/** * @file llrendersphere.cpp * @brief implementation of the LLRenderSphere class. * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ // Sphere creates a set of display lists that can then be called to create // a lit sphere at different LOD levels. You only need one instance of sphere // per viewer - then call the appropriate list. #include "linden_common.h" #include "llrendersphere.h" #include "llerror.h" #include "llglheaders.h" GLUquadricObj *gQuadObj2 = NULL; LLRenderSphere gSphere; void drawSolidSphere(GLdouble radius, GLint slices, GLint stacks); void drawSolidSphere(GLdouble radius, GLint slices, GLint stacks) { if (!gQuadObj2) { gQuadObj2 = gluNewQuadric(); if (!gQuadObj2) { llwarns << "drawSolidSphere couldn't allocate quadric" << llendl; return; } } gluQuadricDrawStyle(gQuadObj2, GLU_FILL); gluQuadricNormals(gQuadObj2, GLU_SMOOTH); // If we ever changed/used the texture or orientation state // of quadObj, we'd need to change it to the defaults here // with gluQuadricTexture and/or gluQuadricOrientation. gluQuadricTexture(gQuadObj2, GL_TRUE); gluSphere(gQuadObj2, radius, slices, stacks); } // A couple thoughts on sphere drawing: // 1) You need more slices than stacks, but little less than 2:1 // 2) At low LOD, setting stacks to an odd number avoids a "band" around the equator, making things look smoother void LLRenderSphere::prerender() { // Create a series of display lists for different LODs mDList[0] = glGenLists(1); glNewList(mDList[0], GL_COMPILE); drawSolidSphere(1.0, 30, 20); glEndList(); mDList[1] = glGenLists(1); glNewList(mDList[1], GL_COMPILE); drawSolidSphere(1.0, 20, 15); glEndList(); mDList[2] = glGenLists(1); glNewList(mDList[2], GL_COMPILE); drawSolidSphere(1.0, 12, 8); glEndList(); mDList[3] = glGenLists(1); glNewList(mDList[3], GL_COMPILE); drawSolidSphere(1.0, 8, 5); glEndList(); } void LLRenderSphere::cleanupGL() { for (S32 detail = 0; detail < 4; detail++) { glDeleteLists(mDList[detail], 1); mDList[detail] = 0; } if (gQuadObj2) { gluDeleteQuadric(gQuadObj2); gQuadObj2 = NULL; } } // Constants here are empirically derived from my eyeballs, JNC // // The toughest adjustment is the cutoff for the lowest LOD // Maybe we should have more LODs at the low end? void LLRenderSphere::render(F32 pixel_area) { S32 level_of_detail; if (pixel_area > 10000.f) { level_of_detail = 0; } else if (pixel_area > 800.f) { level_of_detail = 1; } else if (pixel_area > 100.f) { level_of_detail = 2; } else { level_of_detail = 3; } glCallList(mDList[level_of_detail]); } void LLRenderSphere::render() { glCallList(mDList[0]); } inline LLVector3 polar_to_cart(F32 latitude, F32 longitude) { return LLVector3(sin(F_TWO_PI * latitude) * cos(F_TWO_PI * longitude), sin(F_TWO_PI * latitude) * sin(F_TWO_PI * longitude), cos(F_TWO_PI * latitude)); } void LLRenderSphere::renderGGL() { S32 const LATITUDE_SLICES = 20; S32 const LONGITUDE_SLICES = 30; if (mSpherePoints.empty()) { mSpherePoints.resize(LATITUDE_SLICES + 1); for (S32 lat_i = 0; lat_i < LATITUDE_SLICES + 1; lat_i++) { mSpherePoints[lat_i].resize(LONGITUDE_SLICES + 1); for (S32 lon_i = 0; lon_i < LONGITUDE_SLICES + 1; lon_i++) { F32 lat = (F32)lat_i / LATITUDE_SLICES; F32 lon = (F32)lon_i / LONGITUDE_SLICES; mSpherePoints[lat_i][lon_i] = polar_to_cart(lat, lon); } } } gGL.begin(LLRender::TRIANGLES); for (S32 lat_i = 0; lat_i < LATITUDE_SLICES; lat_i++) { for (S32 lon_i = 0; lon_i < LONGITUDE_SLICES; lon_i++) { gGL.vertex3fv(mSpherePoints[lat_i][lon_i].mV); gGL.vertex3fv(mSpherePoints[lat_i][lon_i+1].mV); gGL.vertex3fv(mSpherePoints[lat_i+1][lon_i].mV); gGL.vertex3fv(mSpherePoints[lat_i+1][lon_i].mV); gGL.vertex3fv(mSpherePoints[lat_i][lon_i+1].mV); gGL.vertex3fv(mSpherePoints[lat_i+1][lon_i+1].mV); } } gGL.end(); }