/** * @file llprimitive.h * @brief LLPrimitive base class * * Copyright (c) 2001-$CurrentYear$, Linden Research, Inc. * $License$ */ #ifndef LL_LLPRIMITIVE_H #define LL_LLPRIMITIVE_H #include "lluuid.h" #include "v3math.h" #include "xform.h" #include "message.h" #include "llmemory.h" #include "llvolume.h" #include "lltextureentry.h" // Moved to stdtypes.h --JC // typedef U8 LLPCode; class LLMessageSystem; class LLVolumeParams; class LLColor4; class LLColor3; class LLTextureEntry; class LLDataPacker; enum LLGeomType // NOTE: same vals as GL Ids { LLInvalid = 0, LLLineLoop = 2, LLLineStrip = 3, LLTriangles = 4, LLTriStrip = 5, LLTriFan = 6, LLQuads = 7, LLQuadStrip = 8 }; class LLVolume; /** * exported constants */ extern const F32 OBJECT_CUT_MIN; extern const F32 OBJECT_CUT_MAX; extern const F32 OBJECT_CUT_INC; extern const F32 OBJECT_MIN_CUT_INC; extern const F32 OBJECT_ROTATION_PRECISION; extern const F32 OBJECT_TWIST_MIN; extern const F32 OBJECT_TWIST_MAX; extern const F32 OBJECT_TWIST_INC; // This is used for linear paths, // since twist is used in a slightly different manner. extern const F32 OBJECT_TWIST_LINEAR_MIN; extern const F32 OBJECT_TWIST_LINEAR_MAX; extern const F32 OBJECT_TWIST_LINEAR_INC; extern const F32 OBJECT_MIN_HOLE_SIZE; extern const F32 OBJECT_MAX_HOLE_SIZE_X; extern const F32 OBJECT_MAX_HOLE_SIZE_Y; // Revolutions parameters. extern const F32 OBJECT_REV_MIN; extern const F32 OBJECT_REV_MAX; extern const F32 OBJECT_REV_INC; //============================================================================ // TomY: Base class for things that pack & unpack themselves class LLNetworkData { public: // Extra parameter IDs enum { PARAMS_FLEXIBLE = 0x10, PARAMS_LIGHT = 0x20 }; public: U16 mType; virtual ~LLNetworkData() {}; virtual BOOL pack(LLDataPacker &dp) const = 0; virtual BOOL unpack(LLDataPacker &dp) = 0; virtual bool operator==(const LLNetworkData& data) const = 0; virtual void copy(const LLNetworkData& data) = 0; static BOOL isValid(U16 param_type, U32 size); }; extern const F32 LIGHT_MIN_RADIUS; extern const F32 LIGHT_DEFAULT_RADIUS; extern const F32 LIGHT_MAX_RADIUS; extern const F32 LIGHT_MIN_FALLOFF; extern const F32 LIGHT_DEFAULT_FALLOFF; extern const F32 LIGHT_MAX_FALLOFF; extern const F32 LIGHT_MIN_CUTOFF; extern const F32 LIGHT_DEFAULT_CUTOFF; extern const F32 LIGHT_MAX_CUTOFF; class LLLightParams : public LLNetworkData { protected: LLColor4 mColor; // alpha = intensity F32 mRadius; F32 mFalloff; F32 mCutoff; public: LLLightParams(); /*virtual*/ BOOL pack(LLDataPacker &dp) const; /*virtual*/ BOOL unpack(LLDataPacker &dp); /*virtual*/ bool operator==(const LLNetworkData& data) const; /*virtual*/ void copy(const LLNetworkData& data); void setColor(const LLColor4& color) { mColor = color; mColor.clamp(); } void setRadius(F32 radius) { mRadius = llclamp(radius, LIGHT_MIN_RADIUS, LIGHT_MAX_RADIUS); } void setFalloff(F32 falloff) { mFalloff = llclamp(falloff, LIGHT_MIN_FALLOFF, LIGHT_MAX_FALLOFF); } void setCutoff(F32 cutoff) { mCutoff = llclamp(cutoff, LIGHT_MIN_CUTOFF, LIGHT_MAX_CUTOFF); } LLColor4 getColor() const { return mColor; } F32 getRadius() const { return mRadius; } F32 getFalloff() const { return mFalloff; } F32 getCutoff() const { return mCutoff; } }; //------------------------------------------------- // This structure is also used in the part of the // code that creates new flexible objects. //------------------------------------------------- // These were made into enums so that they could be used as fixed size // array bounds. enum EFlexibleObjectConst { // "Softness" => [0,3], increments of 1 // Represents powers of 2: 0 -> 1, 3 -> 8 FLEXIBLE_OBJECT_MIN_SECTIONS = 0, FLEXIBLE_OBJECT_DEFAULT_NUM_SECTIONS = 2, FLEXIBLE_OBJECT_MAX_SECTIONS = 3 }; // "Tension" => [0,10], increments of 0.1 extern const F32 FLEXIBLE_OBJECT_MIN_TENSION; extern const F32 FLEXIBLE_OBJECT_DEFAULT_TENSION; extern const F32 FLEXIBLE_OBJECT_MAX_TENSION; // "Drag" => [0,10], increments of 0.1 extern const F32 FLEXIBLE_OBJECT_MIN_AIR_FRICTION; extern const F32 FLEXIBLE_OBJECT_DEFAULT_AIR_FRICTION; extern const F32 FLEXIBLE_OBJECT_MAX_AIR_FRICTION; // "Gravity" = [-10,10], increments of 0.1 extern const F32 FLEXIBLE_OBJECT_MIN_GRAVITY; extern const F32 FLEXIBLE_OBJECT_DEFAULT_GRAVITY; extern const F32 FLEXIBLE_OBJECT_MAX_GRAVITY; // "Wind" = [0,10], increments of 0.1 extern const F32 FLEXIBLE_OBJECT_MIN_WIND_SENSITIVITY; extern const F32 FLEXIBLE_OBJECT_DEFAULT_WIND_SENSITIVITY; extern const F32 FLEXIBLE_OBJECT_MAX_WIND_SENSITIVITY; extern const F32 FLEXIBLE_OBJECT_MAX_INTERNAL_TENSION_FORCE; extern const F32 FLEXIBLE_OBJECT_DEFAULT_LENGTH; extern const BOOL FLEXIBLE_OBJECT_DEFAULT_USING_COLLISION_SPHERE; extern const BOOL FLEXIBLE_OBJECT_DEFAULT_RENDERING_COLLISION_SPHERE; class LLFlexibleObjectData : public LLNetworkData { protected: S32 mSimulateLOD; // 2^n = number of simulated sections F32 mGravity; F32 mAirFriction; // higher is more stable, but too much looks like it's underwater F32 mWindSensitivity; // interacts with tension, air friction, and gravity F32 mTension; //interacts in complex ways with other parameters LLVector3 mUserForce; // custom user-defined force vector //BOOL mUsingCollisionSphere; //BOOL mRenderingCollisionSphere; public: void setSimulateLOD(S32 lod) { mSimulateLOD = llclamp(lod, (S32)FLEXIBLE_OBJECT_MIN_SECTIONS, (S32)FLEXIBLE_OBJECT_MAX_SECTIONS); } void setGravity(F32 gravity) { mGravity = llclamp(gravity, FLEXIBLE_OBJECT_MIN_GRAVITY, FLEXIBLE_OBJECT_MAX_GRAVITY); } void setAirFriction(F32 friction) { mAirFriction = llclamp(friction, FLEXIBLE_OBJECT_MIN_AIR_FRICTION, FLEXIBLE_OBJECT_MAX_AIR_FRICTION); } void setWindSensitivity(F32 wind) { mWindSensitivity = llclamp(wind, FLEXIBLE_OBJECT_MIN_WIND_SENSITIVITY, FLEXIBLE_OBJECT_MAX_WIND_SENSITIVITY); } void setTension(F32 tension) { mTension = llclamp(tension, FLEXIBLE_OBJECT_MIN_TENSION, FLEXIBLE_OBJECT_MAX_TENSION); } void setUserForce(LLVector3 &force) { mUserForce = force; } S32 getSimulateLOD() const { return mSimulateLOD; } F32 getGravity() const { return mGravity; } F32 getAirFriction() const { return mAirFriction; } F32 getWindSensitivity() const { return mWindSensitivity; } F32 getTension() const { return mTension; } LLVector3 getUserForce() const { return mUserForce; } //------ the constructor for the structure ------------ LLFlexibleObjectData(); BOOL pack(LLDataPacker &dp) const; BOOL unpack(LLDataPacker &dp); bool operator==(const LLNetworkData& data) const; void copy(const LLNetworkData& data); };// end of attributes structure class LLPrimitive : public LLXform { public: LLPrimitive(); virtual ~LLPrimitive(); static LLPrimitive *createPrimitive(LLPCode p_code); void init(LLPCode p_code); void setPCode(const LLPCode pcode); const LLVolume *getVolumeConst() const { return mVolumep; } // HACK for Windoze confusion about ostream operator in LLVolume LLVolume *getVolume() const { return mVolumep; } virtual BOOL setVolume(const LLVolumeParams &volume_params, const S32 detail, bool unique_volume = false); // Modify texture entry properties inline BOOL validTE(const U8 te_num) const; const LLTextureEntry *getTE(const U8 te_num) const; virtual void setNumTEs(const U8 num_tes); virtual void setAllTETextures(const LLUUID &tex_id); virtual void setTE(const U8 index, const LLTextureEntry &te); virtual S32 setTEColor(const U8 te, const LLColor4 &color); virtual S32 setTEColor(const U8 te, const LLColor3 &color); virtual S32 setTEAlpha(const U8 te, const F32 alpha); virtual S32 setTETexture(const U8 te, const LLUUID &tex_id); virtual S32 setTEScale (const U8 te, const F32 s, const F32 t); virtual S32 setTEScaleS(const U8 te, const F32 s); virtual S32 setTEScaleT(const U8 te, const F32 t); virtual S32 setTEOffset (const U8 te, const F32 s, const F32 t); virtual S32 setTEOffsetS(const U8 te, const F32 s); virtual S32 setTEOffsetT(const U8 te, const F32 t); virtual S32 setTERotation(const U8 te, const F32 r); virtual S32 setTEBumpShinyFullbright(const U8 te, const U8 bump); virtual S32 setTEBumpShiny(const U8 te, const U8 bump); virtual S32 setTEMediaTexGen(const U8 te, const U8 media); virtual S32 setTEBumpmap(const U8 te, const U8 bump); virtual S32 setTETexGen(const U8 te, const U8 texgen); virtual S32 setTEShiny(const U8 te, const U8 shiny); virtual S32 setTEFullbright(const U8 te, const U8 fullbright); virtual S32 setTEMediaFlags(const U8 te, const U8 flags); virtual BOOL setMaterial(const U8 material); // returns TRUE if material changed void setTEArrays(const U8 size, const LLUUID* image_ids, const F32* scale_s, const F32* scale_t); void copyTEs(const LLPrimitive *primitive); S32 packTEField(U8 *cur_ptr, U8 *data_ptr, U8 data_size, U8 last_face_index, EMsgVariableType type) const; S32 unpackTEField(U8 *cur_ptr, U8 *buffer_end, U8 *data_ptr, U8 data_size, U8 face_count, EMsgVariableType type); BOOL packTEMessage(LLMessageSystem *mesgsys) const; BOOL packTEMessage(LLDataPacker &dp) const; S32 unpackTEMessage(LLMessageSystem *mesgsys, char *block_name); S32 unpackTEMessage(LLMessageSystem *mesgsys, char *block_name, const S32 block_num); // Variable num of blocks BOOL unpackTEMessage(LLDataPacker &dp); #ifdef CHECK_FOR_FINITE inline void setPosition(const LLVector3& pos); inline void setPosition(const F32 x, const F32 y, const F32 z); inline void addPosition(const LLVector3& pos); inline void setAngularVelocity(const LLVector3& avel); inline void setAngularVelocity(const F32 x, const F32 y, const F32 z); inline void setVelocity(const LLVector3& vel); inline void setVelocity(const F32 x, const F32 y, const F32 z); inline void setVelocityX(const F32 x); inline void setVelocityY(const F32 y); inline void setVelocityZ(const F32 z); inline void addVelocity(const LLVector3& vel); inline void setAcceleration(const LLVector3& accel); inline void setAcceleration(const F32 x, const F32 y, const F32 z); #else // Don't override the base LLXForm operators. // Special case for setPosition. If not check-for-finite, fall through to LLXform method. // void setPosition(F32 x, F32 y, F32 z) // void setPosition(LLVector3) void setAngularVelocity(const LLVector3& avel) { mAngularVelocity = avel; } void setAngularVelocity(const F32 x, const F32 y, const F32 z) { mAngularVelocity.setVec(x,y,z); } void setVelocity(const LLVector3& vel) { mVelocity = vel; } void setVelocity(const F32 x, const F32 y, const F32 z) { mVelocity.setVec(x,y,z); } void setVelocityX(const F32 x) { mVelocity.mV[VX] = x; } void setVelocityY(const F32 y) { mVelocity.mV[VY] = y; } void setVelocityZ(const F32 z) { mVelocity.mV[VZ] = z; } void addVelocity(const LLVector3& vel) { mVelocity += vel; } void setAcceleration(const LLVector3& accel) { mAcceleration = accel; } void setAcceleration(const F32 x, const F32 y, const F32 z) { mAcceleration.setVec(x,y,z); } #endif const LLPCode getPCode() const { return mPrimitiveCode; } const char * getPCodeString() const { return pCodeToString(mPrimitiveCode); } const LLVector3& getAngularVelocity() const { return mAngularVelocity; } const LLVector3& getVelocity() const { return mVelocity; } const LLVector3& getAcceleration() const { return mAcceleration; } const U8 getNumTEs() const { return mNumTEs; } const U8 getMaterial() const { return mMaterial; } void setVolumeType(const U8 code); U8 getVolumeType(); void setTextureList(LLTextureEntry *listp); inline BOOL isAvatar() const; static const char *pCodeToString(const LLPCode pcode); static LLPCode legacyToPCode(const U8 legacy); static U8 pCodeToLegacy(const LLPCode pcode); inline static BOOL isPrimitive(const LLPCode pcode); inline static BOOL isApp(const LLPCode pcode); protected: LLPCode mPrimitiveCode; // Primitive code LLVector3 mVelocity; // how fast are we moving? LLVector3 mAcceleration; // are we under constant acceleration? LLVector3 mAngularVelocity; // angular velocity LLPointer mVolumep; LLTextureEntry *mTextureList; // list of texture GUIDs, scales, offsets U8 mMaterial; // Material code U8 mNumTEs; // # of faces on the primitve }; inline BOOL LLPrimitive::isAvatar() const { return mPrimitiveCode == LL_PCODE_LEGACY_AVATAR; } // static inline BOOL LLPrimitive::isPrimitive(const LLPCode pcode) { LLPCode base_type = pcode & LL_PCODE_BASE_MASK; if (base_type && (base_type < LL_PCODE_APP)) { return TRUE; } return FALSE; } // static inline BOOL LLPrimitive::isApp(const LLPCode pcode) { LLPCode base_type = pcode & LL_PCODE_BASE_MASK; return (base_type == LL_PCODE_APP); } #ifdef CHECK_FOR_FINITE // Special case for setPosition. If not check-for-finite, fall through to LLXform method. void LLPrimitive::setPosition(const F32 x, const F32 y, const F32 z) { if (llfinite(x) && llfinite(y) && llfinite(z)) { LLXform::setPosition(x, y, z); } else { llerrs << "Non Finite in LLPrimitive::setPosition(x,y,z) for " << pCodeToString(mPrimitiveCode) << llendl; } } // Special case for setPosition. If not check-for-finite, fall through to LLXform method. void LLPrimitive::setPosition(const LLVector3& pos) { if (pos.isFinite()) { LLXform::setPosition(pos); } else { llerrs << "Non Finite in LLPrimitive::setPosition(LLVector3) for " << pCodeToString(mPrimitiveCode) << llendl; } } void LLPrimitive::setAngularVelocity(const LLVector3& avel) { if (avel.isFinite()) { mAngularVelocity = avel; } else { llerror("Non Finite in LLPrimitive::setAngularVelocity", 0); } } void LLPrimitive::setAngularVelocity(const F32 x, const F32 y, const F32 z) { if (llfinite(x) && llfinite(y) && llfinite(z)) { mAngularVelocity.setVec(x,y,z); } else { llerror("Non Finite in LLPrimitive::setAngularVelocity", 0); } } void LLPrimitive::setVelocity(const LLVector3& vel) { if (vel.isFinite()) { mVelocity = vel; } else { llerrs << "Non Finite in LLPrimitive::setVelocity(LLVector3) for " << pCodeToString(mPrimitiveCode) << llendl; } } void LLPrimitive::setVelocity(const F32 x, const F32 y, const F32 z) { if (llfinite(x) && llfinite(y) && llfinite(z)) { mVelocity.setVec(x,y,z); } else { llerrs << "Non Finite in LLPrimitive::setVelocity(F32,F32,F32) for " << pCodeToString(mPrimitiveCode) << llendl; } } void LLPrimitive::setVelocityX(const F32 x) { if (llfinite(x)) { mVelocity.mV[VX] = x; } else { llerror("Non Finite in LLPrimitive::setVelocityX", 0); } } void LLPrimitive::setVelocityY(const F32 y) { if (llfinite(y)) { mVelocity.mV[VY] = y; } else { llerror("Non Finite in LLPrimitive::setVelocityY", 0); } } void LLPrimitive::setVelocityZ(const F32 z) { if (llfinite(z)) { mVelocity.mV[VZ] = z; } else { llerror("Non Finite in LLPrimitive::setVelocityZ", 0); } } void LLPrimitive::addVelocity(const LLVector3& vel) { if (vel.isFinite()) { mVelocity += vel; } else { llerror("Non Finite in LLPrimitive::addVelocity", 0); } } void LLPrimitive::setAcceleration(const LLVector3& accel) { if (accel.isFinite()) { mAcceleration = accel; } else { llerrs << "Non Finite in LLPrimitive::setAcceleration(LLVector3) for " << pCodeToString(mPrimitiveCode) << llendl; } } void LLPrimitive::setAcceleration(const F32 x, const F32 y, const F32 z) { if (llfinite(x) && llfinite(y) && llfinite(z)) { mAcceleration.setVec(x,y,z); } else { llerrs << "Non Finite in LLPrimitive::setAcceleration(F32,F32,F32) for " << pCodeToString(mPrimitiveCode) << llendl; } } #endif // CHECK_FOR_FINITE inline BOOL LLPrimitive::validTE(const U8 te_num) const { return (mNumTEs && te_num < mNumTEs); } #endif