/** * @file LLGLTFLoader.cpp * @brief LLGLTFLoader class implementation * * $LicenseInfo:firstyear=2022&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2022, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llgltfloader.h" // Import & define single-header gltf import/export lib #define TINYGLTF_IMPLEMENTATION #define TINYGLTF_USE_CPP14 // default is C++ 11 // tinygltf by default loads image files using STB #define STB_IMAGE_IMPLEMENTATION // to use our own image loading: // 1. replace this definition with TINYGLTF_NO_STB_IMAGE // 2. provide image loader callback with TinyGLTF::SetImageLoader(LoadimageDataFunction LoadImageData, void *user_data) // tinygltf saves image files using STB #define STB_IMAGE_WRITE_IMPLEMENTATION // similarly, can override with TINYGLTF_NO_STB_IMAGE_WRITE and TinyGLTF::SetImageWriter(fxn, data) // Additionally, disable inclusion of STB header files entirely with // TINYGLTF_NO_INCLUDE_STB_IMAGE // TINYGLTF_NO_INCLUDE_STB_IMAGE_WRITE #include "tinygltf/tiny_gltf.h" // TODO: includes inherited from dae loader. Validate / prune #include "llsdserialize.h" #include "lljoint.h" #include "llmatrix4a.h" #include #include static const std::string lod_suffix[LLModel::NUM_LODS] = { "_LOD0", "_LOD1", "_LOD2", "", "_PHYS", }; LLGLTFLoader::LLGLTFLoader(std::string filename, S32 lod, LLModelLoader::load_callback_t load_cb, LLModelLoader::joint_lookup_func_t joint_lookup_func, LLModelLoader::texture_load_func_t texture_load_func, LLModelLoader::state_callback_t state_cb, void * opaque_userdata, JointTransformMap & jointTransformMap, JointNameSet & jointsFromNodes, std::map &jointAliasMap, U32 maxJointsPerMesh, U32 modelLimit) //, //bool preprocess) : LLModelLoader( filename, lod, load_cb, joint_lookup_func, texture_load_func, state_cb, opaque_userdata, jointTransformMap, jointsFromNodes, jointAliasMap, maxJointsPerMesh ), //mPreprocessGLTF(preprocess), mMeshesLoaded(false), mMaterialsLoaded(false) { } LLGLTFLoader::~LLGLTFLoader() {} bool LLGLTFLoader::OpenFile(const std::string &filename) { tinygltf::TinyGLTF loader; std::string error_msg; std::string warn_msg; std::string filename_lc(filename); LLStringUtil::toLower(filename_lc); // Load a tinygltf model fom a file. Assumes that the input filename has already been // been sanitized to one of (.gltf , .glb) extensions, so does a simple find to distinguish. if (std::string::npos == filename_lc.rfind(".gltf")) { // file is binary mGltfLoaded = loader.LoadBinaryFromFile(&mGltfModel, &error_msg, &warn_msg, filename); } else { // file is ascii mGltfLoaded = loader.LoadASCIIFromFile(&mGltfModel, &error_msg, &warn_msg, filename); } if (!mGltfLoaded) { if (!warn_msg.empty()) LL_WARNS("GLTF_IMPORT") << "gltf load warning: " << warn_msg.c_str() << LL_ENDL; if (!error_msg.empty()) LL_WARNS("GLTF_IMPORT") << "gltf load error: " << error_msg.c_str() << LL_ENDL; return false; } mMeshesLoaded = parseMeshes(); if (mMeshesLoaded) uploadMeshes(); mMaterialsLoaded = parseMaterials(); if (mMaterialsLoaded) uploadMaterials(); return (mMeshesLoaded || mMaterialsLoaded); } bool LLGLTFLoader::parseMeshes() { if (!mGltfLoaded) return false; // 2022-04 DJH Volume params from dae example. TODO understand PCODE LLVolumeParams volume_params; volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE); for (tinygltf::Mesh mesh : mGltfModel.meshes) { LLModel *pModel = new LLModel(volume_params, 0.f); if (populateModelFromMesh(pModel, mesh) && (LLModel::NO_ERRORS == pModel->getStatus()) && validate_model(pModel)) { mModelList.push_back(pModel); } else { setLoadState(ERROR_MODEL + pModel->getStatus()); delete(pModel); return false; } } return true; } bool LLGLTFLoader::populateModelFromMesh(LLModel* pModel, const tinygltf::Mesh &mesh) { pModel->mLabel = mesh.name; int pos_idx; tinygltf::Accessor indices_a, positions_a, normals_a, uv0_a, color0_a; auto prims = mesh.primitives; for (auto prim : prims) { if (prim.indices >= 0) indices_a = mGltfModel.accessors[prim.indices]; pos_idx = (prim.attributes.count("POSITION") > 0) ? prim.attributes.at("POSITION") : -1; if (pos_idx >= 0) { positions_a = mGltfModel.accessors[pos_idx]; if (TINYGLTF_COMPONENT_TYPE_FLOAT != positions_a.componentType) continue; auto positions_bv = mGltfModel.bufferViews[positions_a.bufferView]; auto positions_buf = mGltfModel.buffers[positions_bv.buffer]; //auto type = positions_vb. //if (positions_buf.name } #if 0 int norm_idx, tan_idx, uv0_idx, uv1_idx, color0_idx, color1_idx; norm_idx = (prim.attributes.count("NORMAL") > 0) ? prim.attributes.at("NORMAL") : -1; tan_idx = (prim.attributes.count("TANGENT") > 0) ? prim.attributes.at("TANGENT") : -1; uv0_idx = (prim.attributes.count("TEXCOORDS_0") > 0) ? prim.attributes.at("TEXCOORDS_0") : -1; uv1_idx = (prim.attributes.count("TEXCOORDS_1") > 0) ? prim.attributes.at("TEXCOORDS_1") : -1; color0_idx = (prim.attributes.count("COLOR_0") > 0) ? prim.attributes.at("COLOR_0") : -1; color1_idx = (prim.attributes.count("COLOR_1") > 0) ? prim.attributes.at("COLOR_1") : -1; #endif if (prim.mode == TINYGLTF_MODE_TRIANGLES) { //auto pos = mesh. TODO resume here DJH 2022-04 } } //pModel->addFace() return false; } bool LLGLTFLoader::parseMaterials() { if (!mGltfLoaded) return false; // fill local texture data structures mSamplers.clear(); for (auto in_sampler : mGltfModel.samplers) { gltf_sampler sampler; sampler.magFilter = in_sampler.magFilter > 0 ? in_sampler.magFilter : GL_LINEAR; sampler.minFilter = in_sampler.minFilter > 0 ? in_sampler.minFilter : GL_LINEAR;; sampler.wrapS = in_sampler.wrapS; sampler.wrapT = in_sampler.wrapT; sampler.name = in_sampler.name; // unused mSamplers.push_back(sampler); } mImages.clear(); for (auto in_image : mGltfModel.images) { gltf_image image; image.numChannels = in_image.component; image.bytesPerChannel = in_image.bits >> 3; // Convert bits to bytes image.pixelType = in_image.pixel_type; // Maps exactly, i.e. TINYGLTF_COMPONENT_TYPE_UNSIGNED_BYTE == GL_UNSIGNED_BYTE, etc image.size = static_cast(in_image.image.size()); image.height = in_image.height; image.width = in_image.width; image.data = in_image.image.data(); if (in_image.as_is) { LL_WARNS("GLTF_IMPORT") << "Unsupported image encoding" << LL_ENDL; return false; } if (image.size != image.height * image.width * image.numChannels * image.bytesPerChannel) { LL_WARNS("GLTF_IMPORT") << "Image size error" << LL_ENDL; return false; } mImages.push_back(image); } mTextures.clear(); for (auto in_tex : mGltfModel.textures) { gltf_texture tex; tex.imageIdx = in_tex.source; tex.samplerIdx = in_tex.sampler; tex.imageUuid.setNull(); if (tex.imageIdx >= mImages.size() || tex.samplerIdx >= mSamplers.size()) { LL_WARNS("GLTF_IMPORT") << "Texture sampler/image index error" << LL_ENDL; return false; } mTextures.push_back(tex); } // parse each material for (tinygltf::Material gltf_material : mGltfModel.materials) { gltf_render_material mat; mat.name = gltf_material.name; tinygltf::PbrMetallicRoughness& pbr = gltf_material.pbrMetallicRoughness; mat.hasPBR = true; // Always true, for now mat.baseColor.set(pbr.baseColorFactor.data()); mat.hasBaseTex = pbr.baseColorTexture.index >= 0; mat.baseColorTexIdx = pbr.baseColorTexture.index; mat.baseColorTexCoords = pbr.baseColorTexture.texCoord; mat.metalness = pbr.metallicFactor; mat.roughness = pbr.roughnessFactor; mat.hasMRTex = pbr.metallicRoughnessTexture.index >= 0; mat.metalRoughTexIdx = pbr.metallicRoughnessTexture.index; mat.metalRoughTexCoords = pbr.metallicRoughnessTexture.texCoord; mat.normalScale = gltf_material.normalTexture.scale; mat.hasNormalTex = gltf_material.normalTexture.index >= 0; mat.normalTexIdx = gltf_material.normalTexture.index; mat.normalTexCoords = gltf_material.normalTexture.texCoord; mat.occlusionScale = gltf_material.occlusionTexture.strength; mat.hasOcclusionTex = gltf_material.occlusionTexture.index >= 0; mat.occlusionTexIdx = gltf_material.occlusionTexture.index; mat.occlusionTexCoords = gltf_material.occlusionTexture.texCoord; mat.emissiveColor.set(gltf_material.emissiveFactor.data()); mat.hasEmissiveTex = gltf_material.emissiveTexture.index >= 0; mat.emissiveTexIdx = gltf_material.emissiveTexture.index; mat.emissiveTexCoords = gltf_material.emissiveTexture.texCoord; mat.alphaMode = gltf_material.alphaMode; mat.alphaMask = gltf_material.alphaCutoff; if ((mat.hasNormalTex && (mat.normalTexIdx >= mTextures.size())) || (mat.hasOcclusionTex && (mat.occlusionTexIdx >= mTextures.size())) || (mat.hasEmissiveTex && (mat.emissiveTexIdx >= mTextures.size())) || (mat.hasBaseTex && (mat.baseColorTexIdx >= mTextures.size())) || (mat.hasMRTex && (mat.metalRoughTexIdx >= mTextures.size()))) { LL_WARNS("GLTF_IMPORT") << "Texture resource index error" << LL_ENDL; return false; } if ((mat.hasNormalTex && (mat.normalTexCoords > 2)) || // mesh can have up to 3 sets of UV (mat.hasOcclusionTex && (mat.occlusionTexCoords > 2)) || (mat.hasEmissiveTex && (mat.emissiveTexCoords > 2)) || (mat.hasBaseTex && (mat.baseColorTexCoords > 2)) || (mat.hasMRTex && (mat.metalRoughTexCoords > 2))) { LL_WARNS("GLTF_IMPORT") << "Image texcoord index error" << LL_ENDL; return false; } mMaterials.push_back(mat); } return true; } // TODO: convert raw vertex buffers to UUIDs void LLGLTFLoader::uploadMeshes() { llassert(0); } // convert raw image buffers to texture UUIDs & assemble into a render material void LLGLTFLoader::uploadMaterials() { for (gltf_render_material mat : mMaterials) // Initially 1 material per gltf file, but design for multiple { if (mat.hasBaseTex) { gltf_texture& gtex = mTextures[mat.baseColorTexIdx]; if (gtex.imageUuid.isNull()) { gtex.imageUuid = imageBufferToTextureUUID(gtex); } } if (mat.hasMRTex) { gltf_texture& gtex = mTextures[mat.metalRoughTexIdx]; if (gtex.imageUuid.isNull()) { gtex.imageUuid = imageBufferToTextureUUID(gtex); } } if (mat.hasNormalTex) { gltf_texture& gtex = mTextures[mat.normalTexIdx]; if (gtex.imageUuid.isNull()) { gtex.imageUuid = imageBufferToTextureUUID(gtex); } } if (mat.hasOcclusionTex) { gltf_texture& gtex = mTextures[mat.occlusionTexIdx]; if (gtex.imageUuid.isNull()) { gtex.imageUuid = imageBufferToTextureUUID(gtex); } } if (mat.hasEmissiveTex) { gltf_texture& gtex = mTextures[mat.emissiveTexIdx]; if (gtex.imageUuid.isNull()) { gtex.imageUuid = imageBufferToTextureUUID(gtex); } } } } LLUUID LLGLTFLoader::imageBufferToTextureUUID(const gltf_texture& tex) { //gltf_image& image = mImages[tex.imageIdx]; //gltf_sampler& sampler = mSamplers[tex.samplerIdx]; // fill an LLSD container with image+sampler data // upload texture // retrieve UUID return LLUUID::null; }