/** * @file llrender.cpp * @brief LLRender implementation * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" #include "llrender.h" #include "llvertexbuffer.h" #include "llcubemap.h" #include "llglslshader.h" #include "llimagegl.h" #include "llrendertarget.h" #include "lltexture.h" #include "llshadermgr.h" #include "hbxxh.h" #include "glm/gtc/type_ptr.hpp" #if LL_WINDOWS extern void APIENTRY gl_debug_callback(GLenum source, GLenum type, GLuint id, GLenum severity, GLsizei length, const GLchar* message, GLvoid* userParam) ; #endif thread_local LLRender gGL; // Handy copies of last good GL matrices F32 gGLModelView[16]; F32 gGLLastModelView[16]; F32 gGLLastProjection[16]; F32 gGLProjection[16]; // transform from last frame's camera space to this frame's camera space (and inverse) glm::mat4 gGLDeltaModelView; glm::mat4 gGLInverseDeltaModelView; S32 gGLViewport[4]; U32 LLRender::sUICalls = 0; U32 LLRender::sUIVerts = 0; U32 LLTexUnit::sWhiteTexture = 0; bool LLRender::sGLCoreProfile = false; bool LLRender::sNsightDebugSupport = false; LLVector2 LLRender::sUIGLScaleFactor = LLVector2(1.f, 1.f); struct LLVBCache { LLPointer vb; std::chrono::steady_clock::time_point touched; }; static std::unordered_map sVBCache; static thread_local std::list *sBufferDataList = nullptr; static const GLenum sGLTextureType[] = { GL_TEXTURE_2D, #if GL_VERSION_3_1 GL_TEXTURE_RECTANGLE, #endif GL_TEXTURE_CUBE_MAP, #if GL_VERSION_4_0 GL_TEXTURE_CUBE_MAP_ARRAY, #endif #if GL_VERSION_3_2 GL_TEXTURE_2D_MULTISAMPLE, #endif GL_TEXTURE_3D }; static const GLint sGLAddressMode[] = { GL_REPEAT, GL_MIRRORED_REPEAT, GL_CLAMP_TO_EDGE }; const U32 immediate_mask = LLVertexBuffer::MAP_VERTEX | LLVertexBuffer::MAP_COLOR | LLVertexBuffer::MAP_TEXCOORD0; static const GLenum sGLBlendFactor[] = { GL_ONE, GL_ZERO, GL_DST_COLOR, GL_SRC_COLOR, GL_ONE_MINUS_DST_COLOR, GL_ONE_MINUS_SRC_COLOR, GL_DST_ALPHA, GL_SRC_ALPHA, GL_ONE_MINUS_DST_ALPHA, GL_ONE_MINUS_SRC_ALPHA, GL_ZERO // 'BF_UNDEF' }; LLTexUnit::LLTexUnit(S32 index) : mCurrTexType(TT_NONE), mCurrColorScale(1), mCurrAlphaScale(1), mCurrTexture(0), mHasMipMaps(false), mIndex(index) { llassert_always(index < (S32)LL_NUM_TEXTURE_LAYERS); } //static U32 LLTexUnit::getInternalType(eTextureType type) { return sGLTextureType[type]; } void LLTexUnit::refreshState(void) { // We set dirty to true so that the tex unit knows to ignore caching // and we reset the cached tex unit state gGL.flush(); glActiveTexture(GL_TEXTURE0 + mIndex); if (mCurrTexType != TT_NONE) { glBindTexture(sGLTextureType[mCurrTexType], mCurrTexture); } else { glBindTexture(GL_TEXTURE_2D, 0); } } void LLTexUnit::activate(void) { if (mIndex < 0) return; if ((S32)gGL.mCurrTextureUnitIndex != mIndex || gGL.mDirty) { gGL.flush(); glActiveTexture(GL_TEXTURE0 + mIndex); gGL.mCurrTextureUnitIndex = mIndex; } } void LLTexUnit::enable(eTextureType type) { if (mIndex < 0) return; if ( (mCurrTexType != type || gGL.mDirty) && (type != TT_NONE) ) { activate(); if (mCurrTexType != TT_NONE && !gGL.mDirty) { disable(); // Force a disable of a previous texture type if it's enabled. } mCurrTexType = type; gGL.flush(); } } void LLTexUnit::disable(void) { if (mIndex < 0) return; if (mCurrTexType != TT_NONE) { unbind(mCurrTexType); mCurrTexType = TT_NONE; } } void LLTexUnit::bindFast(LLTexture* texture) { LLImageGL* gl_tex = texture->getGLTexture(); texture->setActive(); glActiveTexture(GL_TEXTURE0 + mIndex); gGL.mCurrTextureUnitIndex = mIndex; mCurrTexture = gl_tex->getTexName(); if (!mCurrTexture) { LL_PROFILE_ZONE_NAMED("MISSING TEXTURE"); //if deleted, will re-generate it immediately texture->forceImmediateUpdate(); gl_tex->forceUpdateBindStats(); texture->bindDefaultImage(mIndex); } glBindTexture(sGLTextureType[gl_tex->getTarget()], mCurrTexture); mHasMipMaps = gl_tex->mHasMipMaps; } bool LLTexUnit::bind(LLTexture* texture, bool for_rendering, bool forceBind) { LL_PROFILE_ZONE_SCOPED_CATEGORY_PIPELINE; stop_glerror(); if (mIndex >= 0) { gGL.flush(); LLImageGL* gl_tex = NULL ; if (texture != NULL && (gl_tex = texture->getGLTexture())) { if (gl_tex->getTexName()) //if texture exists { //in audit, replace the selected texture by the default one. if ((mCurrTexture != gl_tex->getTexName()) || forceBind) { activate(); enable(gl_tex->getTarget()); mCurrTexture = gl_tex->getTexName(); glBindTexture(sGLTextureType[gl_tex->getTarget()], mCurrTexture); if(gl_tex->updateBindStats()) { texture->setActive() ; texture->updateBindStatsForTester() ; } mHasMipMaps = gl_tex->mHasMipMaps; if (gl_tex->mTexOptionsDirty) { gl_tex->mTexOptionsDirty = false; setTextureAddressMode(gl_tex->mAddressMode); setTextureFilteringOption(gl_tex->mFilterOption); } } } else { //if deleted, will re-generate it immediately texture->forceImmediateUpdate() ; gl_tex->forceUpdateBindStats() ; return texture->bindDefaultImage(mIndex); } } else { if (texture) { LL_DEBUGS() << "NULL LLTexUnit::bind GL image" << LL_ENDL; } else { LL_DEBUGS() << "NULL LLTexUnit::bind texture" << LL_ENDL; } return false; } } else { // mIndex < 0 return false; } return true; } bool LLTexUnit::bind(LLImageGL* texture, bool for_rendering, bool forceBind, S32 usename) { stop_glerror(); if (mIndex < 0) return false; U32 texname = usename ? usename : texture->getTexName(); if(!texture) { LL_DEBUGS() << "NULL LLTexUnit::bind texture" << LL_ENDL; return false; } if(!texname) { if(LLImageGL::sDefaultGLTexture && LLImageGL::sDefaultGLTexture->getTexName()) { return bind(LLImageGL::sDefaultGLTexture) ; } stop_glerror(); return false ; } if ((mCurrTexture != texname) || forceBind) { gGL.flush(); stop_glerror(); activate(); stop_glerror(); enable(texture->getTarget()); stop_glerror(); mCurrTexture = texname; glBindTexture(sGLTextureType[texture->getTarget()], mCurrTexture); stop_glerror(); texture->updateBindStats(); mHasMipMaps = texture->mHasMipMaps; if (texture->mTexOptionsDirty) { stop_glerror(); texture->mTexOptionsDirty = false; setTextureAddressMode(texture->mAddressMode); setTextureFilteringOption(texture->mFilterOption); stop_glerror(); } } stop_glerror(); return true; } bool LLTexUnit::bind(LLCubeMap* cubeMap) { if (mIndex < 0) return false; gGL.flush(); if (cubeMap == NULL) { LL_WARNS() << "NULL LLTexUnit::bind cubemap" << LL_ENDL; return false; } if (mCurrTexture != cubeMap->mImages[0]->getTexName()) { if (LLCubeMap::sUseCubeMaps) { activate(); enable(LLTexUnit::TT_CUBE_MAP); mCurrTexture = cubeMap->mImages[0]->getTexName(); glBindTexture(GL_TEXTURE_CUBE_MAP, mCurrTexture); mHasMipMaps = cubeMap->mImages[0]->mHasMipMaps; cubeMap->mImages[0]->updateBindStats(); if (cubeMap->mImages[0]->mTexOptionsDirty) { cubeMap->mImages[0]->mTexOptionsDirty = false; setTextureAddressMode(cubeMap->mImages[0]->mAddressMode); setTextureFilteringOption(cubeMap->mImages[0]->mFilterOption); } return true; } else { LL_WARNS() << "Using cube map without extension!" << LL_ENDL; return false; } } return true; } // LLRenderTarget is unavailible on the mapserver since it uses FBOs. bool LLTexUnit::bind(LLRenderTarget* renderTarget, bool bindDepth) { if (mIndex < 0) return false; gGL.flush(); if (bindDepth) { llassert(renderTarget->getDepth()); // target MUST have a depth buffer attachment bindManual(renderTarget->getUsage(), renderTarget->getDepth()); } else { bindManual(renderTarget->getUsage(), renderTarget->getTexture()); } return true; } bool LLTexUnit::bindManual(eTextureType type, U32 texture, bool hasMips) { if (mIndex < 0) { return false; } if(mCurrTexture != texture) { gGL.flush(); activate(); enable(type); mCurrTexture = texture; glBindTexture(sGLTextureType[type], texture); mHasMipMaps = hasMips; } return true; } void LLTexUnit::unbind(eTextureType type) { stop_glerror(); if (mIndex < 0) return; //always flush and activate for consistency // some code paths assume unbind always flushes and sets the active texture gGL.flush(); activate(); // Disabled caching of binding state. if (mCurrTexType == type) { mCurrTexture = 0; if (type == LLTexUnit::TT_TEXTURE) { glBindTexture(sGLTextureType[type], sWhiteTexture); } else { glBindTexture(sGLTextureType[type], 0); } stop_glerror(); } } void LLTexUnit::unbindFast(eTextureType type) { activate(); // Disabled caching of binding state. if (mCurrTexType == type) { mCurrTexture = 0; if (type == LLTexUnit::TT_TEXTURE) { glBindTexture(sGLTextureType[type], sWhiteTexture); } else { glBindTexture(sGLTextureType[type], 0); } } } void LLTexUnit::setTextureAddressMode(eTextureAddressMode mode) { if (mIndex < 0 || mCurrTexture == 0) return; gGL.flush(); activate(); glTexParameteri (sGLTextureType[mCurrTexType], GL_TEXTURE_WRAP_S, sGLAddressMode[mode]); glTexParameteri (sGLTextureType[mCurrTexType], GL_TEXTURE_WRAP_T, sGLAddressMode[mode]); if (mCurrTexType == TT_CUBE_MAP) { glTexParameteri (GL_TEXTURE_CUBE_MAP, GL_TEXTURE_WRAP_R, sGLAddressMode[mode]); } } void LLTexUnit::setTextureFilteringOption(LLTexUnit::eTextureFilterOptions option) { if (mIndex < 0 || mCurrTexture == 0 || mCurrTexType == LLTexUnit::TT_MULTISAMPLE_TEXTURE) return; gGL.flush(); if (option == TFO_POINT) { glTexParameteri(sGLTextureType[mCurrTexType], GL_TEXTURE_MAG_FILTER, GL_NEAREST); } else { glTexParameteri(sGLTextureType[mCurrTexType], GL_TEXTURE_MAG_FILTER, GL_LINEAR); } if (option >= TFO_TRILINEAR && mHasMipMaps) { glTexParameteri(sGLTextureType[mCurrTexType], GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_LINEAR); } else if (option >= TFO_BILINEAR) { if (mHasMipMaps) { glTexParameteri(sGLTextureType[mCurrTexType], GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST); } else { glTexParameteri(sGLTextureType[mCurrTexType], GL_TEXTURE_MIN_FILTER, GL_LINEAR); } } else { if (mHasMipMaps) { glTexParameteri(sGLTextureType[mCurrTexType], GL_TEXTURE_MIN_FILTER, GL_NEAREST_MIPMAP_NEAREST); } else { glTexParameteri(sGLTextureType[mCurrTexType], GL_TEXTURE_MIN_FILTER, GL_NEAREST); } } if (gGLManager.mGLVersion >= 4.59f) { if (LLImageGL::sGlobalUseAnisotropic && option == TFO_ANISOTROPIC) { glTexParameterf(sGLTextureType[mCurrTexType], GL_TEXTURE_MAX_ANISOTROPY_EXT, gGLManager.mMaxAnisotropy); } else { glTexParameterf(sGLTextureType[mCurrTexType], GL_TEXTURE_MAX_ANISOTROPY_EXT, 1.f); } } } GLint LLTexUnit::getTextureSource(eTextureBlendSrc src) { #if GL_VERSION_1_3 switch(src) { // All four cases should return the same value. case TBS_PREV_COLOR: case TBS_PREV_ALPHA: case TBS_ONE_MINUS_PREV_COLOR: case TBS_ONE_MINUS_PREV_ALPHA: return GL_PREVIOUS; // All four cases should return the same value. case TBS_TEX_COLOR: case TBS_TEX_ALPHA: case TBS_ONE_MINUS_TEX_COLOR: case TBS_ONE_MINUS_TEX_ALPHA: #endif return GL_TEXTURE; #if GL_VERSION_1_3 // All four cases should return the same value. case TBS_VERT_COLOR: case TBS_VERT_ALPHA: case TBS_ONE_MINUS_VERT_COLOR: case TBS_ONE_MINUS_VERT_ALPHA: return GL_PRIMARY_COLOR; // All four cases should return the same value. case TBS_CONST_COLOR: case TBS_CONST_ALPHA: case TBS_ONE_MINUS_CONST_COLOR: case TBS_ONE_MINUS_CONST_ALPHA: return GL_CONSTANT; default: LL_WARNS() << "Unknown eTextureBlendSrc: " << src << ". Using Vertex Color instead." << LL_ENDL; return GL_PRIMARY_COLOR; } #endif } GLint LLTexUnit::getTextureSourceType(eTextureBlendSrc src, bool isAlpha) { switch(src) { // All four cases should return the same value. case TBS_PREV_COLOR: case TBS_TEX_COLOR: case TBS_VERT_COLOR: case TBS_CONST_COLOR: return (isAlpha) ? GL_SRC_ALPHA: GL_SRC_COLOR; // All four cases should return the same value. case TBS_PREV_ALPHA: case TBS_TEX_ALPHA: case TBS_VERT_ALPHA: case TBS_CONST_ALPHA: return GL_SRC_ALPHA; // All four cases should return the same value. case TBS_ONE_MINUS_PREV_COLOR: case TBS_ONE_MINUS_TEX_COLOR: case TBS_ONE_MINUS_VERT_COLOR: case TBS_ONE_MINUS_CONST_COLOR: return (isAlpha) ? GL_ONE_MINUS_SRC_ALPHA : GL_ONE_MINUS_SRC_COLOR; // All four cases should return the same value. case TBS_ONE_MINUS_PREV_ALPHA: case TBS_ONE_MINUS_TEX_ALPHA: case TBS_ONE_MINUS_VERT_ALPHA: case TBS_ONE_MINUS_CONST_ALPHA: return GL_ONE_MINUS_SRC_ALPHA; default: LL_WARNS() << "Unknown eTextureBlendSrc: " << src << ". Using Source Color or Alpha instead." << LL_ENDL; return (isAlpha) ? GL_SRC_ALPHA: GL_SRC_COLOR; } } void LLTexUnit::setColorScale(S32 scale) { if (mCurrColorScale != scale || gGL.mDirty) { mCurrColorScale = scale; gGL.flush(); #if GL_VERSION_1_1 glTexEnvi( GL_TEXTURE_ENV, GL_RGB_SCALE, scale ); #endif } } void LLTexUnit::setAlphaScale(S32 scale) { if (mCurrAlphaScale != scale || gGL.mDirty) { mCurrAlphaScale = scale; gGL.flush(); #if GL_VERSION_1_1 glTexEnvi( GL_TEXTURE_ENV, GL_ALPHA_SCALE, scale ); #endif } } // Useful for debugging that you've manually assigned a texture operation to the correct // texture unit based on the currently set active texture in opengl. void LLTexUnit::debugTextureUnit(void) { if (mIndex < 0) return; GLint activeTexture; glGetIntegerv(GL_ACTIVE_TEXTURE, &activeTexture); if ((GL_TEXTURE0 + mIndex) != activeTexture) { U32 set_unit = (activeTexture - GL_TEXTURE0); LL_WARNS() << "Incorrect Texture Unit! Expected: " << set_unit << " Actual: " << mIndex << LL_ENDL; } } LLLightState::LLLightState(S32 index) : mIndex(index), mEnabled(false), mConstantAtten(1.f), mLinearAtten(0.f), mQuadraticAtten(0.f), mSpotExponent(0.f), mSpotCutoff(180.f) { if (mIndex == 0) { mDiffuse.set(1,1,1,1); mDiffuseB.set(0,0,0,0); mSpecular.set(1,1,1,1); } mSunIsPrimary = true; mAmbient.set(0,0,0,1); mPosition.set(0,0,1,0); mSpotDirection.set(0,0,-1); } void LLLightState::enable() { mEnabled = true; } void LLLightState::disable() { mEnabled = false; } void LLLightState::setDiffuse(const LLColor4& diffuse) { if (mDiffuse != diffuse) { ++gGL.mLightHash; mDiffuse = diffuse; } } void LLLightState::setDiffuseB(const LLColor4& diffuse) { if (mDiffuseB != diffuse) { ++gGL.mLightHash; mDiffuseB = diffuse; } } void LLLightState::setSunPrimary(bool v) { if (mSunIsPrimary != v) { ++gGL.mLightHash; mSunIsPrimary = v; } } void LLLightState::setSize(F32 v) { if (mSize != v) { ++gGL.mLightHash; mSize = v; } } void LLLightState::setFalloff(F32 v) { if (mFalloff != v) { ++gGL.mLightHash; mFalloff = v; } } void LLLightState::setAmbient(const LLColor4& ambient) { if (mAmbient != ambient) { ++gGL.mLightHash; mAmbient = ambient; } } void LLLightState::setSpecular(const LLColor4& specular) { if (mSpecular != specular) { ++gGL.mLightHash; mSpecular = specular; } } void LLLightState::setPosition(const LLVector4& position) { //always set position because modelview matrix may have changed ++gGL.mLightHash; mPosition = position; //transform position by current modelview matrix glm::vec4 pos(glm::make_vec4(position.mV)); const glm::mat4& mat = gGL.getModelviewMatrix(); pos = mat * pos; mPosition.set(glm::value_ptr(pos)); } void LLLightState::setConstantAttenuation(const F32& atten) { if (mConstantAtten != atten) { mConstantAtten = atten; ++gGL.mLightHash; } } void LLLightState::setLinearAttenuation(const F32& atten) { if (mLinearAtten != atten) { ++gGL.mLightHash; mLinearAtten = atten; } } void LLLightState::setQuadraticAttenuation(const F32& atten) { if (mQuadraticAtten != atten) { ++gGL.mLightHash; mQuadraticAtten = atten; } } void LLLightState::setSpotExponent(const F32& exponent) { if (mSpotExponent != exponent) { ++gGL.mLightHash; mSpotExponent = exponent; } } void LLLightState::setSpotCutoff(const F32& cutoff) { if (mSpotCutoff != cutoff) { ++gGL.mLightHash; mSpotCutoff = cutoff; } } void LLLightState::setSpotDirection(const LLVector3& direction) { //always set direction because modelview matrix may have changed ++gGL.mLightHash; //transform direction by current modelview matrix glm::vec3 dir(glm::make_vec3(direction.mV)); const glm::mat3 mat(gGL.getModelviewMatrix()); dir = mat * dir; mSpotDirection.set(glm::value_ptr(dir)); } LLRender::LLRender() : mDirty(false), mCount(0), mMode(LLRender::TRIANGLES), mCurrTextureUnitIndex(0) { for (U32 i = 0; i < LL_NUM_TEXTURE_LAYERS; i++) { mTexUnits[i].mIndex = i; } for (U32 i = 0; i < LL_NUM_LIGHT_UNITS; ++i) { mLightState[i].mIndex = i; } for (U32 i = 0; i < 4; i++) { mCurrColorMask[i] = true; } mCurrBlendColorSFactor = BF_UNDEF; mCurrBlendAlphaSFactor = BF_UNDEF; mCurrBlendColorDFactor = BF_UNDEF; mCurrBlendAlphaDFactor = BF_UNDEF; mMatrixMode = LLRender::MM_MODELVIEW; for (U32 i = 0; i < NUM_MATRIX_MODES; ++i) { for (U32 j = 0; j < LL_MATRIX_STACK_DEPTH; ++j) { mMatrix[i][j] = glm::identity(); } mMatIdx[i] = 0; mMatHash[i] = 0; mCurMatHash[i] = 0xFFFFFFFF; } mLightHash = 0; } LLRender::~LLRender() { shutdown(); } bool LLRender::init(bool needs_vertex_buffer) { #if LL_WINDOWS if (gGLManager.mHasDebugOutput && gDebugGL) { //setup debug output callback //glDebugMessageControl(GL_DONT_CARE, GL_DONT_CARE, GL_DEBUG_SEVERITY_LOW_ARB, 0, NULL, GL_TRUE); glDebugMessageCallback((GLDEBUGPROC) gl_debug_callback, NULL); glEnable(GL_DEBUG_OUTPUT_SYNCHRONOUS); } #endif glPixelStorei(GL_PACK_ALIGNMENT, 1); glPixelStorei(GL_UNPACK_ALIGNMENT, 1); gGL.setSceneBlendType(LLRender::BT_ALPHA); gGL.setAmbientLightColor(LLColor4::black); glCullFace(GL_BACK); // necessary for reflection maps #if GL_VERSION_3_2 glEnable(GL_TEXTURE_CUBE_MAP_SEAMLESS); #endif #if LL_WINDOWS if (glGenVertexArrays == nullptr) { return false; } #endif { //bind a dummy vertex array object so we're core profile compliant U32 ret; glGenVertexArrays(1, &ret); glBindVertexArray(ret); } if (needs_vertex_buffer) { initVertexBuffer(); } return true; } void LLRender::initVertexBuffer() { llassert_always(mBuffer.isNull()); stop_glerror(); mBuffer = new LLVertexBuffer(immediate_mask); mBuffer->allocateBuffer(4096, 0); mBuffer->getVertexStrider(mVerticesp); mBuffer->getTexCoord0Strider(mTexcoordsp); mBuffer->getColorStrider(mColorsp); stop_glerror(); } void LLRender::resetVertexBuffer() { mBuffer = NULL; } void LLRender::shutdown() { resetVertexBuffer(); } void LLRender::refreshState(void) { mDirty = true; U32 active_unit = mCurrTextureUnitIndex; for (U32 i = 0; i < mTexUnits.size(); i++) { mTexUnits[i].refreshState(); } mTexUnits[active_unit].activate(); setColorMask(mCurrColorMask[0], mCurrColorMask[1], mCurrColorMask[2], mCurrColorMask[3]); flush(); mDirty = false; } void LLRender::syncLightState() { LLGLSLShader *shader = LLGLSLShader::sCurBoundShaderPtr; if (!shader) { return; } if (shader->mLightHash != mLightHash) { shader->mLightHash = mLightHash; LLVector4 position[LL_NUM_LIGHT_UNITS]; LLVector3 direction[LL_NUM_LIGHT_UNITS]; LLVector4 attenuation[LL_NUM_LIGHT_UNITS]; LLVector3 diffuse[LL_NUM_LIGHT_UNITS]; LLVector3 diffuse_b[LL_NUM_LIGHT_UNITS]; bool sun_primary[LL_NUM_LIGHT_UNITS]; LLVector2 size[LL_NUM_LIGHT_UNITS]; for (U32 i = 0; i < LL_NUM_LIGHT_UNITS; i++) { LLLightState *light = &mLightState[i]; position[i] = light->mPosition; direction[i] = light->mSpotDirection; attenuation[i].set(light->mLinearAtten, light->mQuadraticAtten, light->mSpecular.mV[2], light->mSpecular.mV[3]); diffuse[i].set(light->mDiffuse.mV); diffuse_b[i].set(light->mDiffuseB.mV); sun_primary[i] = light->mSunIsPrimary; size[i].set(light->mSize, light->mFalloff); } shader->uniform4fv(LLShaderMgr::LIGHT_POSITION, LL_NUM_LIGHT_UNITS, position[0].mV); shader->uniform3fv(LLShaderMgr::LIGHT_DIRECTION, LL_NUM_LIGHT_UNITS, direction[0].mV); shader->uniform4fv(LLShaderMgr::LIGHT_ATTENUATION, LL_NUM_LIGHT_UNITS, attenuation[0].mV); shader->uniform2fv(LLShaderMgr::LIGHT_DEFERRED_ATTENUATION, LL_NUM_LIGHT_UNITS, size[0].mV); shader->uniform3fv(LLShaderMgr::LIGHT_DIFFUSE, LL_NUM_LIGHT_UNITS, diffuse[0].mV); shader->uniform3fv(LLShaderMgr::LIGHT_AMBIENT, 1, mAmbientLightColor.mV); shader->uniform1i(LLShaderMgr::SUN_UP_FACTOR, sun_primary[0] ? 1 : 0); //shader->uniform3fv(LLShaderMgr::AMBIENT, 1, mAmbientLightColor.mV); //shader->uniform3fv(LLShaderMgr::SUNLIGHT_COLOR, 1, diffuse[0].mV); //shader->uniform3fv(LLShaderMgr::MOONLIGHT_COLOR, 1, diffuse_b[0].mV); } } void LLRender::syncMatrices() { STOP_GLERROR; LL_PROFILE_ZONE_SCOPED_CATEGORY_DISPLAY; static const U32 name[] = { LLShaderMgr::MODELVIEW_MATRIX, LLShaderMgr::PROJECTION_MATRIX, LLShaderMgr::TEXTURE_MATRIX0, LLShaderMgr::TEXTURE_MATRIX1, LLShaderMgr::TEXTURE_MATRIX2, LLShaderMgr::TEXTURE_MATRIX3, }; LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr; static glm::mat4 cached_mvp; static glm::mat4 cached_inv_mdv; static U32 cached_mvp_mdv_hash = 0xFFFFFFFF; static U32 cached_mvp_proj_hash = 0xFFFFFFFF; static glm::mat4 cached_normal; static U32 cached_normal_hash = 0xFFFFFFFF; if (shader) { bool mvp_done = false; U32 i = MM_MODELVIEW; if (mMatHash[MM_MODELVIEW] != shader->mMatHash[MM_MODELVIEW]) { //update modelview, normal, and MVP const glm::mat4& mat = mMatrix[MM_MODELVIEW][mMatIdx[MM_MODELVIEW]]; // if MDV has changed, update the cached inverse as well if (cached_mvp_mdv_hash != mMatHash[MM_MODELVIEW]) { cached_inv_mdv = glm::inverse(mat); } shader->uniformMatrix4fv(name[MM_MODELVIEW], 1, GL_FALSE, glm::value_ptr(mat)); shader->mMatHash[MM_MODELVIEW] = mMatHash[MM_MODELVIEW]; //update normal matrix S32 loc = shader->getUniformLocation(LLShaderMgr::NORMAL_MATRIX); if (loc > -1) { if (cached_normal_hash != mMatHash[i]) { cached_normal = glm::transpose(cached_inv_mdv); cached_normal_hash = mMatHash[i]; } auto norm = glm::value_ptr(cached_normal); F32 norm_mat[] = { norm[0], norm[1], norm[2], norm[4], norm[5], norm[6], norm[8], norm[9], norm[10] }; shader->uniformMatrix3fv(LLShaderMgr::NORMAL_MATRIX, 1, GL_FALSE, norm_mat); } if (shader->getUniformLocation(LLShaderMgr::INVERSE_MODELVIEW_MATRIX)) { shader->uniformMatrix4fv(LLShaderMgr::INVERSE_MODELVIEW_MATRIX, 1, GL_FALSE, glm::value_ptr(cached_inv_mdv)); } //update MVP matrix mvp_done = true; loc = shader->getUniformLocation(LLShaderMgr::MODELVIEW_PROJECTION_MATRIX); if (loc > -1) { U32 proj = MM_PROJECTION; if (cached_mvp_mdv_hash != mMatHash[i] || cached_mvp_proj_hash != mMatHash[MM_PROJECTION]) { cached_mvp = mat; cached_mvp = mMatrix[proj][mMatIdx[proj]] * cached_mvp; cached_mvp_mdv_hash = mMatHash[i]; cached_mvp_proj_hash = mMatHash[MM_PROJECTION]; } shader->uniformMatrix4fv(LLShaderMgr::MODELVIEW_PROJECTION_MATRIX, 1, GL_FALSE, glm::value_ptr(cached_mvp)); } } i = MM_PROJECTION; if (mMatHash[MM_PROJECTION] != shader->mMatHash[MM_PROJECTION]) { //update projection matrix, normal, and MVP const glm::mat4& mat = mMatrix[MM_PROJECTION][mMatIdx[MM_PROJECTION]]; // GZ: This was previously disabled seemingly due to a bug involving the deferred renderer's regular pushing and popping of mats. // We're reenabling this and cleaning up the code around that - that would've been the appropriate course initially. // Anything beyond the standard proj and inv proj mats are special cases. Please setup special uniforms accordingly in the future. if (shader->getUniformLocation(LLShaderMgr::INVERSE_PROJECTION_MATRIX)) { glm::mat4 inv_proj = glm::inverse(mat); shader->uniformMatrix4fv(LLShaderMgr::INVERSE_PROJECTION_MATRIX, 1, false, glm::value_ptr(inv_proj)); } // Used by some full screen effects - such as full screen lights, glow, etc. if (shader->getUniformLocation(LLShaderMgr::IDENTITY_MATRIX)) { shader->uniformMatrix4fv(LLShaderMgr::IDENTITY_MATRIX, 1, GL_FALSE, glm::value_ptr(glm::identity())); } shader->uniformMatrix4fv(name[MM_PROJECTION], 1, GL_FALSE, glm::value_ptr(mat)); shader->mMatHash[MM_PROJECTION] = mMatHash[MM_PROJECTION]; if (!mvp_done) { //update MVP matrix S32 loc = shader->getUniformLocation(LLShaderMgr::MODELVIEW_PROJECTION_MATRIX); if (loc > -1) { if (cached_mvp_mdv_hash != mMatHash[MM_PROJECTION] || cached_mvp_proj_hash != mMatHash[MM_PROJECTION]) { U32 mdv = MM_MODELVIEW; cached_mvp = mat; cached_mvp *= mMatrix[mdv][mMatIdx[mdv]]; cached_mvp_mdv_hash = mMatHash[MM_MODELVIEW]; cached_mvp_proj_hash = mMatHash[MM_PROJECTION]; } shader->uniformMatrix4fv(LLShaderMgr::MODELVIEW_PROJECTION_MATRIX, 1, GL_FALSE, glm::value_ptr(cached_mvp)); } } } for (i = MM_TEXTURE0; i < NUM_MATRIX_MODES; ++i) { if (mMatHash[i] != shader->mMatHash[i]) { shader->uniformMatrix4fv(name[i], 1, GL_FALSE, glm::value_ptr(mMatrix[i][mMatIdx[i]])); shader->mMatHash[i] = mMatHash[i]; } } if (shader->mFeatures.hasLighting || shader->mFeatures.calculatesLighting || shader->mFeatures.calculatesAtmospherics) { //also sync light state syncLightState(); } } STOP_GLERROR; } void LLRender::translatef(const GLfloat& x, const GLfloat& y, const GLfloat& z) { flush(); { mMatrix[mMatrixMode][mMatIdx[mMatrixMode]] = glm::translate(mMatrix[mMatrixMode][mMatIdx[mMatrixMode]], glm::vec3(x, y, z)); mMatHash[mMatrixMode]++; } } void LLRender::scalef(const GLfloat& x, const GLfloat& y, const GLfloat& z) { flush(); { mMatrix[mMatrixMode][mMatIdx[mMatrixMode]] = glm::scale(mMatrix[mMatrixMode][mMatIdx[mMatrixMode]], glm::vec3(x, y, z)); mMatHash[mMatrixMode]++; } } void LLRender::ortho(F32 left, F32 right, F32 bottom, F32 top, F32 zNear, F32 zFar) { flush(); { mMatrix[mMatrixMode][mMatIdx[mMatrixMode]] *= glm::ortho(left, right, bottom, top, zNear, zFar); mMatHash[mMatrixMode]++; } } void LLRender::rotatef(const GLfloat& a, const GLfloat& x, const GLfloat& y, const GLfloat& z) { flush(); { mMatrix[mMatrixMode][mMatIdx[mMatrixMode]] = glm::rotate(mMatrix[mMatrixMode][mMatIdx[mMatrixMode]], glm::radians(a), glm::vec3(x,y,z)); mMatHash[mMatrixMode]++; } } void LLRender::pushMatrix() { flush(); { if (mMatIdx[mMatrixMode] < LL_MATRIX_STACK_DEPTH-1) { mMatrix[mMatrixMode][mMatIdx[mMatrixMode]+1] = mMatrix[mMatrixMode][mMatIdx[mMatrixMode]]; ++mMatIdx[mMatrixMode]; } else { LL_WARNS() << "Matrix stack overflow." << LL_ENDL; } } } void LLRender::popMatrix() { flush(); { if (mMatIdx[mMatrixMode] > 0) { --mMatIdx[mMatrixMode]; mMatHash[mMatrixMode]++; } else { LL_WARNS() << "Matrix stack underflow." << LL_ENDL; } } } void LLRender::loadMatrix(const GLfloat* m) { flush(); { mMatrix[mMatrixMode][mMatIdx[mMatrixMode]] = glm::make_mat4((GLfloat*) m); mMatHash[mMatrixMode]++; } } void LLRender::multMatrix(const GLfloat* m) { flush(); { mMatrix[mMatrixMode][mMatIdx[mMatrixMode]] *= glm::make_mat4(m); mMatHash[mMatrixMode]++; } } void LLRender::matrixMode(eMatrixMode mode) { if (mode == MM_TEXTURE) { U32 tex_index = gGL.getCurrentTexUnitIndex(); // the shaders don't actually reference anything beyond texture_matrix0/1 outside of terrain rendering llassert(tex_index <= 3); mode = eMatrixMode(MM_TEXTURE0 + tex_index); if (mode > MM_TEXTURE3) { // getCurrentTexUnitIndex() can go as high as 32 (LL_NUM_TEXTURE_LAYERS) // Large value will result in a crash at mMatrix LL_WARNS_ONCE() << "Attempted to assign matrix mode out of bounds: " << mode << LL_ENDL; mode = MM_TEXTURE0; } } mMatrixMode = mode; } LLRender::eMatrixMode LLRender::getMatrixMode() { if (mMatrixMode >= MM_TEXTURE0 && mMatrixMode <= MM_TEXTURE3) { //always return MM_TEXTURE if current matrix mode points at any texture matrix return MM_TEXTURE; } return mMatrixMode; } void LLRender::loadIdentity() { flush(); { llassert_always(mMatrixMode < NUM_MATRIX_MODES) ; mMatrix[mMatrixMode][mMatIdx[mMatrixMode]] = glm::identity(); mMatHash[mMatrixMode]++; } } const glm::mat4& LLRender::getModelviewMatrix() { return mMatrix[MM_MODELVIEW][mMatIdx[MM_MODELVIEW]]; } const glm::mat4& LLRender::getProjectionMatrix() { return mMatrix[MM_PROJECTION][mMatIdx[MM_PROJECTION]]; } void LLRender::translateUI(F32 x, F32 y, F32 z) { if (mUIOffset.empty()) { LL_ERRS() << "Need to push a UI translation frame before offsetting" << LL_ENDL; } mUIOffset.back().mV[0] += x; mUIOffset.back().mV[1] += y; mUIOffset.back().mV[2] += z; } void LLRender::scaleUI(F32 x, F32 y, F32 z) { if (mUIScale.empty()) { LL_ERRS() << "Need to push a UI transformation frame before scaling." << LL_ENDL; } mUIScale.back().scaleVec(LLVector3(x,y,z)); } void LLRender::pushUIMatrix() { if (mUIOffset.empty()) { mUIOffset.emplace_back(0.f,0.f,0.f); } else { mUIOffset.push_back(mUIOffset.back()); } if (mUIScale.empty()) { mUIScale.emplace_back(1.f,1.f,1.f); } else { mUIScale.push_back(mUIScale.back()); } } void LLRender::popUIMatrix() { if (mUIOffset.empty()) { LL_ERRS() << "UI offset stack blown." << LL_ENDL; } mUIOffset.pop_back(); mUIScale.pop_back(); } LLVector3 LLRender::getUITranslation() { if (mUIOffset.empty()) { return LLVector3(0,0,0); } return mUIOffset.back(); } LLVector3 LLRender::getUIScale() { if (mUIScale.empty()) { return LLVector3(1,1,1); } return mUIScale.back(); } void LLRender::loadUIIdentity() { if (mUIOffset.empty()) { LL_ERRS() << "Need to push UI translation frame before clearing offset." << LL_ENDL; } mUIOffset.back().setVec(0,0,0); mUIScale.back().setVec(1,1,1); } void LLRender::setColorMask(bool writeColor, bool writeAlpha) { setColorMask(writeColor, writeColor, writeColor, writeAlpha); } void LLRender::setColorMask(bool writeColorR, bool writeColorG, bool writeColorB, bool writeAlpha) { flush(); if (mCurrColorMask[0] != writeColorR || mCurrColorMask[1] != writeColorG || mCurrColorMask[2] != writeColorB || mCurrColorMask[3] != writeAlpha) { mCurrColorMask[0] = writeColorR; mCurrColorMask[1] = writeColorG; mCurrColorMask[2] = writeColorB; mCurrColorMask[3] = writeAlpha; glColorMask(writeColorR ? GL_TRUE : GL_FALSE, writeColorG ? GL_TRUE : GL_FALSE, writeColorB ? GL_TRUE : GL_FALSE, writeAlpha ? GL_TRUE : GL_FALSE); } } void LLRender::setSceneBlendType(eBlendType type) { switch (type) { case BT_ALPHA: blendFunc(BF_SOURCE_ALPHA, BF_ONE_MINUS_SOURCE_ALPHA); break; case BT_ADD: blendFunc(BF_ONE, BF_ONE); break; case BT_ADD_WITH_ALPHA: blendFunc(BF_SOURCE_ALPHA, BF_ONE); break; case BT_MULT: blendFunc(BF_DEST_COLOR, BF_ZERO); break; case BT_MULT_ALPHA: blendFunc(BF_DEST_ALPHA, BF_ZERO); break; case BT_MULT_X2: blendFunc(BF_DEST_COLOR, BF_SOURCE_COLOR); break; case BT_REPLACE: blendFunc(BF_ONE, BF_ZERO); break; default: LL_ERRS() << "Unknown Scene Blend Type: " << type << LL_ENDL; break; } } void LLRender::blendFunc(eBlendFactor sfactor, eBlendFactor dfactor) { llassert(sfactor < BF_UNDEF); llassert(dfactor < BF_UNDEF); if (mCurrBlendColorSFactor != sfactor || mCurrBlendColorDFactor != dfactor || mCurrBlendAlphaSFactor != sfactor || mCurrBlendAlphaDFactor != dfactor) { mCurrBlendColorSFactor = sfactor; mCurrBlendAlphaSFactor = sfactor; mCurrBlendColorDFactor = dfactor; mCurrBlendAlphaDFactor = dfactor; flush(); glBlendFunc(sGLBlendFactor[sfactor], sGLBlendFactor[dfactor]); } } void LLRender::blendFunc(eBlendFactor color_sfactor, eBlendFactor color_dfactor, eBlendFactor alpha_sfactor, eBlendFactor alpha_dfactor) { llassert(color_sfactor < BF_UNDEF); llassert(color_dfactor < BF_UNDEF); llassert(alpha_sfactor < BF_UNDEF); llassert(alpha_dfactor < BF_UNDEF); if (mCurrBlendColorSFactor != color_sfactor || mCurrBlendColorDFactor != color_dfactor || mCurrBlendAlphaSFactor != alpha_sfactor || mCurrBlendAlphaDFactor != alpha_dfactor) { mCurrBlendColorSFactor = color_sfactor; mCurrBlendAlphaSFactor = alpha_sfactor; mCurrBlendColorDFactor = color_dfactor; mCurrBlendAlphaDFactor = alpha_dfactor; flush(); glBlendFuncSeparate(sGLBlendFactor[color_sfactor], sGLBlendFactor[color_dfactor], sGLBlendFactor[alpha_sfactor], sGLBlendFactor[alpha_dfactor]); } } LLTexUnit* LLRender::getTexUnit(U32 index) { if (index < mTexUnits.size()) { return &mTexUnits[index]; } else { LL_DEBUGS() << "Non-existing texture unit layer requested: " << index << LL_ENDL; return &mDummyTexUnit; } } LLLightState* LLRender::getLight(U32 index) { if (index < mLightState.size()) { return &mLightState[index]; } return NULL; } void LLRender::setAmbientLightColor(const LLColor4& color) { LL_PROFILE_ZONE_SCOPED_CATEGORY_PIPELINE; if (color != mAmbientLightColor) { ++mLightHash; mAmbientLightColor = color; } } bool LLRender::verifyTexUnitActive(U32 unitToVerify) { if (mCurrTextureUnitIndex == unitToVerify) { return true; } else { LL_WARNS() << "TexUnit currently active: " << mCurrTextureUnitIndex << " (expecting " << unitToVerify << ")" << LL_ENDL; return false; } } void LLRender::clearErrors() { while (glGetError()) { //loop until no more error flags left } } void LLRender::beginList(std::list *list) { if (sBufferDataList) { LL_ERRS() << "beginList called while another list is open." << LL_ENDL; } llassert(LLGLSLShader::sCurBoundShaderPtr == &gUIProgram); flush(); sBufferDataList = list; } void LLRender::endList() { if (sBufferDataList) { flush(); sBufferDataList = nullptr; } else { llassert(false); // endList called without an open list } } void LLRender::begin(const GLuint& mode) { if (mode != mMode) { if (mMode == LLRender::LINES || mMode == LLRender::TRIANGLES || mMode == LLRender::POINTS) { flush(); } else if (mCount != 0) { LL_ERRS() << "gGL.begin() called redundantly." << LL_ENDL; } mMode = mode; } } void LLRender::end() { if (mCount == 0) { return; //IMM_ERRS << "GL begin and end called with no vertices specified." << LL_ENDL; } if ((mMode != LLRender::LINES && mMode != LLRender::TRIANGLES && mMode != LLRender::POINTS) || mCount > 2048) { flush(); } } void LLRender::flush() { STOP_GLERROR; if (mCount > 0) { LL_PROFILE_ZONE_SCOPED_CATEGORY_PIPELINE; llassert_always(LLGLSLShader::sCurBoundShaderPtr != nullptr); if (!mUIOffset.empty()) { sUICalls++; sUIVerts += mCount; } //store mCount in a local variable to avoid re-entrance (drawArrays may call flush) U32 count = mCount; if (mMode == LLRender::TRIANGLES) { if (mCount%3 != 0) { count -= (mCount % 3); LL_WARNS() << "Incomplete triangle requested." << LL_ENDL; } } if (mMode == LLRender::LINES) { if (mCount%2 != 0) { count -= (mCount % 2); LL_WARNS() << "Incomplete line requested." << LL_ENDL; } } mCount = 0; if (mBuffer) { LLVertexBuffer *vb; U32 attribute_mask = LLGLSLShader::sCurBoundShaderPtr->mAttributeMask; if (sBufferDataList) { vb = genBuffer(attribute_mask, count); sBufferDataList->emplace_back( vb, mMode, count, gGL.getTexUnit(0)->mCurrTexture, mMatrix[MM_MODELVIEW][mMatIdx[MM_MODELVIEW]], mMatrix[MM_PROJECTION][mMatIdx[MM_PROJECTION]], mMatrix[MM_TEXTURE0][mMatIdx[MM_TEXTURE0]] ); } else { vb = bufferfromCache(attribute_mask, count); } drawBuffer(vb, mMode, count); } else { // mBuffer is present in main thread and not present in an image thread LL_ERRS() << "A flush call from outside main rendering thread" << LL_ENDL; } resetStriders(count); } } LLVertexBuffer* LLRender::bufferfromCache(U32 attribute_mask, U32 count) { LLVertexBuffer *vb = nullptr; HBXXH64 hash; { LL_PROFILE_ZONE_NAMED_CATEGORY_VERTEX("vb cache hash"); hash.update((U8*)mVerticesp.get(), count * sizeof(LLVector4a)); if (attribute_mask & LLVertexBuffer::MAP_TEXCOORD0) { hash.update((U8*)mTexcoordsp.get(), count * sizeof(LLVector2)); } if (attribute_mask & LLVertexBuffer::MAP_COLOR) { hash.update((U8*)mColorsp.get(), count * sizeof(LLColor4U)); } hash.finalize(); } U64 vhash = hash.digest(); // check the VB cache before making a new vertex buffer // This is a giant hack to deal with (mostly) our terrible UI rendering code // that was built on top of OpenGL immediate mode. Huge performance wins // can be had by not uploading geometry to VRAM unless absolutely necessary. // Most of our usage of the "immediate mode" style draw calls is actually // sending the same geometry over and over again. // To leverage this, we maintain a running hash of the vertex stream being // built up before a flush, and then check that hash against a VB // cache just before creating a vertex buffer in VRAM std::unordered_map::iterator cache = sVBCache.find(vhash); if (cache != sVBCache.end()) { LL_PROFILE_ZONE_NAMED_CATEGORY_VERTEX("vb cache hit"); // cache hit, just use the cached buffer vb = cache->second.vb; cache->second.touched = std::chrono::steady_clock::now(); } else { LL_PROFILE_ZONE_NAMED_CATEGORY_VERTEX("vb cache miss"); vb = genBuffer(attribute_mask, count); sVBCache[vhash] = { vb , std::chrono::steady_clock::now() }; static U32 miss_count = 0; miss_count++; if (miss_count > 1024) { LL_PROFILE_ZONE_NAMED_CATEGORY_VERTEX("vb cache clean"); miss_count = 0; auto now = std::chrono::steady_clock::now(); using namespace std::chrono_literals; // every 1024 misses, clean the cache of any VBs that haven't been touched in the last second for (std::unordered_map::iterator iter = sVBCache.begin(); iter != sVBCache.end(); ) { if (now - iter->second.touched > 1s) { iter = sVBCache.erase(iter); } else { ++iter; } } } } return vb; } LLVertexBuffer* LLRender::genBuffer(U32 attribute_mask, S32 count) { LLVertexBuffer * vb = new LLVertexBuffer(attribute_mask); vb->allocateBuffer(count, 0); vb->setBuffer(); vb->setPositionData(mVerticesp.get()); if (attribute_mask & LLVertexBuffer::MAP_TEXCOORD0) { vb->setTexCoord0Data(mTexcoordsp.get()); } if (attribute_mask & LLVertexBuffer::MAP_COLOR) { vb->setColorData(mColorsp.get()); } #if LL_DARWIN vb->unmapBuffer(); #endif vb->unbind(); return vb; } void LLRender::drawBuffer(LLVertexBuffer* vb, U32 mode, S32 count) { vb->setBuffer(); vb->drawArrays(mode, 0, count); } void LLRender::resetStriders(S32 count) { mVerticesp[0] = mVerticesp[count]; mTexcoordsp[0] = mTexcoordsp[count]; mColorsp[0] = mColorsp[count]; mCount = 0; } void LLRender::vertex3f(const GLfloat& x, const GLfloat& y, const GLfloat& z) { //the range of mVerticesp, mColorsp and mTexcoordsp is [0, 4095] if (mCount > 2048) { //break when buffer gets reasonably full to keep GL command buffers happy and avoid overflow below switch (mMode) { case LLRender::POINTS: flush(); break; case LLRender::TRIANGLES: if (mCount%3==0) flush(); break; case LLRender::LINES: if (mCount%2 == 0) flush(); break; } } if (mCount > 4094) { // LL_WARNS() << "GL immediate mode overflow. Some geometry not drawn." << LL_ENDL; return; } if (mUIOffset.empty()) { mVerticesp[mCount].set(x,y,z); } else { LLVector3 vert = (LLVector3(x,y,z)+mUIOffset.back()).scaledVec(mUIScale.back()); mVerticesp[mCount].set(vert.mV[VX], vert.mV[VY], vert.mV[VZ]); } mCount++; mVerticesp[mCount] = mVerticesp[mCount-1]; mColorsp[mCount] = mColorsp[mCount-1]; mTexcoordsp[mCount] = mTexcoordsp[mCount-1]; } void LLRender::vertexBatchPreTransformed(LLVector4a* verts, S32 vert_count) { if (mCount + vert_count > 4094) { // LL_WARNS() << "GL immediate mode overflow. Some geometry not drawn." << LL_ENDL; return; } for (S32 i = 0; i < vert_count; i++) { mVerticesp[mCount] = verts[i]; mCount++; mTexcoordsp[mCount] = mTexcoordsp[mCount-1]; mColorsp[mCount] = mColorsp[mCount-1]; } if( mCount > 0 ) // ND: Guard against crashes if mCount is zero, yes it can happen mVerticesp[mCount] = mVerticesp[mCount-1]; } void LLRender::vertexBatchPreTransformed(LLVector4a* verts, LLVector2* uvs, S32 vert_count) { if (mCount + vert_count > 4094) { // LL_WARNS() << "GL immediate mode overflow. Some geometry not drawn." << LL_ENDL; return; } for (S32 i = 0; i < vert_count; i++) { mVerticesp[mCount] = verts[i]; mTexcoordsp[mCount] = uvs[i]; mCount++; mColorsp[mCount] = mColorsp[mCount-1]; } if (mCount > 0) { mVerticesp[mCount] = mVerticesp[mCount - 1]; mTexcoordsp[mCount] = mTexcoordsp[mCount - 1]; } } void LLRender::vertexBatchPreTransformed(LLVector4a* verts, LLVector2* uvs, LLColor4U* colors, S32 vert_count) { if (mCount + vert_count > 4094) { // LL_WARNS() << "GL immediate mode overflow. Some geometry not drawn." << LL_ENDL; return; } for (S32 i = 0; i < vert_count; i++) { mVerticesp[mCount] = verts[i]; mTexcoordsp[mCount] = uvs[i]; mColorsp[mCount] = colors[i]; mCount++; } if (mCount > 0) { mVerticesp[mCount] = mVerticesp[mCount - 1]; mTexcoordsp[mCount] = mTexcoordsp[mCount - 1]; mColorsp[mCount] = mColorsp[mCount - 1]; } } void LLRender::vertex2i(const GLint& x, const GLint& y) { vertex3f((GLfloat) x, (GLfloat) y, 0); } void LLRender::vertex2f(const GLfloat& x, const GLfloat& y) { vertex3f(x,y,0); } void LLRender::vertex2fv(const GLfloat* v) { vertex3f(v[0], v[1], 0); } void LLRender::vertex3fv(const GLfloat* v) { vertex3f(v[0], v[1], v[2]); } void LLRender::texCoord2f(const GLfloat& x, const GLfloat& y) { mTexcoordsp[mCount] = LLVector2(x,y); } void LLRender::texCoord2i(const GLint& x, const GLint& y) { texCoord2f((GLfloat) x, (GLfloat) y); } void LLRender::texCoord2fv(const GLfloat* tc) { texCoord2f(tc[0], tc[1]); } void LLRender::color4ub(const GLubyte& r, const GLubyte& g, const GLubyte& b, const GLubyte& a) { if (!LLGLSLShader::sCurBoundShaderPtr || LLGLSLShader::sCurBoundShaderPtr->mAttributeMask & LLVertexBuffer::MAP_COLOR) { mColorsp[mCount] = LLColor4U(r,g,b,a); } else { //not using shaders or shader reads color from a uniform diffuseColor4ub(r,g,b,a); } } void LLRender::color4ubv(const GLubyte* c) { color4ub(c[0], c[1], c[2], c[3]); } void LLRender::color4f(const GLfloat& r, const GLfloat& g, const GLfloat& b, const GLfloat& a) { color4ub((GLubyte) (llclamp(r, 0.f, 1.f)*255), (GLubyte) (llclamp(g, 0.f, 1.f)*255), (GLubyte) (llclamp(b, 0.f, 1.f)*255), (GLubyte) (llclamp(a, 0.f, 1.f)*255)); } void LLRender::color4fv(const GLfloat* c) { color4f(c[0],c[1],c[2],c[3]); } void LLRender::color3f(const GLfloat& r, const GLfloat& g, const GLfloat& b) { color4f(r,g,b,1); } void LLRender::color3fv(const GLfloat* c) { color4f(c[0],c[1],c[2],1); } void LLRender::diffuseColor3f(F32 r, F32 g, F32 b) { LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr; llassert(shader != NULL); if (shader) { shader->uniform4f(LLShaderMgr::DIFFUSE_COLOR, r,g,b,1.f); } } void LLRender::diffuseColor3fv(const F32* c) { LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr; llassert(shader != NULL); if (shader) { shader->uniform4f(LLShaderMgr::DIFFUSE_COLOR, c[0], c[1], c[2], 1.f); } } void LLRender::diffuseColor4f(F32 r, F32 g, F32 b, F32 a) { LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr; llassert(shader != NULL); if (shader) { shader->uniform4f(LLShaderMgr::DIFFUSE_COLOR, r,g,b,a); } } void LLRender::diffuseColor4fv(const F32* c) { LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr; llassert(shader != NULL); if (shader) { shader->uniform4fv(LLShaderMgr::DIFFUSE_COLOR, 1, c); } } void LLRender::diffuseColor4ubv(const U8* c) { LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr; llassert(shader != NULL); if (shader) { shader->uniform4f(LLShaderMgr::DIFFUSE_COLOR, c[0]/255.f, c[1]/255.f, c[2]/255.f, c[3]/255.f); } } void LLRender::diffuseColor4ub(U8 r, U8 g, U8 b, U8 a) { LLGLSLShader* shader = LLGLSLShader::sCurBoundShaderPtr; llassert(shader != NULL); if (shader) { shader->uniform4f(LLShaderMgr::DIFFUSE_COLOR, r/255.f, g/255.f, b/255.f, a/255.f); } } void LLRender::debugTexUnits(void) { LL_INFOS("TextureUnit") << "Active TexUnit: " << mCurrTextureUnitIndex << LL_ENDL; std::string active_enabled = "false"; for (U32 i = 0; i < mTexUnits.size(); i++) { if (getTexUnit(i)->mCurrTexType != LLTexUnit::TT_NONE) { if (i == mCurrTextureUnitIndex) active_enabled = "true"; LL_INFOS("TextureUnit") << "TexUnit: " << i << " Enabled" << LL_ENDL; LL_INFOS("TextureUnit") << "Enabled As: " ; switch (getTexUnit(i)->mCurrTexType) { case LLTexUnit::TT_TEXTURE: LL_CONT << "Texture 2D"; break; #if GL_VERSION_3_1 case LLTexUnit::TT_RECT_TEXTURE: LL_CONT << "Texture Rectangle"; break; #endif case LLTexUnit::TT_CUBE_MAP: LL_CONT << "Cube Map"; break; default: LL_CONT << "ARGH!!! NONE!"; break; } LL_CONT << ", Texture Bound: " << getTexUnit(i)->mCurrTexture << LL_ENDL; } } LL_INFOS("TextureUnit") << "Active TexUnit Enabled : " << active_enabled << LL_ENDL; } glm::mat4 get_current_modelview() { return glm::make_mat4(gGLModelView); } glm::mat4 get_current_projection() { return glm::make_mat4(gGLProjection); } glm::mat4 get_last_modelview() { return glm::make_mat4(gGLLastModelView); } glm::mat4 get_last_projection() { return glm::make_mat4(gGLLastProjection); } void copy_matrix(const glm::mat4& src, F32* dst) { auto matp = glm::value_ptr(src); for (U32 i = 0; i < 16; i++) { dst[i] = matp[i]; } } void set_current_modelview(const glm::mat4& mat) { copy_matrix(mat, gGLModelView); } void set_current_projection(const glm::mat4& mat) { copy_matrix(mat, gGLProjection); } void set_last_modelview(const glm::mat4& mat) { copy_matrix(mat, gGLLastModelView); } void set_last_projection(const glm::mat4& mat) { copy_matrix(mat, gGLLastProjection); } glm::vec3 mul_mat4_vec3(const glm::mat4& mat, const glm::vec3& vec) { //const float w = vec[0] * mat[0][3] + vec[1] * mat[1][3] + vec[2] * mat[2][3] + mat[3][3]; //return glm::vec3( // (vec[0] * mat[0][0] + vec[1] * mat[1][0] + vec[2] * mat[2][0] + mat[3][0]) / w, // (vec[0] * mat[0][1] + vec[1] * mat[1][1] + vec[2] * mat[2][1] + mat[3][1]) / w, // (vec[0] * mat[0][2] + vec[1] * mat[1][2] + vec[2] * mat[2][2] + mat[3][2]) / w //); LLVector4a x, y, z, s, t, p, q; x.splat(vec.x); y.splat(vec.y); z.splat(vec.z); s.splat<3>(mat[0].data); t.splat<3>(mat[1].data); p.splat<3>(mat[2].data); q.splat<3>(mat[3].data); s.mul(x); t.mul(y); p.mul(z); q.add(s); t.add(p); q.add(t); x.mul(mat[0].data); y.mul(mat[1].data); z.mul(mat[2].data); x.add(y); z.add(mat[3].data); LLVector4a res; res.load3(glm::value_ptr(vec)); res.setAdd(x, z); res.div(q); return glm::make_vec3(res.getF32ptr()); }