NAMED_CATEGORY_VERTEX("vbo cache timeout"); auto& entry = entries.back(); ll_aligned_free_16(entry.mData); glDeleteBuffers(1, &entry.mGLName); entries.pop_back(); } if (entries.empty()) { iter = pool->erase(iter); } else { ++iter; } } } } void clear() { for (auto& entries : mIBOPool) { for (auto& entry : entries.second) { ll_aligned_free_16(entry.mData); glDeleteBuffers(1, &entry.mGLName); } } for (auto& entries : mVBOPool) { for (auto& entry : entries.second) { ll_aligned_free_16(entry.mData); glDeleteBuffers(1, &entry.mGLName); } } mIBOPool.clear(); mVBOPool.clear(); } }; static LLVBOPool* sVBOPool = nullptr; //============================================================================ // //static std::list LLVertexBuffer::sAvailableVAOName; U32 LLVertexBuffer::sCurVAOName = 1; U32 LLVertexBuffer::sAllocatedIndexBytes = 0; U32 LLVertexBuffer::sIndexCount = 0; U32 LLVertexBuffer::sBindCount = 0; U32 LLVertexBuffer::sSetCount = 0; S32 LLVertexBuffer::sCount = 0; S32 LLVertexBuffer::sGLCount = 0; S32 LLVertexBuffer::sMappedCount = 0; bool LLVertexBuffer::sDisableVBOMapping = false; bool LLVertexBuffer::sEnableVBOs = true; U32 LLVertexBuffer::sGLRenderBuffer = 0; U32 LLVertexBuffer::sGLRenderArray = 0; U32 LLVertexBuffer::sGLRenderIndices = 0; U32 LLVertexBuffer::sLastMask = 0; bool LLVertexBuffer::sVBOActive = false; bool LLVertexBuffer::sIBOActive = false; U32 LLVertexBuffer::sAllocatedBytes = 0; U32 LLVertexBuffer::sVertexCount = 0; bool LLVertexBuffer::sMapped = false; bool LLVertexBuffer::sUseStreamDraw = true; bool LLVertexBuffer::sUseVAO = false; bool LLVertexBuffer::sPreferStreamDraw = false; //NOTE: each component must be AT LEAST 4 bytes in size to avoid a performance penalty on AMD hardware const S32 LLVertexBuffer::sTypeSize[LLVertexBuffer::TYPE_MAX] = { sizeof(LLVector4), // TYPE_VERTEX, sizeof(LLVector4), // TYPE_NORMAL, sizeof(LLVector2), // TYPE_TEXCOORD0, sizeof(LLVector2), // TYPE_TEXCOORD1, sizeof(LLVector2), // TYPE_TEXCOORD2, sizeof(LLVector2), // TYPE_TEXCOORD3, sizeof(LLColor4U), // TYPE_COLOR, sizeof(LLColor4U), // TYPE_EMISSIVE, only alpha is used currently sizeof(LLVector4), // TYPE_TANGENT, sizeof(F32), // TYPE_WEIGHT, sizeof(LLVector4), // TYPE_WEIGHT4, sizeof(LLVector4), // TYPE_CLOTHWEIGHT, sizeof(LLVector4), // TYPE_TEXTURE_INDEX (actually exists as position.w), no extra data, but stride is 16 bytes }; static const std::string vb_type_name[] = { "TYPE_VERTEX", "TYPE_NORMAL", "TYPE_TEXCOORD0", "TYPE_TEXCOORD1", "TYPE_TEXCOORD2", "TYPE_TEXCOORD3", "TYPE_COLOR", "TYPE_EMISSIVE", "TYPE_TANGENT", "TYPE_WEIGHT", "TYPE_WEIGHT4", "TYPE_CLOTHWEIGHT", "TYPE_TEXTURE_INDEX", "TYPE_MAX", "TYPE_INDEX", }; const U32 LLVertexBuffer::sGLMode[LLRender::NUM_MODES] = { GL_TRIANGLES, GL_TRIANGLE_STRIP, GL_TRIANGLE_FAN, GL_POINTS, GL_LINES, GL_LINE_STRIP, GL_QUADS, GL_LINE_LOOP, }; //static U32 LLVertexBuffer::getVAOName() { U32 ret = 0; if (!sAvailableVAOName.empty()) { ret = sAvailableVAOName.front(); sAvailableVAOName.pop_front(); } else { #ifdef GL_ARB_vertex_array_object glGenVertexArrays(1, &ret); #endif } return ret; } //static void LLVertexBuffer::releaseVAOName(U32 name) { sAvailableVAOName.push_back(name); } //static void LLVertexBuffer::setupClientArrays(U32 data_mask) { if (sLastMask != data_mask) { for (U32 i = 0; i < TYPE_MAX; ++i) { S32 loc = i; U32 mask = 1 << i; if (sLastMask & (1 << i)) { //was enabled if (!(data_mask & mask)) { //needs to be disabled glDisableVertexAttribArray(loc); } } else { //was disabled if (data_mask & mask) { //needs to be enabled glEnableVertexAttribArray(loc); } } } sLastMask = data_mask; } } //static void LLVertexBuffer::drawArrays(U32 mode, const std::vector& pos) { LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; gGL.begin(mode); for (auto& v : pos) { gGL.vertex3fv(v.mV); } gGL.end(); gGL.flush(); } //static void LLVertexBuffer::drawElements(U32 mode, const LLVector4a* pos, const LLVector2* tc, S32 num_indices, const U16* indicesp) { LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; llassert(LLGLSLShader::sCurBoundShaderPtr != NULL); gGL.syncMatrices(); U32 mask = LLVertexBuffer::MAP_VERTEX; if (tc) { mask = mask | LLVertexBuffer::MAP_TEXCOORD0; } unbind(); gGL.begin(mode); if (tc != nullptr) { for (int i = 0; i < num_indices; ++i) { U16 idx = indicesp[i]; gGL.texCoord2fv(tc[idx].mV); gGL.vertex3fv(pos[idx].getF32ptr()); } } else { for (int i = 0; i < num_indices; ++i) { U16 idx = indicesp[i]; gGL.vertex3fv(pos[idx].getF32ptr()); } } gGL.end(); gGL.flush(); } void LLVertexBuffer::validateRange(U32 start, U32 end, U32 count, U32 indices_offset) const { llassert(start < (U32)mNumVerts); llassert(end < (U32)mNumVerts); if (start >= (U32) mNumVerts || end >= (U32) mNumVerts) { LL_ERRS() << "Bad vertex buffer draw range: [" << start << ", " << end << "] vs " << mNumVerts << LL_ENDL; } llassert(mNumIndices >= 0); if (indices_offset >= (U32) mNumIndices || indices_offset + count > (U32) mNumIndices) { LL_ERRS() << "Bad index buffer draw range: [" << indices_offset << ", " << indices_offset+count << "]" << LL_ENDL; } if (gDebugGL && !useVBOs()) { U16* idx = ((U16*) getIndicesPointer())+indices_offset; for (U32 i = 0; i < count; ++i) { llassert(idx[i] >= start); llassert(idx[i] <= end); if (idx[i] < start || idx[i] > end) { LL_ERRS() << "Index out of range: " << idx[i] << " not in [" << start << ", " << end << "]" << LL_ENDL; } } LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr; if (shader && shader->mFeatures.mIndexedTextureChannels > 1) { LLStrider v; //hack to get non-const reference LLVertexBuffer* vb = (LLVertexBuffer*) this; vb->getVertexStrider(v); for (U32 i = start; i < end; i++) { S32 idx = (S32) (v[i][3]+0.25f); llassert(idx >= 0); if (idx < 0 || idx >= shader->mFeatures.mIndexedTextureChannels) { LL_ERRS() << "Bad texture index found in vertex data stream." << LL_ENDL; } } } } } #ifdef LL_PROFILER_ENABLE_RENDER_DOC void LLVertexBuffer::setLabel(const char* label) { LL_LABEL_OBJECT_GL(GL_BUFFER, mGLBuffer, strlen(label), label); } #endif void LLVertexBuffer::drawRange(U32 mode, U32 start, U32 end, U32 count, U32 indices_offset) const { validateRange(start, end, count, indices_offset); gGL.syncMatrices(); llassert(mNumVerts >= 0); llassert(LLGLSLShader::sCurBoundShaderPtr != NULL); if (mGLIndices != sGLRenderIndices) { LL_ERRS() << "Wrong index buffer bound." << LL_ENDL; } if (mGLBuffer != sGLRenderBuffer) { LL_ERRS() << "Wrong vertex buffer bound." << LL_ENDL; } if (gDebugGL && useVBOs()) { GLint elem = 0; glGetIntegerv(GL_ELEMENT_ARRAY_BUFFER_BINDING_ARB, &elem); if (elem != mGLIndices) { LL_ERRS() << "Wrong index buffer bound!" << LL_ENDL; } } if (mode >= LLRender::NUM_MODES) { LL_ERRS() << "Invalid draw mode: " << mode << LL_ENDL; return; } U16* idx = ((U16*) getIndicesPointer())+indices_offset; glDrawRangeElements(sGLMode[mode], start, end, count, GL_UNSIGNED_SHORT, idx); } void LLVertexBuffer::drawRangeFast(U32 mode, U32 start, U32 end, U32 count, U32 indices_offset) const { gGL.syncMatrices(); U16* idx = ((U16*)getIndicesPointer()) + indices_offset; glDrawRangeElements(sGLMode[mode], start, end, count, GL_UNSIGNED_SHORT, idx); } void LLVertexBuffer::draw(U32 mode, U32 count, U32 indices_offset) const { llassert(LLGLSLShader::sCurBoundShaderPtr != NULL); gGL.syncMatrices(); llassert(mNumIndices >= 0); if (indices_offset >= (U32) mNumIndices || indices_offset + count > (U32) mNumIndices) { LL_ERRS() << "Bad index buffer draw range: [" << indices_offset << ", " << indices_offset+count << "]" << LL_ENDL; } if (mGLIndices != sGLRenderIndices) { LL_ERRS() << "Wrong index buffer bound." << LL_ENDL; } if (mGLBuffer != sGLRenderBuffer) { LL_ERRS() << "Wrong vertex buffer bound." << LL_ENDL; } if (mode >= LLRender::NUM_MODES) { LL_ERRS() << "Invalid draw mode: " << mode << LL_ENDL; return; } glDrawElements(sGLMode[mode], count, GL_UNSIGNED_SHORT, ((U16*) getIndicesPointer()) + indices_offset); } void LLVertexBuffer::drawArrays(U32 mode, U32 first, U32 count) const { LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; llassert(LLGLSLShader::sCurBoundShaderPtr != NULL); gGL.syncMatrices(); #ifndef LL_RELEASE_FOR_DOWNLOAD llassert(mNumVerts >= 0); if (first >= (U32) mNumVerts || first + count > (U32) mNumVerts) { LL_ERRS() << "Bad vertex buffer draw range: [" << first << ", " << first+count << "]" << LL_ENDL; } if (mGLBuffer != sGLRenderBuffer || useVBOs() != sVBOActive) { LL_ERRS() << "Wrong vertex buffer bound." << LL_ENDL; } if (mode >= LLRender::NUM_MODES) { LL_ERRS() << "Invalid draw mode: " << mode << LL_ENDL; return; } #endif glDrawArrays(sGLMode[mode], first, count); } //static void LLVertexBuffer::initClass(LLWindow* window) { sEnableVBOs = true; sDisableVBOMapping = true; sVBOPool = new LLVBOPool(); #if ENABLE_GL_WORK_QUEUE sQueue = new GLWorkQueue(); for (int i = 0; i < THREAD_COUNT; ++i) { sVBOThread[i] = new LLGLWorkerThread("VBO Worker", sQueue, window); sVBOThread[i]->start(); } #endif } //static void LLVertexBuffer::unbind() { if (sGLRenderArray) { glBindVertexArray(0); sGLRenderArray = 0; sGLRenderIndices = 0; sIBOActive = false; } if (sVBOActive) { glBindBuffer(GL_ARRAY_BUFFER, 0); sVBOActive = false; } if (sIBOActive) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); sIBOActive = false; } sGLRenderBuffer = 0; sGLRenderIndices = 0; setupClientArrays(0); } //static void LLVertexBuffer::cleanupClass() { unbind(); delete sVBOPool; sVBOPool = nullptr; #if ENABLE_GL_WORK_QUEUE sQueue->close(); for (int i = 0; i < THREAD_COUNT; ++i) { sVBOThread[i]->shutdown(); delete sVBOThread[i]; sVBOThread[i] = nullptr; } delete sQueue; sQueue = nullptr; #endif //llassert(0 == sAllocatedBytes); //llassert(0 == sAllocatedIndexBytes); } //---------------------------------------------------------------------------- S32 LLVertexBuffer::determineUsage(S32 usage) { S32 ret_usage = usage; if (!sEnableVBOs) { ret_usage = 0; } if (ret_usage == GL_STREAM_DRAW && !sUseStreamDraw) { ret_usage = 0; } // dynamic draw or nothing ret_usage = GL_DYNAMIC_DRAW; return ret_usage; } LLVertexBuffer::LLVertexBuffer(U32 typemask, S32 usage) : LLRefCount(), mNumVerts(0), mNumIndices(0), mSize(0), mIndicesSize(0), mTypeMask(typemask), mUsage(LLVertexBuffer::determineUsage(usage)), mGLBuffer(0), mGLIndices(0), mMappedData(NULL), mMappedIndexData(NULL), mMappedDataUsingVBOs(false), mMappedIndexDataUsingVBOs(false), mVertexLocked(false), mIndexLocked(false), mFinal(false), mEmpty(true) { //zero out offsets for (U32 i = 0; i < TYPE_MAX; i++) { mOffsets[i] = 0; } sCount++; } //static S32 LLVertexBuffer::calcOffsets(const U32& typemask, S32* offsets, S32 num_vertices) { S32 offset = 0; for (S32 i=0; iallocate(GL_ARRAY_BUFFER, size, mGLBuffer, mMappedData); } sGLCount++; } void LLVertexBuffer::genIndices(U32 size) { LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; mIndicesSize = size; if (sVBOPool) { sVBOPool->allocate(GL_ELEMENT_ARRAY_BUFFER, size, mGLIndices, mMappedIndexData); } sGLCount++; } void LLVertexBuffer::releaseBuffer() { LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; if (sVBOPool) { sVBOPool->free(GL_ARRAY_BUFFER, mSize, mGLBuffer, mMappedData); } mGLBuffer = 0; mMappedData = nullptr; sGLCount--; } void LLVertexBuffer::releaseIndices() { LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; if (sVBOPool) { sVBOPool->free(GL_ELEMENT_ARRAY_BUFFER, mIndicesSize, mGLIndices, mMappedIndexData); } mMappedIndexData = nullptr; sGLCount--; } bool LLVertexBuffer::createGLBuffer(U32 size) { if (mGLBuffer || mMappedData) { destroyGLBuffer(); } if (size == 0) { return true; } bool success = true; mEmpty = true; mMappedDataUsingVBOs = useVBOs(); if (mMappedDataUsingVBOs) { genBuffer(size); } else { static int gl_buffer_idx = 0; mGLBuffer = ++gl_buffer_idx; mMappedData = (U8*)ll_aligned_malloc_16(size); mSize = size; } if (!mMappedData) { success = false; } return success; } bool LLVertexBuffer::createGLIndices(U32 size) { if (mGLIndices) { destroyGLIndices(); } if (size == 0) { return true; } bool success = true; mEmpty = true; //pad by 16 bytes for aligned copies size += 16; mMappedIndexDataUsingVBOs = useVBOs(); if (mMappedIndexDataUsingVBOs) { //pad by another 16 bytes for VBO pointer adjustment size += 16; genIndices(size); } else { mMappedIndexData = (U8*)ll_aligned_malloc_16(size); static int gl_buffer_idx = 0; mGLIndices = ++gl_buffer_idx; mIndicesSize = size; } if (!mMappedIndexData) { success = false; } return success; } void LLVertexBuffer::destroyGLBuffer() { if (mGLBuffer || mMappedData) { if (mMappedDataUsingVBOs) { releaseBuffer(); } else { ll_aligned_free_16((void*)mMappedData); mMappedData = NULL; mEmpty = true; } } mGLBuffer = 0; //unbind(); } void LLVertexBuffer::destroyGLIndices() { if (mGLIndices || mMappedIndexData) { if (mMappedIndexDataUsingVBOs) { releaseIndices(); } else { ll_aligned_free_16((void*)mMappedIndexData); mMappedIndexData = NULL; mEmpty = true; } } mGLIndices = 0; //unbind(); } bool LLVertexBuffer::updateNumVerts(S32 nverts) { llassert(nverts >= 0); bool success = true; if (nverts > 65536) { LL_WARNS() << "Vertex buffer overflow!" << LL_ENDL; nverts = 65536; } U32 needed_size = calcOffsets(mTypeMask, mOffsets, nverts); if (needed_size > mSize || needed_size <= mSize/2) { success &= createGLBuffer(needed_size); } sVertexCount -= mNumVerts; mNumVerts = nverts; sVertexCount += mNumVerts; return success; } bool LLVertexBuffer::updateNumIndices(S32 nindices) { llassert(nindices >= 0); bool success = true; U32 needed_size = sizeof(U16) * nindices; if (needed_size > mIndicesSize || needed_size <= mIndicesSize/2) { success &= createGLIndices(needed_size); } sIndexCount -= mNumIndices; mNumIndices = nindices; sIndexCount += mNumIndices; return success; } bool LLVertexBuffer::allocateBuffer(S32 nverts, S32 nindices, bool create) { stop_glerror(); if (nverts < 0 || nindices < 0 || nverts > 65536) { LL_ERRS() << "Bad vertex buffer allocation: " << nverts << " : " << nindices << LL_ENDL; } bool success = true; success &= updateNumVerts(nverts); success &= updateNumIndices(nindices); if (create && (nverts || nindices)) { //actually allocate space for the vertex buffer if using VBO mapping flush(); //unmap } return success; } bool LLVertexBuffer::resizeBuffer(S32 newnverts, S32 newnindices) { llassert(newnverts >= 0); llassert(newnindices >= 0); bool success = true; success &= updateNumVerts(newnverts); success &= updateNumIndices(newnindices); if (useVBOs()) { flush(); //unmap } return success; } bool LLVertexBuffer::useVBOs() const { //it's generally ineffective to use VBO for things that are streaming on apple return (mUsage != 0); } //---------------------------------------------------------------------------- // if no gap between region and given range exists, expand region to cover given range and return true // otherwise return false bool expand_region(LLVertexBuffer::MappedRegion& region, S32 start, S32 end) { if (end < region.mStart || start > region.mEnd) { //gap exists, do not merge return false; } region.mStart = llmin(region.mStart, start); region.mEnd = llmax(region.mEnd, end); return true; } // Map for data access U8* LLVertexBuffer::mapVertexBuffer(S32 type, S32 index, S32 count, bool map_range) { LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; if (mFinal) { LL_ERRS() << "LLVertexBuffer::mapVeretxBuffer() called on a finalized buffer." << LL_ENDL; } if (!useVBOs() && !mMappedData && !mMappedIndexData) { LL_ERRS() << "LLVertexBuffer::mapVertexBuffer() called on unallocated buffer." << LL_ENDL; } if (useVBOs()) { if (count == -1) { count = mNumVerts - index; } S32 start = mOffsets[type] + sTypeSize[type] * index; S32 end = start + sTypeSize[type] * count; bool flagged = false; // flag region as mapped for (U32 i = 0; i < mMappedVertexRegions.size(); ++i) { MappedRegion& region = mMappedVertexRegions[i]; if (expand_region(region, start, end)) { flagged = true; break; } } if (!flagged) { //didn't expand an existing region, make a new one mMappedVertexRegions.push_back({ start, end }); } if (mVertexLocked && map_range) { LL_ERRS() << "Attempted to map a specific range of a buffer that was already mapped." << LL_ENDL; } if (!mVertexLocked) { mVertexLocked = true; sMappedCount++; stop_glerror(); map_range = false; if (!mMappedData) { log_glerror(); //check the availability of memory LLMemory::logMemoryInfo(true); LL_ERRS() << "memory allocation for vertex data failed." << LL_ENDL; } } } else { map_range = false; } return mMappedData+mOffsets[type]+sTypeSize[type]*index; } U8* LLVertexBuffer::mapIndexBuffer(S32 index, S32 count, bool map_range) { LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; if (mFinal) { LL_ERRS() << "LLVertexBuffer::mapIndexBuffer() called on a finalized buffer." << LL_ENDL; } if (!useVBOs() && !mMappedData && !mMappedIndexData) { LL_ERRS() << "LLVertexBuffer::mapIndexBuffer() called on unallocated buffer." << LL_ENDL; } if (useVBOs()) { if (count == -1) { count = mNumIndices-index; } S32 start = sizeof(U16) * index; S32 end = start + sizeof(U16) * count; bool flagged = false; // flag region as mapped for (U32 i = 0; i < mMappedIndexRegions.size(); ++i) { MappedRegion& region = mMappedIndexRegions[i]; if (expand_region(region, start, end)) { flagged = true; break; } } if (!flagged) { //didn't expand an existing region, make a new one mMappedIndexRegions.push_back({ start, end }); } if (mIndexLocked && map_range) { LL_ERRS() << "Attempted to map a specific range of a buffer that was already mapped." << LL_ENDL; } if (!mIndexLocked) { mIndexLocked = true; sMappedCount++; stop_glerror(); map_range = false; } if (!mMappedIndexData) { log_glerror(); LLMemory::logMemoryInfo(true); LL_ERRS() << "memory allocation for Index data failed. " << LL_ENDL; } } else { map_range = false; } return mMappedIndexData + sizeof(U16)*index; } static void flush_vbo(GLenum target, S32 start, S32 end, void* data) { if (end != 0) { LL_PROFILE_ZONE_NAMED_CATEGORY_VERTEX("glBufferSubData"); LL_PROFILE_ZONE_NUM(start); LL_PROFILE_ZONE_NUM(end); LL_PROFILE_ZONE_NUM(end-start); constexpr S32 block_size = 65536; for (S32 i = start; i < end; i += block_size) { LL_PROFILE_ZONE_NAMED_CATEGORY_VERTEX("glBufferSubData block"); LL_PROFILE_GPU_ZONE("glBufferSubData"); S32 tend = llmin(i + block_size, end); glBufferSubData(target, i, tend - i, (U8*) data + (i-start)); } } } void LLVertexBuffer::unmapBuffer() { if (!useVBOs()) { return; //nothing to unmap } bool updated_all = false; LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; if (mMappedData && mVertexLocked) { LL_PROFILE_ZONE_NAMED_CATEGORY_VERTEX("unmapBuffer - vertex"); bindGLBuffer(true); updated_all = mIndexLocked; //both vertex and index buffers done updating if (!mMappedVertexRegions.empty()) { S32 start = 0; S32 end = 0; for (U32 i = 0; i < mMappedVertexRegions.size(); ++i) { const MappedRegion& region = mMappedVertexRegions[i]; if (region.mStart == end + 1) { end = region.mEnd; } else { flush_vbo(GL_ARRAY_BUFFER, start, end, (U8*)mMappedData + start); start = region.mStart; end = region.mEnd; } } flush_vbo(GL_ARRAY_BUFFER, start, end, (U8*)mMappedData + start); mMappedVertexRegions.clear(); } else { llassert(false); // this shouldn't happen -- a buffer must always be explicitly mapped } mVertexLocked = false; sMappedCount--; } if (mMappedIndexData && mIndexLocked) { LL_PROFILE_ZONE_NAMED_CATEGORY_VERTEX("unmapBuffer - index"); bindGLIndices(); if (!mMappedIndexRegions.empty()) { S32 start = 0; S32 end = 0; for (U32 i = 0; i < mMappedIndexRegions.size(); ++i) { const MappedRegion& region = mMappedIndexRegions[i]; if (region.mStart == end + 1) { end = region.mEnd; } else { flush_vbo(GL_ELEMENT_ARRAY_BUFFER, start, end, (U8*)mMappedIndexData + start); start = region.mStart; end = region.mEnd; } } flush_vbo(GL_ELEMENT_ARRAY_BUFFER, start, end, (U8*)mMappedIndexData + start); mMappedIndexRegions.clear(); } else { llassert(false); // this shouldn't happen -- a buffer must always be explicitly mapped } mIndexLocked = false; sMappedCount--; } if(updated_all) { mEmpty = false; } } //---------------------------------------------------------------------------- template struct VertexBufferStrider { typedef LLStrider strider_t; static bool get(LLVertexBuffer& vbo, strider_t& strider, S32 index, S32 count, bool map_range) { if (type == LLVertexBuffer::TYPE_INDEX) { U8* ptr = vbo.mapIndexBuffer(index, count, map_range); if (ptr == NULL) { LL_WARNS() << "mapIndexBuffer failed!" << LL_ENDL; return false; } strider = (T*)ptr; strider.setStride(0); return true; } else if (vbo.hasDataType(type)) { S32 stride = LLVertexBuffer::sTypeSize[type]; U8* ptr = vbo.mapVertexBuffer(type, index, count, map_range); if (ptr == NULL) { LL_WARNS() << "mapVertexBuffer failed!" << LL_ENDL; return false; } strider = (T*)ptr; strider.setStride(stride); return true; } else { LL_ERRS() << "VertexBufferStrider could not find valid vertex data." << LL_ENDL; } return false; } }; bool LLVertexBuffer::getVertexStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getVertexStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getIndexStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getTexCoord0Strider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getTexCoord1Strider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getTexCoord2Strider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getNormalStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getTangentStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getTangentStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getColorStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getEmissiveStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getWeightStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getWeight4Strider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } bool LLVertexBuffer::getClothWeightStrider(LLStrider& strider, S32 index, S32 count, bool map_range) { return VertexBufferStrider::get(*this, strider, index, count, map_range); } //---------------------------------------------------------------------------- bool LLVertexBuffer::bindGLBuffer(bool force_bind) { bool ret = false; if (useVBOs() && (force_bind || (mGLBuffer && (mGLBuffer != sGLRenderBuffer || !sVBOActive)))) { LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; glBindBuffer(GL_ARRAY_BUFFER, mGLBuffer); sGLRenderBuffer = mGLBuffer; sBindCount++; sVBOActive = true; ret = true; } return ret; } bool LLVertexBuffer::bindGLBufferFast() { if (mGLBuffer != sGLRenderBuffer || !sVBOActive) { glBindBuffer(GL_ARRAY_BUFFER, mGLBuffer); sGLRenderBuffer = mGLBuffer; sBindCount++; sVBOActive = true; return true; } return false; } bool LLVertexBuffer::bindGLIndices(bool force_bind) { LL_PROFILE_ZONE_SCOPED_CATEGORY_VERTEX; bool ret = false; if (useVBOs() && (force_bind || (mGLIndices && (mGLIndices != sGLRenderIndices || !sIBOActive)))) { /*if (sMapped) { LL_ERRS() << "VBO bound while another VBO mapped!" << LL_ENDL; }*/ glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mGLIndices); sGLRenderIndices = mGLIndices; stop_glerror(); sBindCount++; sIBOActive = true; ret = true; } return ret; } bool LLVertexBuffer::bindGLIndicesFast() { if (mGLIndices != sGLRenderIndices || !sIBOActive) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, mGLIndices); sGLRenderIndices = mGLIndices; sBindCount++; sIBOActive = true; return true; } return false; } void LLVertexBuffer::flush(bool discard) { if (useVBOs()) { unmapBuffer(); } } // bind for transform feedback (quick 'n dirty) void LLVertexBuffer::bindForFeedback(U32 channel, U32 type, U32 index, U32 count) { #ifdef GL_TRANSFORM_FEEDBACK_BUFFER U32 offset = mOffsets[type] + sTypeSize[type]*index; U32 size= (sTypeSize[type]*count); glBindBufferRange(GL_TRANSFORM_FEEDBACK_BUFFER, channel, mGLBuffer, offset, size); #endif } // Set for rendering void LLVertexBuffer::setBuffer(U32 data_mask) { flush(); //set up pointers if the data mask is different ... bool setup = (sLastMask != data_mask); if (gDebugGL && data_mask != 0) { //make sure data requirements are fulfilled LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr; if (shader) { U32 required_mask = 0; for (U32 i = 0; i < LLVertexBuffer::TYPE_TEXTURE_INDEX; ++i) { if (shader->getAttribLocation(i) > -1) { U32 required = 1 << i; if ((data_mask & required) == 0) { LL_WARNS() << "Missing attribute: " << LLShaderMgr::instance()->mReservedAttribs[i] << LL_ENDL; } required_mask |= required; } } if ((data_mask & required_mask) != required_mask) { U32 unsatisfied_mask = (required_mask & ~data_mask); for (U32 i = 0; i < TYPE_MAX; i++) { U32 unsatisfied_flag = unsatisfied_mask & (1 << i); switch (unsatisfied_flag) { case 0: break; case MAP_VERTEX: LL_INFOS() << "Missing vert pos" << LL_ENDL; break; case MAP_NORMAL: LL_INFOS() << "Missing normals" << LL_ENDL; break; case MAP_TEXCOORD0: LL_INFOS() << "Missing TC 0" << LL_ENDL; break; case MAP_TEXCOORD1: LL_INFOS() << "Missing TC 1" << LL_ENDL; break; case MAP_TEXCOORD2: LL_INFOS() << "Missing TC 2" << LL_ENDL; break; case MAP_TEXCOORD3: LL_INFOS() << "Missing TC 3" << LL_ENDL; break; case MAP_COLOR: LL_INFOS() << "Missing vert color" << LL_ENDL; break; case MAP_EMISSIVE: LL_INFOS() << "Missing emissive" << LL_ENDL; break; case MAP_TANGENT: LL_INFOS() << "Missing tangent" << LL_ENDL; break; case MAP_WEIGHT: LL_INFOS() << "Missing weight" << LL_ENDL; break; case MAP_WEIGHT4: LL_INFOS() << "Missing weightx4" << LL_ENDL; break; case MAP_CLOTHWEIGHT: LL_INFOS() << "Missing clothweight" << LL_ENDL; break; case MAP_TEXTURE_INDEX: LL_INFOS() << "Missing tex index" << LL_ENDL; break; default: LL_INFOS() << "Missing who effin knows: " << unsatisfied_flag << LL_ENDL; } } // TYPE_INDEX is beyond TYPE_MAX, so check for it individually if (unsatisfied_mask & (1 << TYPE_INDEX)) { LL_INFOS() << "Missing indices" << LL_ENDL; } LL_ERRS() << "Shader consumption mismatches data provision." << LL_ENDL; } } } if (useVBOs()) { const bool bindBuffer = bindGLBuffer(); const bool bindIndices = bindGLIndices(); setup = setup || bindBuffer || bindIndices; if (gDebugGL) { GLint buff; glGetIntegerv(GL_ARRAY_BUFFER_BINDING, &buff); if ((GLuint)buff != mGLBuffer) { if (gDebugSession) { gFailLog << "Invalid GL vertex buffer bound: " << buff << std::endl; } else { LL_ERRS() << "Invalid GL vertex buffer bound: " << buff << LL_ENDL; } } if (mGLIndices) { glGetIntegerv(GL_ELEMENT_ARRAY_BUFFER_BINDING, &buff); if ((GLuint)buff != mGLIndices) { if (gDebugSession) { gFailLog << "Invalid GL index buffer bound: " << buff << std::endl; } else { LL_ERRS() << "Invalid GL index buffer bound: " << buff << LL_ENDL; } } } } } else { if (sGLRenderArray) { glBindVertexArray(0); sGLRenderArray = 0; sGLRenderIndices = 0; sIBOActive = false; } if (mGLBuffer) { if (sVBOActive) { glBindBuffer(GL_ARRAY_BUFFER, 0); sBindCount++; sVBOActive = false; setup = true; // ... or a VBO is deactivated } if (sGLRenderBuffer != mGLBuffer) { sGLRenderBuffer = mGLBuffer; setup = true; // ... or a client memory pointer changed } } if (mGLIndices) { if (sIBOActive) { glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, 0); sBindCount++; sIBOActive = false; } sGLRenderIndices = mGLIndices; } } setupClientArrays(data_mask); if (mGLBuffer) { if (data_mask && setup) { setupVertexBuffer(data_mask); // subclass specific setup (virtual function) sSetCount++; } } } void LLVertexBuffer::setBufferFast(U32 data_mask) { if (useVBOs()) { //set up pointers if the data mask is different ... bool setup = (sLastMask != data_mask); const bool bindBuffer = bindGLBufferFast(); const bool bindIndices = bindGLIndicesFast(); setup = setup || bindBuffer || bindIndices; setupClientArrays(data_mask); if (data_mask && setup) { setupVertexBufferFast(data_mask); sSetCount++; } } else { //fallback to slow path when not using VBOs setBuffer(data_mask); } } // virtual (default) void LLVertexBuffer::setupVertexBuffer(U32 data_mask) { stop_glerror(); U8* base = useVBOs() ? nullptr: mMappedData; if (gDebugGL && ((data_mask & mTypeMask) != data_mask)) { for (U32 i = 0; i < LLVertexBuffer::TYPE_MAX; ++i) { U32 mask = 1 << i; if (mask & data_mask && !(mask & mTypeMask)) { //bit set in data_mask, but not set in mTypeMask LL_WARNS() << "Missing required component " << vb_type_name[i] << LL_ENDL; } } LL_ERRS() << "LLVertexBuffer::setupVertexBuffer missing required components for supplied data mask." << LL_ENDL; } if (data_mask & MAP_NORMAL) { S32 loc = TYPE_NORMAL; void* ptr = (void*)(base + mOffsets[TYPE_NORMAL]); glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_NORMAL], ptr); } if (data_mask & MAP_TEXCOORD3) { S32 loc = TYPE_TEXCOORD3; void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD3]); glVertexAttribPointer(loc,2,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD3], ptr); } if (data_mask & MAP_TEXCOORD2) { S32 loc = TYPE_TEXCOORD2; void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD2]); glVertexAttribPointer(loc,2,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD2], ptr); } if (data_mask & MAP_TEXCOORD1) { S32 loc = TYPE_TEXCOORD1; void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD1]); glVertexAttribPointer(loc,2,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD1], ptr); } if (data_mask & MAP_TANGENT) { S32 loc = TYPE_TANGENT; void* ptr = (void*)(base + mOffsets[TYPE_TANGENT]); glVertexAttribPointer(loc, 4,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TANGENT], ptr); } if (data_mask & MAP_TEXCOORD0) { S32 loc = TYPE_TEXCOORD0; void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD0]); glVertexAttribPointer(loc,2,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD0], ptr); } if (data_mask & MAP_COLOR) { S32 loc = TYPE_COLOR; //bind emissive instead of color pointer if emissive is present void* ptr = (data_mask & MAP_EMISSIVE) ? (void*)(base + mOffsets[TYPE_EMISSIVE]) : (void*)(base + mOffsets[TYPE_COLOR]); glVertexAttribPointer(loc, 4, GL_UNSIGNED_BYTE, GL_TRUE, LLVertexBuffer::sTypeSize[TYPE_COLOR], ptr); } if (data_mask & MAP_EMISSIVE) { S32 loc = TYPE_EMISSIVE; void* ptr = (void*)(base + mOffsets[TYPE_EMISSIVE]); glVertexAttribPointer(loc, 4, GL_UNSIGNED_BYTE, GL_TRUE, LLVertexBuffer::sTypeSize[TYPE_EMISSIVE], ptr); if (!(data_mask & MAP_COLOR)) { //map emissive to color channel when color is not also being bound to avoid unnecessary shader swaps loc = TYPE_COLOR; glVertexAttribPointer(loc, 4, GL_UNSIGNED_BYTE, GL_TRUE, LLVertexBuffer::sTypeSize[TYPE_EMISSIVE], ptr); } } if (data_mask & MAP_WEIGHT) { S32 loc = TYPE_WEIGHT; void* ptr = (void*)(base + mOffsets[TYPE_WEIGHT]); glVertexAttribPointer(loc, 1, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_WEIGHT], ptr); } if (data_mask & MAP_WEIGHT4) { S32 loc = TYPE_WEIGHT4; void* ptr = (void*)(base+mOffsets[TYPE_WEIGHT4]); glVertexAttribPointer(loc, 4, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_WEIGHT4], ptr); } if (data_mask & MAP_CLOTHWEIGHT) { S32 loc = TYPE_CLOTHWEIGHT; void* ptr = (void*)(base + mOffsets[TYPE_CLOTHWEIGHT]); glVertexAttribPointer(loc, 4, GL_FLOAT, GL_TRUE, LLVertexBuffer::sTypeSize[TYPE_CLOTHWEIGHT], ptr); } if (data_mask & MAP_TEXTURE_INDEX && (gGLManager.mGLSLVersionMajor >= 2 || gGLManager.mGLSLVersionMinor >= 30)) //indexed texture rendering requires GLSL 1.30 or later { S32 loc = TYPE_TEXTURE_INDEX; void *ptr = (void*) (base + mOffsets[TYPE_VERTEX] + 12); glVertexAttribIPointer(loc, 1, GL_UNSIGNED_INT, LLVertexBuffer::sTypeSize[TYPE_VERTEX], ptr); } if (data_mask & MAP_VERTEX) { S32 loc = TYPE_VERTEX; void* ptr = (void*)(base + mOffsets[TYPE_VERTEX]); glVertexAttribPointer(loc, 3,GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_VERTEX], ptr); } llglassertok(); } void LLVertexBuffer::setupVertexBufferFast(U32 data_mask) { U8* base = nullptr; if (data_mask & MAP_NORMAL) { S32 loc = TYPE_NORMAL; void* ptr = (void*)(base + mOffsets[TYPE_NORMAL]); glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_NORMAL], ptr); } if (data_mask & MAP_TEXCOORD3) { S32 loc = TYPE_TEXCOORD3; void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD3]); glVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD3], ptr); } if (data_mask & MAP_TEXCOORD2) { S32 loc = TYPE_TEXCOORD2; void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD2]); glVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD2], ptr); } if (data_mask & MAP_TEXCOORD1) { S32 loc = TYPE_TEXCOORD1; void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD1]); glVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD1], ptr); } if (data_mask & MAP_TANGENT) { S32 loc = TYPE_TANGENT; void* ptr = (void*)(base + mOffsets[TYPE_TANGENT]); glVertexAttribPointer(loc, 4, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TANGENT], ptr); } if (data_mask & MAP_TEXCOORD0) { S32 loc = TYPE_TEXCOORD0; void* ptr = (void*)(base + mOffsets[TYPE_TEXCOORD0]); glVertexAttribPointer(loc, 2, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_TEXCOORD0], ptr); } if (data_mask & MAP_COLOR) { S32 loc = TYPE_COLOR; //bind emissive instead of color pointer if emissive is present void* ptr = (data_mask & MAP_EMISSIVE) ? (void*)(base + mOffsets[TYPE_EMISSIVE]) : (void*)(base + mOffsets[TYPE_COLOR]); glVertexAttribPointer(loc, 4, GL_UNSIGNED_BYTE, GL_TRUE, LLVertexBuffer::sTypeSize[TYPE_COLOR], ptr); } if (data_mask & MAP_EMISSIVE) { S32 loc = TYPE_EMISSIVE; void* ptr = (void*)(base + mOffsets[TYPE_EMISSIVE]); glVertexAttribPointer(loc, 4, GL_UNSIGNED_BYTE, GL_TRUE, LLVertexBuffer::sTypeSize[TYPE_EMISSIVE], ptr); if (!(data_mask & MAP_COLOR)) { //map emissive to color channel when color is not also being bound to avoid unnecessary shader swaps loc = TYPE_COLOR; glVertexAttribPointer(loc, 4, GL_UNSIGNED_BYTE, GL_TRUE, LLVertexBuffer::sTypeSize[TYPE_EMISSIVE], ptr); } } if (data_mask & MAP_WEIGHT) { S32 loc = TYPE_WEIGHT; void* ptr = (void*)(base + mOffsets[TYPE_WEIGHT]); glVertexAttribPointer(loc, 1, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_WEIGHT], ptr); } if (data_mask & MAP_WEIGHT4) { S32 loc = TYPE_WEIGHT4; void* ptr = (void*)(base + mOffsets[TYPE_WEIGHT4]); glVertexAttribPointer(loc, 4, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_WEIGHT4], ptr); } if (data_mask & MAP_CLOTHWEIGHT) { S32 loc = TYPE_CLOTHWEIGHT; void* ptr = (void*)(base + mOffsets[TYPE_CLOTHWEIGHT]); glVertexAttribPointer(loc, 4, GL_FLOAT, GL_TRUE, LLVertexBuffer::sTypeSize[TYPE_CLOTHWEIGHT], ptr); } if (data_mask & MAP_TEXTURE_INDEX) { S32 loc = TYPE_TEXTURE_INDEX; void* ptr = (void*)(base + mOffsets[TYPE_VERTEX] + 12); glVertexAttribIPointer(loc, 1, GL_UNSIGNED_INT, LLVertexBuffer::sTypeSize[TYPE_VERTEX], ptr); } if (data_mask & MAP_VERTEX) { S32 loc = TYPE_VERTEX; void* ptr = (void*)(base + mOffsets[TYPE_VERTEX]); glVertexAttribPointer(loc, 3, GL_FLOAT, GL_FALSE, LLVertexBuffer::sTypeSize[TYPE_VERTEX], ptr); } } void LLVertexBuffer::setPositionData(const LLVector4a* data) { bindGLBuffer(); flush_vbo(GL_ARRAY_BUFFER, 0, sizeof(LLVector4a) * getNumVerts(), (U8*) data); } void LLVertexBuffer::setTexCoordData(const LLVector2* data) { bindGLBuffer(); flush_vbo(GL_ARRAY_BUFFER, mOffsets[TYPE_TEXCOORD0], mOffsets[TYPE_TEXCOORD0] + sTypeSize[TYPE_TEXCOORD0] * getNumVerts(), (U8*)data); } void LLVertexBuffer::setColorData(const LLColor4U* data) { bindGLBuffer(); flush_vbo(GL_ARRAY_BUFFER, mOffsets[TYPE_COLOR], mOffsets[TYPE_COLOR] + sTypeSize[TYPE_COLOR] * getNumVerts(), (U8*) data); }