/**
 * @file lldaeloader.cpp
 * @brief LLDAELoader class implementation
 *
 * $LicenseInfo:firstyear=2013&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2013, Linden Research, Inc.
 *
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 *
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 *
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#if LL_MSVC
#pragma warning (disable : 4263)
#pragma warning (disable : 4264)
#endif
#include "dae.h"
#include "dom/domAsset.h"
#include "dom/domBind_material.h"
#include "dom/domCOLLADA.h"
#include "dom/domConstants.h"
#include "dom/domController.h"
#include "dom/domEffect.h"
#include "dom/domGeometry.h"
#include "dom/domInstance_geometry.h"
#include "dom/domInstance_material.h"
#include "dom/domInstance_node.h"
#include "dom/domInstance_effect.h"
#include "dom/domMaterial.h"
#include "dom/domMatrix.h"
#include "dom/domNode.h"
#include "dom/domProfile_COMMON.h"
#include "dom/domRotate.h"
#include "dom/domScale.h"
#include "dom/domTranslate.h"
#include "dom/domVisual_scene.h"
#if LL_MSVC
#pragma warning (default : 4263)
#pragma warning (default : 4264)
#endif

#include "lldaeloader.h"
#include "llsdserialize.h"
#include "lljoint.h"

#include "glh/glh_linear.h"
#include "llmatrix4a.h"

#include <boost/regex.hpp>
#include <boost/algorithm/string/replace.hpp>

std::string colladaVersion[VERSIONTYPE_COUNT+1] =
{
    "1.4.0",
    "1.4.1",
    "Unsupported"
};

static const std::string lod_suffix[LLModel::NUM_LODS] =
{
    "_LOD0",
    "_LOD1",
    "_LOD2",
    "",
    "_PHYS",
};

const U32 LIMIT_MATERIALS_OUTPUT = 12;

bool get_dom_sources(const domInputLocalOffset_Array& inputs, S32& pos_offset, S32& tc_offset, S32& norm_offset, S32 &idx_stride,
    domSource* &pos_source, domSource* &tc_source, domSource* &norm_source)
{
    idx_stride = 0;

    for (U32 j = 0; j < inputs.getCount(); ++j)
    {
        idx_stride = llmax((S32) inputs[j]->getOffset(), idx_stride);

        if (strcmp(COMMON_PROFILE_INPUT_VERTEX, inputs[j]->getSemantic()) == 0)
        { //found vertex array
            const domURIFragmentType& uri = inputs[j]->getSource();
            daeElementRef elem = uri.getElement();
            domVertices* vertices = (domVertices*) elem.cast();
            if ( !vertices )
            {
                return false;
            }

            domInputLocal_Array& v_inp = vertices->getInput_array();


            for (U32 k = 0; k < v_inp.getCount(); ++k)
            {
                if (strcmp(COMMON_PROFILE_INPUT_POSITION, v_inp[k]->getSemantic()) == 0)
                {
                    pos_offset = inputs[j]->getOffset();

                    const domURIFragmentType& uri = v_inp[k]->getSource();
                    daeElementRef elem = uri.getElement();
                    pos_source = (domSource*) elem.cast();
                }

                if (strcmp(COMMON_PROFILE_INPUT_NORMAL, v_inp[k]->getSemantic()) == 0)
                {
                    norm_offset = inputs[j]->getOffset();

                    const domURIFragmentType& uri = v_inp[k]->getSource();
                    daeElementRef elem = uri.getElement();
                    norm_source = (domSource*) elem.cast();
                }
            }
        }

        if (strcmp(COMMON_PROFILE_INPUT_NORMAL, inputs[j]->getSemantic()) == 0)
        {
            //found normal array for this triangle list
            norm_offset = inputs[j]->getOffset();
            const domURIFragmentType& uri = inputs[j]->getSource();
            daeElementRef elem = uri.getElement();
            norm_source = (domSource*) elem.cast();
        }
        else if (strcmp(COMMON_PROFILE_INPUT_TEXCOORD, inputs[j]->getSemantic()) == 0)
        { //found texCoords
            tc_offset = inputs[j]->getOffset();
            const domURIFragmentType& uri = inputs[j]->getSource();
            daeElementRef elem = uri.getElement();
            tc_source = (domSource*) elem.cast();
        }
    }

    idx_stride += 1;

    return true;
}

LLModel::EModelStatus load_face_from_dom_triangles(
    std::vector<LLVolumeFace>& face_list,
    std::vector<std::string>& materials,
    domTrianglesRef& tri,
    LLSD& log_msg)
{
    LLVolumeFace face;
    std::vector<LLVolumeFace::VertexData> verts;
    std::vector<U16> indices;

    const domInputLocalOffset_Array& inputs = tri->getInput_array();

    S32 pos_offset = -1;
    S32 tc_offset = -1;
    S32 norm_offset = -1;

    domSource* pos_source = NULL;
    domSource* tc_source = NULL;
    domSource* norm_source = NULL;

    S32 idx_stride = 0;

    if ( !get_dom_sources(inputs, pos_offset, tc_offset, norm_offset, idx_stride, pos_source, tc_source, norm_source))
    {
        LLSD args;
        args["Message"] = "ParsingErrorBadElement";
        log_msg.append(args);
        return LLModel::BAD_ELEMENT;
    }

    if (!pos_source || !pos_source->getFloat_array())
    {
        LL_WARNS() << "Unable to process mesh without position data; invalid model;  invalid model." << LL_ENDL;
        LLSD args;
        args["Message"] = "ParsingErrorPositionInvalidModel";
        log_msg.append(args);
        return LLModel::BAD_ELEMENT;
    }

    domPRef p = tri->getP();
    domListOfUInts& idx = p->getValue();

    domListOfFloats  dummy ;
    domListOfFloats& v = pos_source ? pos_source->getFloat_array()->getValue() : dummy ;
    domListOfFloats& tc = tc_source ? tc_source->getFloat_array()->getValue() : dummy ;
    domListOfFloats& n = norm_source ? norm_source->getFloat_array()->getValue() : dummy ;

    if (pos_source)
    {
        if(v.getCount() == 0)
        {
            return LLModel::BAD_ELEMENT;
        }
        // VFExtents change
        face.mExtents[0].set(v[0], v[1], v[2]);
        face.mExtents[1].set(v[0], v[1], v[2]);
    }

    LLVolumeFace::VertexMapData::PointMap point_map;

    if (idx_stride <= 0
        || (pos_source && pos_offset >= idx_stride)
        || (tc_source && tc_offset >= idx_stride)
        || (norm_source && norm_offset >= idx_stride))
    {
        // Looks like these offsets should fit inside idx_stride
        // Might be good idea to also check idx.getCount()%idx_stride != 0
        LL_WARNS() << "Invalid pos_offset " << pos_offset <<  ", tc_offset " << tc_offset << " or norm_offset " << norm_offset << LL_ENDL;
        return LLModel::BAD_ELEMENT;
    }

    for (U32 i = 0; i < idx.getCount(); i += idx_stride)
    {
        LLVolumeFace::VertexData cv;
        if (pos_source)
        {
            cv.setPosition(LLVector4a(v[idx[i+pos_offset]*3+0],
                                v[idx[i+pos_offset]*3+1],
                                v[idx[i+pos_offset]*3+2]));
        }

        if (tc_source)
        {
            cv.mTexCoord.setVec(tc[idx[i+tc_offset]*2+0],
                                tc[idx[i+tc_offset]*2+1]);
        }

        if (norm_source)
        {
            cv.setNormal(LLVector4a(n[idx[i+norm_offset]*3+0],
                                n[idx[i+norm_offset]*3+1],
                                n[idx[i+norm_offset]*3+2]));
        }

        BOOL found = FALSE;

        LLVolumeFace::VertexMapData::PointMap::iterator point_iter;
        point_iter = point_map.find(LLVector3(cv.getPosition().getF32ptr()));

        if (point_iter != point_map.end())
        {
            for (U32 j = 0; j < point_iter->second.size(); ++j)
            {
                // We have a matching loc
                //
                if ((point_iter->second)[j] == cv)
                {
                    U16 shared_index    = (point_iter->second)[j].mIndex;

                    // Don't share verts within the same tri, degenerate
                    //
                    U32 indx_size = indices.size();
                    U32 verts_new_tri = indx_size % 3;
                    if ((verts_new_tri < 1 || indices[indx_size - 1] != shared_index)
                        && (verts_new_tri < 2 || indices[indx_size - 2] != shared_index))
                    {
                        found = true;
                        indices.push_back(shared_index);
                    }
                    break;
                }
            }
        }

        if (!found)
        {
            // VFExtents change
            update_min_max(face.mExtents[0], face.mExtents[1], cv.getPosition());
            verts.push_back(cv);
            if (verts.size() >= 65535)
            {
                //llerrs << "Attempted to write model exceeding 16-bit index buffer limitation." << LL_ENDL;
                return LLModel::VERTEX_NUMBER_OVERFLOW ;
            }
            U16 index = (U16) (verts.size()-1);
            indices.push_back(index);

            LLVolumeFace::VertexMapData d;
            d.setPosition(cv.getPosition());
            d.mTexCoord = cv.mTexCoord;
            d.setNormal(cv.getNormal());
            d.mIndex = index;
            if (point_iter != point_map.end())
            {
                point_iter->second.push_back(d);
            }
            else
            {
                point_map[LLVector3(d.getPosition().getF32ptr())].push_back(d);
            }
        }

        if (indices.size()%3 == 0 && verts.size() >= 65532)
        {
            std::string material;

            if (tri->getMaterial())
            {
                material = std::string(tri->getMaterial());
            }

            materials.push_back(material);
            face_list.push_back(face);
            face_list.rbegin()->fillFromLegacyData(verts, indices);
            LLVolumeFace& new_face = *face_list.rbegin();
            if (!norm_source)
            {
                //ll_aligned_free_16(new_face.mNormals);
                new_face.mNormals = NULL;
            }

            if (!tc_source)
            {
                //ll_aligned_free_16(new_face.mTexCoords);
                new_face.mTexCoords = NULL;
            }

            face = LLVolumeFace();
            // VFExtents change
            face.mExtents[0].set(v[0], v[1], v[2]);
            face.mExtents[1].set(v[0], v[1], v[2]);

            verts.clear();
            indices.clear();
            point_map.clear();
        }
    }

    if (!verts.empty())
    {
        std::string material;

        if (tri->getMaterial())
        {
            material = std::string(tri->getMaterial());
        }

        materials.push_back(material);
        face_list.push_back(face);

        face_list.rbegin()->fillFromLegacyData(verts, indices);
        LLVolumeFace& new_face = *face_list.rbegin();
        if (!norm_source)
        {
            //ll_aligned_free_16(new_face.mNormals);
            new_face.mNormals = NULL;
        }

        if (!tc_source)
        {
            //ll_aligned_free_16(new_face.mTexCoords);
            new_face.mTexCoords = NULL;
        }
    }

    return LLModel::NO_ERRORS ;
}

LLModel::EModelStatus load_face_from_dom_polylist(
    std::vector<LLVolumeFace>& face_list,
    std::vector<std::string>& materials,
    domPolylistRef& poly,
    LLSD& log_msg)
{
    domPRef p = poly->getP();
    domListOfUInts& idx = p->getValue();

    if (idx.getCount() == 0)
    {
        return LLModel::NO_ERRORS ;
    }

    const domInputLocalOffset_Array& inputs = poly->getInput_array();


    domListOfUInts& vcount = poly->getVcount()->getValue();

    S32 pos_offset = -1;
    S32 tc_offset = -1;
    S32 norm_offset = -1;

    domSource* pos_source = NULL;
    domSource* tc_source = NULL;
    domSource* norm_source = NULL;

    S32 idx_stride = 0;

    if (!get_dom_sources(inputs, pos_offset, tc_offset, norm_offset, idx_stride, pos_source, tc_source, norm_source))
    {
        LL_WARNS() << "Bad element." << LL_ENDL;
        LLSD args;
        args["Message"] = "ParsingErrorBadElement";
        log_msg.append(args);
        return LLModel::BAD_ELEMENT;
    }

    LLVolumeFace face;

    std::vector<U16> indices;
    std::vector<LLVolumeFace::VertexData> verts;

    domListOfFloats v;
    domListOfFloats tc;
    domListOfFloats n;

    if (pos_source)
    {
        v = pos_source->getFloat_array()->getValue();
        // VFExtents change
        face.mExtents[0].set(v[0], v[1], v[2]);
        face.mExtents[1].set(v[0], v[1], v[2]);
    }

    if (tc_source)
    {
        tc = tc_source->getFloat_array()->getValue();
    }

    if (norm_source)
    {
        n = norm_source->getFloat_array()->getValue();
    }

    LLVolumeFace::VertexMapData::PointMap point_map;

    U32 cur_idx = 0;
    bool log_tc_msg = true;
    for (U32 i = 0; i < vcount.getCount(); ++i)
    { //for each polygon
        U32 first_index = 0;
        U32 last_index = 0;
        for (U32 j = 0; j < vcount[i]; ++j)
        { //for each vertex

            LLVolumeFace::VertexData cv;

            if (pos_source)
            {
                cv.getPosition().set(v[idx[cur_idx+pos_offset]*3+0],
                                    v[idx[cur_idx+pos_offset]*3+1],
                                    v[idx[cur_idx+pos_offset]*3+2]);
                if (!cv.getPosition().isFinite3())
                {
                    LL_WARNS() << "Found NaN while loading position data from DAE-Model, invalid model." << LL_ENDL;
                    LLSD args;
                    args["Message"] = "PositionNaN";
                    log_msg.append(args);
                    return LLModel::BAD_ELEMENT;
                }
            }

            if (tc_source)
            {
                U64 idx_x = idx[cur_idx + tc_offset] * 2 + 0;
                U64 idx_y = idx[cur_idx + tc_offset] * 2 + 1;

                if (idx_y < tc.getCount())
                {
                    cv.mTexCoord.setVec(tc[idx_x], tc[idx_y]);
                }
                else if (log_tc_msg)
                {
                    log_tc_msg = false;
                    LL_WARNS() << "Texture coordinates data is not complete." << LL_ENDL;
                    LLSD args;
                    args["Message"] = "IncompleteTC";
                    log_msg.append(args);
                }
            }

            if (norm_source)
            {
                cv.getNormal().set(n[idx[cur_idx+norm_offset]*3+0],
                                    n[idx[cur_idx+norm_offset]*3+1],
                                    n[idx[cur_idx+norm_offset]*3+2]);

                if (!cv.getNormal().isFinite3())
                {
                    LL_WARNS() << "Found NaN while loading normals from DAE-Model, invalid model." << LL_ENDL;
                    LLSD args;
                    args["Message"] = "NormalsNaN";
                    log_msg.append(args);

                    return LLModel::BAD_ELEMENT;
                }
            }

            cur_idx += idx_stride;

            BOOL found = FALSE;

            LLVolumeFace::VertexMapData::PointMap::iterator point_iter;
            LLVector3 pos3(cv.getPosition().getF32ptr());
            point_iter = point_map.find(pos3);

            if (point_iter != point_map.end())
            {
                for (U32 k = 0; k < point_iter->second.size(); ++k)
                {
                    if ((point_iter->second)[k] == cv)
                    {
                        found = TRUE;
                        U32 index = (point_iter->second)[k].mIndex;
                        if (j == 0)
                        {
                            first_index = index;
                        }
                        else if (j == 1)
                        {
                            last_index = index;
                        }
                        else
                        {
                            // if these are the same, we have a very, very skinny triangle (coincident verts on one or more edges)
                            //
                            llassert((first_index != last_index) && (last_index != index) && (first_index != index));
                            indices.push_back(first_index);
                            indices.push_back(last_index);
                            indices.push_back(index);
                            last_index = index;
                        }

                        break;
                    }
                }
            }

            if (!found)
            {
                // VFExtents change
                update_min_max(face.mExtents[0], face.mExtents[1], cv.getPosition());
                verts.push_back(cv);
                if (verts.size() >= 65535)
                {
                    //llerrs << "Attempted to write model exceeding 16-bit index buffer limitation." << LL_ENDL;
                    return LLModel::VERTEX_NUMBER_OVERFLOW ;
                }
                U16 index = (U16) (verts.size()-1);

                if (j == 0)
                {
                    first_index = index;
                }
                else if (j == 1)
                {
                    last_index = index;
                }
                else
                {
                    // detect very skinny degenerate triangles with collapsed edges
                    //
                    llassert((first_index != last_index) && (last_index != index) && (first_index != index));
                    indices.push_back(first_index);
                    indices.push_back(last_index);
                    indices.push_back(index);
                    last_index = index;
                }

                LLVolumeFace::VertexMapData d;
                d.setPosition(cv.getPosition());
                d.mTexCoord = cv.mTexCoord;
                d.setNormal(cv.getNormal());
                d.mIndex = index;
                if (point_iter != point_map.end())
                {
                    point_iter->second.push_back(d);
                }
                else
                {
                    point_map[pos3].push_back(d);
                }
            }

            if (indices.size()%3 == 0 && indices.size() >= 65532)
            {
                std::string material;

                if (poly->getMaterial())
                {
                    material = std::string(poly->getMaterial());
                }

                materials.push_back(material);
                face_list.push_back(face);
                face_list.rbegin()->fillFromLegacyData(verts, indices);
                LLVolumeFace& new_face = *face_list.rbegin();
                if (!norm_source)
                {
                    //ll_aligned_free_16(new_face.mNormals);
                    new_face.mNormals = NULL;
                }

                if (!tc_source)
                {
                    //ll_aligned_free_16(new_face.mTexCoords);
                    new_face.mTexCoords = NULL;
                }

                face = LLVolumeFace();
                // VFExtents change
                face.mExtents[0].set(v[0], v[1], v[2]);
                face.mExtents[1].set(v[0], v[1], v[2]);
                verts.clear();
                indices.clear();
                point_map.clear();
            }
        }
    }

    if (!verts.empty())
    {
        std::string material;

        if (poly->getMaterial())
        {
            material = std::string(poly->getMaterial());
        }

        materials.push_back(material);
        face_list.push_back(face);
        face_list.rbegin()->fillFromLegacyData(verts, indices);

        LLVolumeFace& new_face = *face_list.rbegin();
        if (!norm_source)
        {
            //ll_aligned_free_16(new_face.mNormals);
            new_face.mNormals = NULL;
        }

        if (!tc_source)
        {
            //ll_aligned_free_16(new_face.mTexCoords);
            new_face.mTexCoords = NULL;
        }
    }

    return LLModel::NO_ERRORS ;
}

LLModel::EModelStatus load_face_from_dom_polygons(std::vector<LLVolumeFace>& face_list, std::vector<std::string>& materials, domPolygonsRef& poly)
{
    LLVolumeFace face;
    std::vector<U16> indices;
    std::vector<LLVolumeFace::VertexData> verts;

    const domInputLocalOffset_Array& inputs = poly->getInput_array();

    S32 v_offset = -1;
    S32 n_offset = -1;
    S32 t_offset = -1;

    domListOfFloats* v = NULL;
    domListOfFloats* n = NULL;
    domListOfFloats* t = NULL;

    U32 stride = 0;
    for (U32 i = 0; i < inputs.getCount(); ++i)
    {
        stride = llmax((U32) inputs[i]->getOffset()+1, stride);

        if (strcmp(COMMON_PROFILE_INPUT_VERTEX, inputs[i]->getSemantic()) == 0)
        { //found vertex array
            v_offset = inputs[i]->getOffset();

            const domURIFragmentType& uri = inputs[i]->getSource();
            daeElementRef elem = uri.getElement();
            domVertices* vertices = (domVertices*) elem.cast();
            if (!vertices)
            {
                return LLModel::BAD_ELEMENT;
            }
            domInputLocal_Array& v_inp = vertices->getInput_array();

            for (U32 k = 0; k < v_inp.getCount(); ++k)
            {
                if (strcmp(COMMON_PROFILE_INPUT_POSITION, v_inp[k]->getSemantic()) == 0)
                {
                    const domURIFragmentType& uri = v_inp[k]->getSource();
                    daeElementRef elem = uri.getElement();
                    domSource* src = (domSource*) elem.cast();
                    if (!src)
                    {
                        return LLModel::BAD_ELEMENT;
                    }
                    v = &(src->getFloat_array()->getValue());
                }
            }
        }
        else if (strcmp(COMMON_PROFILE_INPUT_NORMAL, inputs[i]->getSemantic()) == 0)
        {
            n_offset = inputs[i]->getOffset();
            //found normal array for this triangle list
            const domURIFragmentType& uri = inputs[i]->getSource();
            daeElementRef elem = uri.getElement();
            domSource* src = (domSource*) elem.cast();
            if (!src)
            {
                return LLModel::BAD_ELEMENT;
            }
            n = &(src->getFloat_array()->getValue());
        }
        else if (strcmp(COMMON_PROFILE_INPUT_TEXCOORD, inputs[i]->getSemantic()) == 0 && inputs[i]->getSet() == 0)
        { //found texCoords
            t_offset = inputs[i]->getOffset();
            const domURIFragmentType& uri = inputs[i]->getSource();
            daeElementRef elem = uri.getElement();
            domSource* src = (domSource*) elem.cast();
            if (!src)
            {
                return LLModel::BAD_ELEMENT;
            }
            t = &(src->getFloat_array()->getValue());
        }
    }

    domP_Array& ps = poly->getP_array();

    //make a triangle list in <verts>
    for (U32 i = 0; i < ps.getCount(); ++i)
    { //for each polygon
        domListOfUInts& idx = ps[i]->getValue();
        for (U32 j = 0; j < idx.getCount()/stride; ++j)
        { //for each vertex
            if (j > 2)
            {
                U32 size = verts.size();
                LLVolumeFace::VertexData v0 = verts[size-3];
                LLVolumeFace::VertexData v1 = verts[size-1];

                verts.push_back(v0);
                verts.push_back(v1);
            }

            LLVolumeFace::VertexData vert;


            if (v)
            {
                U32 v_idx = idx[j*stride+v_offset]*3;
                v_idx = llclamp(v_idx, (U32) 0, (U32) v->getCount());
                vert.getPosition().set(v->get(v_idx),
                                v->get(v_idx+1),
                                v->get(v_idx+2));
            }

            //bounds check n and t lookups because some FBX to DAE converters
            //use negative indices and empty arrays to indicate data does not exist
            //for a particular channel
            if (n && n->getCount() > 0)
            {
                U32 n_idx = idx[j*stride+n_offset]*3;
                n_idx = llclamp(n_idx, (U32) 0, (U32) n->getCount());
                vert.getNormal().set(n->get(n_idx),
                                n->get(n_idx+1),
                                n->get(n_idx+2));
            }
            else
            {
                vert.getNormal().clear();
            }


            if (t && t->getCount() > 0)
            {
                U32 t_idx = idx[j*stride+t_offset]*2;
                t_idx = llclamp(t_idx, (U32) 0, (U32) t->getCount());
                vert.mTexCoord.setVec(t->get(t_idx),
                                t->get(t_idx+1));
            }
            else
            {
                vert.mTexCoord.clear();
            }


            verts.push_back(vert);
        }
    }

    if (verts.empty())
    {
        return LLModel::NO_ERRORS;
    }
    // VFExtents change
    face.mExtents[0] = verts[0].getPosition();
    face.mExtents[1] = verts[0].getPosition();

    //create a map of unique vertices to indices
    std::map<LLVolumeFace::VertexData, U32> vert_idx;

    U32 cur_idx = 0;
    for (U32 i = 0; i < verts.size(); ++i)
    {
        std::map<LLVolumeFace::VertexData, U32>::iterator iter = vert_idx.find(verts[i]);
        if (iter == vert_idx.end())
        {
            vert_idx[verts[i]] = cur_idx++;
        }
    }

    // Viewer can only fit U16 vertices, shouldn't we do some checks here and return overflow if result has more?
    llassert(vert_idx.size() < U16_MAX);

    //build vertex array from map
    std::vector<LLVolumeFace::VertexData> new_verts;
    new_verts.resize(vert_idx.size());

    for (std::map<LLVolumeFace::VertexData, U32>::iterator iter = vert_idx.begin(); iter != vert_idx.end(); ++iter)
    {
        new_verts[iter->second] = iter->first;
        // VFExtents change
        update_min_max(face.mExtents[0], face.mExtents[1], iter->first.getPosition());
    }

    //build index array from map
    indices.resize(verts.size());

    for (U32 i = 0; i < verts.size(); ++i)
    {
        indices[i] = vert_idx[verts[i]];
        if (i % 3 != 0) // assumes GL_TRIANGLES, compare 0-1, 1-2, 3-4, 4-5 but not 2-3 or 5-6
        {
            // A faulty degenerate triangle detection (triangle with 0 area),
            // probably should be a warning and not an assert
            llassert(!i || (indices[i-1] != indices[i]));
        }
    }

    // DEBUG just build an expanded triangle list
    /*for (U32 i = 0; i < verts.size(); ++i)
    {
        indices.push_back((U16) i);
        update_min_max(face.mExtents[0], face.mExtents[1], verts[i].getPosition());
    }*/

    if (!new_verts.empty())
    {
        std::string material;

        if (poly->getMaterial())
        {
            material = std::string(poly->getMaterial());
        }

        materials.push_back(material);
        face_list.push_back(face);
        face_list.rbegin()->fillFromLegacyData(new_verts, indices);

        LLVolumeFace& new_face = *face_list.rbegin();
        if (!n)
        {
            //ll_aligned_free_16(new_face.mNormals);
            new_face.mNormals = NULL;
        }

        if (!t)
        {
            //ll_aligned_free_16(new_face.mTexCoords);
            new_face.mTexCoords = NULL;
        }
    }

    return LLModel::NO_ERRORS ;
}

//-----------------------------------------------------------------------------
// LLDAELoader
//-----------------------------------------------------------------------------
LLDAELoader::LLDAELoader(
    std::string         filename,
    S32                 lod,
    load_callback_t     load_cb,
    joint_lookup_func_t joint_lookup_func,
    texture_load_func_t texture_load_func,
    state_callback_t    state_cb,
    void*               opaque_userdata,
    JointTransformMap&  jointTransformMap,
    JointNameSet&       jointsFromNodes,
    std::map<std::string, std::string>&     jointAliasMap,
    U32                 maxJointsPerMesh,
    U32                 modelLimit,
    bool                preprocess)
: LLModelLoader(
        filename,
        lod,
        load_cb,
        joint_lookup_func,
        texture_load_func,
        state_cb,
        opaque_userdata,
        jointTransformMap,
        jointsFromNodes,
        jointAliasMap,
        maxJointsPerMesh),
  mGeneratedModelLimit(modelLimit),
  mPreprocessDAE(preprocess)
{
}

LLDAELoader::~LLDAELoader()
{
}

struct ModelSort
{
    bool operator()(const LLPointer< LLModel >& lhs, const LLPointer< LLModel >& rhs)
    {
        if (lhs->mSubmodelID < rhs->mSubmodelID)
        {
            return true;
        }
        return LLStringUtil::compareInsensitive(lhs->mLabel, rhs->mLabel) < 0;
    }
};

bool LLDAELoader::OpenFile(const std::string& filename)
{
    setLoadState( READING_FILE );

    //no suitable slm exists, load from the .dae file

    // Collada expects file and folder names to be escaped
    // Note: cdom::nativePathToUri()
    const char* allowed =
        "ABCDEFGHIJKLMNOPQRSTUVWXYZ"
        "abcdefghijklmnopqrstuvwxyz"
        "0123456789"
        "%-._~:\"|\\/";
    std::string uri_filename = LLURI::escape(filename, allowed);

    DAE dae;
    domCOLLADA* dom;
    if (mPreprocessDAE)
    {
        dom = dae.openFromMemory(uri_filename, preprocessDAE(filename).c_str());
    }
    else
    {
        LL_INFOS() << "Skipping dae preprocessing" << LL_ENDL;
        dom = dae.open(uri_filename);
    }

    if (!dom)
    {
        LL_INFOS() <<" Error with dae - traditionally indicates a corrupt file."<<LL_ENDL;
        LLSD args;
        args["Message"] = "ParsingErrorCorrupt";
        mWarningsArray.append(args);
        setLoadState( ERROR_PARSING );
        return false;
    }
    //Dom version
    daeString domVersion = dae.getDomVersion();
    std::string sldom(domVersion);
    LL_INFOS()<<"Collada Importer Version: "<<sldom<<LL_ENDL;
    //Dae version
    domVersionType docVersion = dom->getVersion();
    //0=1.4
    //1=1.4.1
    //2=Currently unsupported, however may work
    if (docVersion > 1 )
    {
        docVersion = VERSIONTYPE_COUNT;
    }
    LL_INFOS()<<"Dae version "<<colladaVersion[docVersion]<<LL_ENDL;


    daeDatabase* db = dae.getDatabase();

    daeInt count = db->getElementCount(NULL, COLLADA_TYPE_MESH);

    daeDocument* doc = dae.getDoc(uri_filename);
    if (!doc)
    {
        LL_WARNS() << "can't find internal doc" << LL_ENDL;
        LLSD args;
        args["Message"] = "ParsingErrorNoDoc";
        mWarningsArray.append(args);
        return false;
    }

    daeElement* root = doc->getDomRoot();
    if (!root)
    {
        LL_WARNS() << "document has no root" << LL_ENDL;
        LLSD args;
        args["Message"] = "ParsingErrorNoRoot";
        mWarningsArray.append(args);
        return false;
    }

    //Verify some basic properties of the dae
    //1. Basic validity check on controller
    U32 controllerCount = (int) db->getElementCount( NULL, "controller" );
    bool result = false;
    for ( int i=0; i<controllerCount; ++i )
    {
        domController* pController = NULL;
        db->getElement( (daeElement**) &pController, i , NULL, "controller" );
        result = verifyController( pController );
        if (!result)
        {
            LL_INFOS() << "Could not verify controller" << LL_ENDL;
            LLSD args;
            args["Message"] = "ParsingErrorBadElement";
            mWarningsArray.append(args);
            setLoadState( ERROR_PARSING );
            return true;
        }
    }


    //get unit scale
    mTransform.setIdentity();

    domAsset::domUnit* unit = daeSafeCast<domAsset::domUnit>(root->getDescendant(daeElement::matchType(domAsset::domUnit::ID())));

    if (unit)
    {
        F32 meter = unit->getMeter();
        mTransform.mMatrix[0][0] = meter;
        mTransform.mMatrix[1][1] = meter;
        mTransform.mMatrix[2][2] = meter;
    }

    //get up axis rotation
    LLMatrix4 rotation;

    domUpAxisType up = UPAXISTYPE_Y_UP;  // default is Y_UP
    domAsset::domUp_axis* up_axis =
    daeSafeCast<domAsset::domUp_axis>(root->getDescendant(daeElement::matchType(domAsset::domUp_axis::ID())));

    if (up_axis)
    {
        up = up_axis->getValue();
    }

    if (up == UPAXISTYPE_X_UP)
    {
        rotation.initRotation(0.0f, 90.0f * DEG_TO_RAD, 0.0f);
    }
    else if (up == UPAXISTYPE_Y_UP)
    {
        rotation.initRotation(90.0f * DEG_TO_RAD, 0.0f, 0.0f);
    }

    rotation *= mTransform;
    mTransform = rotation;

    mTransform.condition();

    U32 submodel_limit = count > 0 ? mGeneratedModelLimit/count : 0;
    for (daeInt idx = 0; idx < count; ++idx)
    { //build map of domEntities to LLModel
        domMesh* mesh = NULL;
        db->getElement((daeElement**) &mesh, idx, NULL, COLLADA_TYPE_MESH);

        if (mesh)
        {

            std::vector<LLModel*> models;

            loadModelsFromDomMesh(mesh, models, submodel_limit);

            std::vector<LLModel*>::iterator i;
            i = models.begin();
            while (i != models.end())
            {
                LLModel* mdl = *i;
                if(mdl->getStatus() != LLModel::NO_ERRORS)
                {
                    setLoadState(ERROR_MODEL + mdl->getStatus()) ;
                    return false; //abort
                }

                if (mdl && validate_model(mdl))
                {
                    mModelList.push_back(mdl);
                    mModelsMap[mesh].push_back(mdl);
                }
                i++;
            }
        }
    }

    std::sort(mModelList.begin(), mModelList.end(), ModelSort());

    model_list::iterator model_iter = mModelList.begin();
    while (model_iter != mModelList.end())
    {
        LLModel* mdl = *model_iter;
        U32 material_count = mdl->mMaterialList.size();
        LL_INFOS() << "Importing " << mdl->mLabel << " model with " << material_count << " material references" << LL_ENDL;
        std::vector<std::string>::iterator mat_iter = mdl->mMaterialList.begin();
        std::vector<std::string>::iterator end_iter = material_count > LIMIT_MATERIALS_OUTPUT
                                                        ? mat_iter + LIMIT_MATERIALS_OUTPUT
                                                        : mdl->mMaterialList.end();
        while (mat_iter != end_iter)
        {
            LL_INFOS() << mdl->mLabel << " references " << (*mat_iter) << LL_ENDL;
            mat_iter++;
        }
        model_iter++;
    }

    count = db->getElementCount(NULL, COLLADA_TYPE_SKIN);
    for (daeInt idx = 0; idx < count; ++idx)
    { //add skinned meshes as instances
        domSkin* skin = NULL;
        db->getElement((daeElement**) &skin, idx, NULL, COLLADA_TYPE_SKIN);

        if (skin)
        {
            domGeometry* geom = daeSafeCast<domGeometry>(skin->getSource().getElement());

            if (geom)
            {
                domMesh* mesh = geom->getMesh();
                if (mesh)
                {
                    std::vector< LLPointer< LLModel > >::iterator i = mModelsMap[mesh].begin();
                    while (i != mModelsMap[mesh].end())
                    {
                        LLPointer<LLModel> mdl = *i;
                        LLDAELoader::processDomModel(mdl, &dae, root, mesh, skin);
                        i++;
                    }
                }
            }
        }
    }

    LL_INFOS()<< "Collada skins processed: " << count <<LL_ENDL;

    daeElement* scene = root->getDescendant("visual_scene");

    if (!scene)
    {
        LL_WARNS() << "document has no visual_scene" << LL_ENDL;
        LLSD args;
        args["Message"] = "ParsingErrorNoScene";
        mWarningsArray.append(args);
        setLoadState( ERROR_PARSING );
        return true;
    }

    setLoadState( DONE );

    bool badElement = false;

    processElement( scene, badElement, &dae);

    if ( badElement )
    {
        LL_INFOS()<<"Scene could not be parsed"<<LL_ENDL;
        LLSD args;
        args["Message"] = "ParsingErrorCantParseScene";
        mWarningsArray.append(args);
        setLoadState( ERROR_PARSING );
    }

    return true;
}

std::string LLDAELoader::preprocessDAE(std::string filename)
{
    // Open a DAE file for some preprocessing (like removing space characters in IDs), see MAINT-5678
    llifstream inFile;
    inFile.open(filename.c_str(), std::ios_base::in);
    std::stringstream strStream;
    strStream << inFile.rdbuf();
    std::string buffer = strStream.str();

    LL_INFOS() << "Preprocessing dae file to remove spaces from the names, ids, etc." << LL_ENDL;

    try
    {
        boost::regex re("\"[\\w\\.@#$-]*(\\s[\\w\\.@#$-]*)+\"");
        boost::sregex_iterator next(buffer.begin(), buffer.end(), re);
        boost::sregex_iterator end;
        while (next != end)
        {
            boost::smatch match = *next;
            std::string s = match.str();
            LL_INFOS() << s << " found" << LL_ENDL;
            boost::replace_all(s, " ", "_");
            LL_INFOS() << "Replacing with " << s << LL_ENDL;
            boost::replace_all(buffer, match.str(), s);
            next++;
        }
    }
    catch (boost::regex_error &)
    {
        LL_INFOS() << "Regex error" << LL_ENDL;
    }

    return buffer;
}

void LLDAELoader::processDomModel(LLModel* model, DAE* dae, daeElement* root, domMesh* mesh, domSkin* skin)
{
    llassert(model && dae && mesh && skin);

    if (model)
    {
        LLVector3 mesh_scale_vector;
        LLVector3 mesh_translation_vector;
        model->getNormalizedScaleTranslation(mesh_scale_vector, mesh_translation_vector);

        LLMatrix4 normalized_transformation;
        normalized_transformation.setTranslation(mesh_translation_vector);

        LLMatrix4 mesh_scale;
        mesh_scale.initScale(mesh_scale_vector);
        mesh_scale *= normalized_transformation;
        normalized_transformation = mesh_scale;

        glh::matrix4f inv_mat((F32*) normalized_transformation.mMatrix);
        inv_mat = inv_mat.inverse();
        LLMatrix4 inverse_normalized_transformation(inv_mat.m);

        domSkin::domBind_shape_matrix* bind_mat = skin->getBind_shape_matrix();

        if (bind_mat)
        { //get bind shape matrix
            domFloat4x4& dom_value = bind_mat->getValue();

            LLMeshSkinInfo& skin_info = model->mSkinInfo;

            LLMatrix4 mat;
            for (int i = 0; i < 4; i++)
            {
                for(int j = 0; j < 4; j++)
                {
                    mat.mMatrix[i][j] = dom_value[i + j*4];
                }
            }

            skin_info.mBindShapeMatrix.loadu(mat);

            LLMatrix4a trans(normalized_transformation);
            matMul(trans, skin_info.mBindShapeMatrix, skin_info.mBindShapeMatrix);
        }


        //Some collada setup for accessing the skeleton
        U32 skeleton_count = dae->getDatabase()->getElementCount( NULL, "skeleton" );
        std::vector<domInstance_controller::domSkeleton*> skeletons;
        for (S32 i=0; i<skeleton_count; i++)
        {
            daeElement* pElement = 0;
            dae->getDatabase()->getElement( &pElement, i, 0, "skeleton" );

            //Try to get at the skeletal instance controller
            domInstance_controller::domSkeleton* pSkeleton = daeSafeCast<domInstance_controller::domSkeleton>( pElement );
            daeElement* pSkeletonRootNode = NULL;
            if (pSkeleton)
            {
                pSkeletonRootNode = pSkeleton->getValue().getElement();
            }
            if (pSkeleton && pSkeletonRootNode)
            {
                skeletons.push_back(pSkeleton);
            }
        }
        bool missingSkeletonOrScene = false;

        //If no skeleton, do a breadth-first search to get at specific joints
        if ( skeletons.size() == 0 )
        {
            daeElement* pScene = root->getDescendant("visual_scene");
            if ( !pScene )
            {
                LL_WARNS()<<"No visual scene - unable to parse bone offsets "<<LL_ENDL;
                missingSkeletonOrScene = true;
            }
            else
            {
                //Get the children at this level
                daeTArray< daeSmartRef<daeElement> > children = pScene->getChildren();
                S32 childCount = children.getCount();

                //Process any children that are joints
                //Not all children are joints, some could be ambient lights, cameras, geometry etc..
                for (S32 i = 0; i < childCount; ++i)
                {
                    domNode* pNode = daeSafeCast<domNode>(children[i]);
                    if (pNode)
                    {
                        processJointNode( pNode, mJointList );
                    }
                }
            }
        }
        else
            //Has one or more skeletons
            for (std::vector<domInstance_controller::domSkeleton*>::iterator skel_it = skeletons.begin();
                 skel_it != skeletons.end(); ++skel_it)
            {
                domInstance_controller::domSkeleton* pSkeleton = *skel_it;
                //Get the root node of the skeleton
                daeElement* pSkeletonRootNode = pSkeleton->getValue().getElement();
                if ( pSkeletonRootNode )
                {
                    //Once we have the root node - start acccessing it's joint components
                    const int jointCnt = mJointMap.size();
                    JointMap :: const_iterator jointIt = mJointMap.begin();

                    //Loop over all the possible joints within the .dae - using the allowed joint list in the ctor.
                    for ( int i=0; i<jointCnt; ++i, ++jointIt )
                    {
                        //Build a joint for the resolver to work with
                        char str[64]={0};
                        sprintf(str,"./%s",(*jointIt).first.c_str() );
                        //LL_WARNS()<<"Joint "<< str <<LL_ENDL;

                        //Setup the resolver
                        daeSIDResolver resolver( pSkeletonRootNode, str );

                        //Look for the joint
                        domNode* pJoint = daeSafeCast<domNode>( resolver.getElement() );
                        if ( pJoint )
                        {
                            // FIXME this has a lot of overlap with processJointNode(), would be nice to refactor.

                            //Pull out the translate id and store it in the jointTranslations map
                            daeSIDResolver jointResolverA( pJoint, "./translate" );
                            domTranslate* pTranslateA = daeSafeCast<domTranslate>( jointResolverA.getElement() );
                            daeSIDResolver jointResolverB( pJoint, "./location" );
                            domTranslate* pTranslateB = daeSafeCast<domTranslate>( jointResolverB.getElement() );

                            LLMatrix4 workingTransform;

                            //Translation via SID
                            if ( pTranslateA )
                            {
                                extractTranslation( pTranslateA, workingTransform );
                            }
                            else
                            {
                                if ( pTranslateB )
                                {
                                    extractTranslation( pTranslateB, workingTransform );
                                }
                                else
                                {
                                    //Translation via child from element
                                    daeElement* pTranslateElement = getChildFromElement( pJoint, "translate" );
                                    if ( pTranslateElement && pTranslateElement->typeID() != domTranslate::ID() )
                                    {
                                        LL_WARNS()<< "The found element is not a translate node" <<LL_ENDL;
                                        missingSkeletonOrScene = true;
                                    }
                                    else
                                        if ( pTranslateElement )
                                        {
                                            extractTranslationViaElement( pTranslateElement, workingTransform );
                                        }
                                        else
                                        {
                                            extractTranslationViaSID( pJoint, workingTransform );
                                        }

                                }
                            }

                            //Store the joint transform w/respect to its name.
                            mJointList[(*jointIt).second.c_str()] = workingTransform;
                        }
                    }

                    //If anything failed in regards to extracting the skeleton, joints or translation id,
                    //mention it
                    if ( missingSkeletonOrScene  )
                    {
                        LL_WARNS()<< "Partial jointmap found in asset - did you mean to just have a partial map?" << LL_ENDL;
                    }
                }//got skeleton?
            }


        domSkin::domJoints* joints = skin->getJoints();

        domInputLocal_Array& joint_input = joints->getInput_array();

        for (size_t i = 0; i < joint_input.getCount(); ++i)
        {
            domInputLocal* input = joint_input.get(i);
            xsNMTOKEN semantic = input->getSemantic();

            if (strcmp(semantic, COMMON_PROFILE_INPUT_JOINT) == 0)
            { //found joint source, fill model->mJointMap and model->mSkinInfo.mJointNames
                daeElement* elem = input->getSource().getElement();

                domSource* source = daeSafeCast<domSource>(elem);
                if (source)
                {


                    domName_array* names_source = source->getName_array();

                    if (names_source)
                    {
                        domListOfNames &names = names_source->getValue();

                        for (size_t j = 0; j < names.getCount(); ++j)
                        {
                            std::string name(names.get(j));
                            if (mJointMap.find(name) != mJointMap.end())
                            {
                                name = mJointMap[name];
                            }
                            model->mSkinInfo.mJointNames.push_back(name);
                            model->mSkinInfo.mJointNums.push_back(-1);
                        }
                    }
                    else
                    {
                        domIDREF_array* names_source = source->getIDREF_array();
                        if (names_source)
                        {
                            xsIDREFS& names = names_source->getValue();

                            for (size_t j = 0; j < names.getCount(); ++j)
                            {
                                std::string name(names.get(j).getID());
                                if (mJointMap.find(name) != mJointMap.end())
                                {
                                    name = mJointMap[name];
                                }
                                model->mSkinInfo.mJointNames.push_back(name);
                                model->mSkinInfo.mJointNums.push_back(-1);
                            }
                        }
                    }
                }
            }
            else if (strcmp(semantic, COMMON_PROFILE_INPUT_INV_BIND_MATRIX) == 0)
            { //found inv_bind_matrix array, fill model->mInvBindMatrix
                domSource* source = daeSafeCast<domSource>(input->getSource().getElement());
                if (source)
                {
                    domFloat_array* t = source->getFloat_array();
                    if (t)
                    {
                        domListOfFloats& transform = t->getValue();
                        S32 count = transform.getCount()/16;

                        for (S32 k = 0; k < count; ++k)
                        {
                            LLMatrix4 mat;

                            for (int i = 0; i < 4; i++)
                            {
                                for(int j = 0; j < 4; j++)
                                {
                                    mat.mMatrix[i][j] = transform[k*16 + i + j*4];
                                }
                            }
                            model->mSkinInfo.mInvBindMatrix.push_back(LLMatrix4a(mat));
                        }
                    }
                }
            }
        }

        //Now that we've parsed the joint array, let's determine if we have a full rig
        //(which means we have all the joint sthat are required for an avatar versus
        //a skinned asset attached to a node in a file that contains an entire skeleton,
        //but does not use the skeleton).
        buildJointToNodeMappingFromScene( root );
        critiqueRigForUploadApplicability( model->mSkinInfo.mJointNames );

        if ( !missingSkeletonOrScene )
        {
            // FIXME: mesh_id is used to determine which mesh gets to
            // set the joint offset, in the event of a conflict. Since
            // we don't know the mesh id yet, we can't guarantee that
            // joint offsets will be applied with the same priority as
            // in the uploaded model. If the file contains multiple
            // meshes with conflicting joint offsets, preview may be
            // incorrect.
            LLUUID fake_mesh_id;
            fake_mesh_id.generate();

            //Set the joint translations on the avatar
            JointMap :: const_iterator masterJointIt = mJointMap.begin();
            JointMap :: const_iterator masterJointItEnd = mJointMap.end();
            for (;masterJointIt!=masterJointItEnd;++masterJointIt )
            {
                std::string lookingForJoint = (*masterJointIt).first.c_str();

                if ( mJointList.find( lookingForJoint ) != mJointList.end() )
                {
                    //LL_INFOS()<<"joint "<<lookingForJoint.c_str()<<LL_ENDL;
                    LLMatrix4 jointTransform = mJointList[lookingForJoint];
                    LLJoint* pJoint = mJointLookupFunc(lookingForJoint,mOpaqueData);
                    if ( pJoint )
                    {
                        const LLVector3& joint_pos = jointTransform.getTranslation();
                        if (pJoint->aboveJointPosThreshold(joint_pos))
                        {
                            bool override_changed; // not used
                            pJoint->addAttachmentPosOverride(joint_pos, fake_mesh_id, "", override_changed);
                            if (model->mSkinInfo.mLockScaleIfJointPosition)
                            {
                                pJoint->addAttachmentScaleOverride(pJoint->getDefaultScale(), fake_mesh_id, "");
                            }
                        }
                    }
                    else
                    {
                        //Most likely an error in the asset.
                        LL_WARNS()<<"Tried to apply joint position from .dae, but it did not exist in the avatar rig." << LL_ENDL;
                    }
                }
            }
        } //missingSkeletonOrScene

        //We need to construct the alternate bind matrix (which contains the new joint positions)
        //in the same order as they were stored in the joint buffer. The joints associated
        //with the skeleton are not stored in the same order as they are in the exported joint buffer.
        //This remaps the skeletal joints to be in the same order as the joints stored in the model.
        std::vector<std::string> :: const_iterator jointIt  = model->mSkinInfo.mJointNames.begin();
        const int jointCnt = model->mSkinInfo.mJointNames.size();
        for ( int i=0; i<jointCnt; ++i, ++jointIt )
        {
            std::string lookingForJoint = (*jointIt).c_str();
            //Look for the joint xform that we extracted from the skeleton, using the jointIt as the key
            //and store it in the alternate bind matrix
            if (mJointMap.find(lookingForJoint) != mJointMap.end()
                && model->mSkinInfo.mInvBindMatrix.size() > i)
            {
                LLMatrix4 newInverse = LLMatrix4(model->mSkinInfo.mInvBindMatrix[i].getF32ptr());
                newInverse.setTranslation( mJointList[lookingForJoint].getTranslation() );
                model->mSkinInfo.mAlternateBindMatrix.push_back( LLMatrix4a(newInverse) );
            }
            else
            {
                LL_DEBUGS("Mesh")<<"Possibly misnamed/missing joint [" <<lookingForJoint.c_str()<<"] "<<LL_ENDL;
            }
        }

        U32 bind_count = model->mSkinInfo.mAlternateBindMatrix.size();
        if (bind_count > 0 && bind_count != jointCnt)
        {
            LL_WARNS("Mesh") << "Model " << model->mLabel << " has invalid joint bind matrix list." << LL_ENDL;
        }

        //grab raw position array

        domVertices* verts = mesh->getVertices();
        if (verts)
        {
            domInputLocal_Array& inputs = verts->getInput_array();
            for (size_t i = 0; i < inputs.getCount() && model->mPosition.empty(); ++i)
            {
                if (strcmp(inputs[i]->getSemantic(), COMMON_PROFILE_INPUT_POSITION) == 0)
                {
                    domSource* pos_source = daeSafeCast<domSource>(inputs[i]->getSource().getElement());
                    if (pos_source)
                    {
                        domFloat_array* pos_array = pos_source->getFloat_array();
                        if (pos_array)
                        {
                            domListOfFloats& pos = pos_array->getValue();

                            for (size_t j = 0; j < pos.getCount(); j += 3)
                            {
                                if (pos.getCount() <= j+2)
                                {
                                    LL_ERRS() << "Invalid position array size." << LL_ENDL;
                                }

                                LLVector3 v(pos[j], pos[j+1], pos[j+2]);

                                //transform from COLLADA space to volume space
                                v = v * inverse_normalized_transformation;

                                model->mPosition.push_back(v);
                            }
                        }
                    }
                }
            }
        }

        //grab skin weights array
        domSkin::domVertex_weights* weights = skin->getVertex_weights();
        if (weights)
        {
            domInputLocalOffset_Array& inputs = weights->getInput_array();
            domFloat_array* vertex_weights = NULL;
            for (size_t i = 0; i < inputs.getCount(); ++i)
            {
                if (strcmp(inputs[i]->getSemantic(), COMMON_PROFILE_INPUT_WEIGHT) == 0)
                {
                    domSource* weight_source = daeSafeCast<domSource>(inputs[i]->getSource().getElement());
                    if (weight_source)
                    {
                        vertex_weights = weight_source->getFloat_array();
                    }
                }
            }

            if (vertex_weights)
            {
                domListOfFloats& w = vertex_weights->getValue();
                domListOfUInts& vcount = weights->getVcount()->getValue();
                domListOfInts& v = weights->getV()->getValue();

                U32 c_idx = 0;
                for (size_t vc_idx = 0; vc_idx < vcount.getCount(); ++vc_idx)
                { //for each vertex
                    daeUInt count = vcount[vc_idx];

                    //create list of weights that influence this vertex
                    LLModel::weight_list weight_list;

                    for (daeUInt i = 0; i < count; ++i)
                    { //for each weight
                        daeInt joint_idx = v[c_idx++];
                        daeInt weight_idx = v[c_idx++];

                        if (joint_idx == -1)
                        {
                            //ignore bindings to bind_shape_matrix
                            continue;
                        }

                        F32 weight_value = w[weight_idx];

                        weight_list.push_back(LLModel::JointWeight(joint_idx, weight_value));
                    }

                    //sort by joint weight
                    std::sort(weight_list.begin(), weight_list.end(), LLModel::CompareWeightGreater());

                    std::vector<LLModel::JointWeight> wght;

                    F32 total = 0.f;

                    for (U32 i = 0; i < llmin((U32) 4, (U32) weight_list.size()); ++i)
                    { //take up to 4 most significant weights
                        if (weight_list[i].mWeight > 0.f)
                        {
                            wght.push_back( weight_list[i] );
                            total += weight_list[i].mWeight;
                        }
                    }

                    F32 scale = 1.f/total;
                    if (scale != 1.f)
                    { //normalize weights
                        for (U32 i = 0; i < wght.size(); ++i)
                        {
                            wght[i].mWeight *= scale;
                        }
                    }

                    model->mSkinWeights[model->mPosition[vc_idx]] = wght;
                }
            }

        }

        //add instance to scene for this model

        LLMatrix4 transformation;
        transformation.initScale(mesh_scale_vector);
        transformation.setTranslation(mesh_translation_vector);
        transformation *= mTransform;

        std::map<std::string, LLImportMaterial> materials;
        for (U32 i = 0; i < model->mMaterialList.size(); ++i)
        {
            materials[model->mMaterialList[i]] = LLImportMaterial();
        }
        mScene[transformation].push_back(LLModelInstance(model, model->mLabel, transformation, materials));
        stretch_extents(model, transformation, mExtents[0], mExtents[1], mFirstTransform);
    }
}

//-----------------------------------------------------------------------------
// buildJointToNodeMappingFromScene()
//-----------------------------------------------------------------------------
void LLDAELoader::buildJointToNodeMappingFromScene( daeElement* pRoot )
{
    daeElement* pScene = pRoot->getDescendant("visual_scene");
    if ( pScene )
    {
        daeTArray< daeSmartRef<daeElement> > children = pScene->getChildren();
        S32 childCount = children.getCount();
        for (S32 i = 0; i < childCount; ++i)
        {
            domNode* pNode = daeSafeCast<domNode>(children[i]);
            processJointToNodeMapping( pNode );
        }
    }
}
//-----------------------------------------------------------------------------
// processJointToNodeMapping()
//-----------------------------------------------------------------------------
void LLDAELoader::processJointToNodeMapping( domNode* pNode )
{
    if ( isNodeAJoint( pNode ) )
    {
        //1.Store the parent
        std::string nodeName = pNode->getName();
        if ( !nodeName.empty() )
        {
            mJointsFromNode.push_front( pNode->getName() );
        }
        //2. Handle the kiddo's
        processChildJoints( pNode );
    }
    else
    {
        //Determine if the're any children wrt to this failed node.
        //This occurs when an armature is exported and ends up being what essentially amounts to
        //as the root for the visual_scene
        if ( pNode )
        {
            processChildJoints( pNode );
        }
        else
        {
            LL_INFOS()<<"Node is NULL"<<LL_ENDL;
        }

    }
}
//-----------------------------------------------------------------------------
// processChildJoint()
//-----------------------------------------------------------------------------
void LLDAELoader::processChildJoints( domNode* pParentNode )
{
    daeTArray< daeSmartRef<daeElement> > childOfChild = pParentNode->getChildren();
    S32 childOfChildCount = childOfChild.getCount();
    for (S32 i = 0; i < childOfChildCount; ++i)
    {
        domNode* pChildNode = daeSafeCast<domNode>( childOfChild[i] );
        if ( pChildNode )
        {
            processJointToNodeMapping( pChildNode );
        }
    }
}

//-----------------------------------------------------------------------------
// isNodeAJoint()
//-----------------------------------------------------------------------------
bool LLDAELoader::isNodeAJoint( domNode* pNode )
{
    if ( !pNode || !pNode->getName() )
    {
        LL_INFOS()<<"Created node is NULL or invalid"<<LL_ENDL;
        return false;
    }

    return LLModelLoader::isNodeAJoint(pNode->getName());
}
//-----------------------------------------------------------------------------
// verifyCount
//-----------------------------------------------------------------------------
bool LLDAELoader::verifyCount( int expected, int result )
{
    if ( expected != result )
    {
        LL_INFOS()<< "Error: (expected/got)"<<expected<<"/"<<result<<"verts"<<LL_ENDL;
        return false;
    }
    return true;
}
//-----------------------------------------------------------------------------
// verifyController
//-----------------------------------------------------------------------------
bool LLDAELoader::verifyController( domController* pController )
{

    bool result = true;

    domSkin* pSkin = pController->getSkin();

    if ( pSkin )
    {
        xsAnyURI & uri = pSkin->getSource();
        domElement* pElement = uri.getElement();

        if ( !pElement )
        {
            LL_INFOS()<<"Can't resolve skin source"<<LL_ENDL;
            return false;
        }

        daeString type_str = pElement->getTypeName();
        if ( stricmp(type_str, "geometry") == 0 )
        {
            //Skin is reference directly by geometry and get the vertex count from skin
            domSkin::domVertex_weights* pVertexWeights = pSkin->getVertex_weights();
            U32 vertexWeightsCount = pVertexWeights->getCount();
            domGeometry* pGeometry = (domGeometry*) (domElement*) uri.getElement();
            domMesh* pMesh = pGeometry->getMesh();

            if ( pMesh )
            {
                //Get vertex count from geometry
                domVertices* pVertices = pMesh->getVertices();
                if ( !pVertices )
                {
                    LL_INFOS()<<"No vertices!"<<LL_ENDL;
                    return false;
                }

                if ( pVertices )
                {
                    xsAnyURI src = pVertices->getInput_array()[0]->getSource();
                    domSource* pSource = (domSource*) (domElement*) src.getElement();
                    U32 verticesCount = pSource->getTechnique_common()->getAccessor()->getCount();
                    result = verifyCount( verticesCount, vertexWeightsCount );
                    if ( !result )
                    {
                        return result;
                    }
                }
            }

            U32 vcountCount = (U32) pVertexWeights->getVcount()->getValue().getCount();
            result = verifyCount( vcountCount, vertexWeightsCount );
            if ( !result )
            {
                return result;
            }

            domInputLocalOffset_Array& inputs = pVertexWeights->getInput_array();
            U32 sum = 0;
            for (size_t i=0; i<vcountCount; i++)
            {
                sum += pVertexWeights->getVcount()->getValue()[i];
            }
            result = verifyCount( sum * inputs.getCount(), (domInt) pVertexWeights->getV()->getValue().getCount() );
        }
    }

    return result;
}

//-----------------------------------------------------------------------------
// extractTranslation()
//-----------------------------------------------------------------------------
void LLDAELoader::extractTranslation( domTranslate* pTranslate, LLMatrix4& transform )
{
    domFloat3 jointTrans = pTranslate->getValue();
    LLVector3 singleJointTranslation( jointTrans[0], jointTrans[1], jointTrans[2] );
    transform.setTranslation( singleJointTranslation );
}
//-----------------------------------------------------------------------------
// extractTranslationViaElement()
//-----------------------------------------------------------------------------
void LLDAELoader::extractTranslationViaElement( daeElement* pTranslateElement, LLMatrix4& transform )
{
    if ( pTranslateElement )
    {
        domTranslate* pTranslateChild = static_cast<domTranslate*>( pTranslateElement );
        domFloat3 translateChild = pTranslateChild->getValue();
        LLVector3 singleJointTranslation( translateChild[0], translateChild[1], translateChild[2] );
        transform.setTranslation( singleJointTranslation );
    }
}
//-----------------------------------------------------------------------------
// extractTranslationViaSID()
//-----------------------------------------------------------------------------
void LLDAELoader::extractTranslationViaSID( daeElement* pElement, LLMatrix4& transform )
{
    if ( pElement )
    {
        daeSIDResolver resolver( pElement, "./transform" );
        domMatrix* pMatrix = daeSafeCast<domMatrix>( resolver.getElement() );
        //We are only extracting out the translational component atm
        LLMatrix4 workingTransform;
        if ( pMatrix )
        {
            domFloat4x4 domArray = pMatrix->getValue();
            for ( int i = 0; i < 4; i++ )
            {
                for( int j = 0; j < 4; j++ )
                {
                    workingTransform.mMatrix[i][j] = domArray[i + j*4];
                }
            }
            LLVector3 trans = workingTransform.getTranslation();
            transform.setTranslation( trans );
        }
    }
    else
    {
        LL_WARNS()<<"Element is nonexistent - empty/unsupported node."<<LL_ENDL;
    }
}
//-----------------------------------------------------------------------------
// processJointNode()
//-----------------------------------------------------------------------------
void LLDAELoader::processJointNode( domNode* pNode, JointTransformMap& jointTransforms )
{
    if (pNode->getName() == NULL)
    {
        LL_WARNS() << "nameless node, can't process" << LL_ENDL;
        return;
    }

    //LL_WARNS()<<"ProcessJointNode# Node:" <<pNode->getName()<<LL_ENDL;

    //1. handle the incoming node - extract out translation via SID or element
    if (isNodeAJoint(pNode))
    {
        LLMatrix4 workingTransform;

        //Pull out the translate id and store it in the jointTranslations map
        daeSIDResolver jointResolverA(pNode, "./translate");
        domTranslate* pTranslateA = daeSafeCast<domTranslate>(jointResolverA.getElement());
        daeSIDResolver jointResolverB(pNode, "./location");
        domTranslate* pTranslateB = daeSafeCast<domTranslate>(jointResolverB.getElement());

        //Translation via SID was successful
        if (pTranslateA)
        {
            extractTranslation(pTranslateA, workingTransform);
        }
        else
            if (pTranslateB)
            {
                extractTranslation(pTranslateB, workingTransform);
            }
            else
            {
                //Translation via child from element
                daeElement* pTranslateElement = getChildFromElement(pNode, "translate");
                if (!pTranslateElement || pTranslateElement->typeID() != domTranslate::ID())
                {
                    //LL_WARNS()<< "The found element is not a translate node" <<LL_ENDL;
                    daeSIDResolver jointResolver(pNode, "./matrix");
                    domMatrix* pMatrix = daeSafeCast<domMatrix>(jointResolver.getElement());
                    if (pMatrix)
                    {
                        //LL_INFOS()<<"A matrix SID was however found!"<<LL_ENDL;
                        domFloat4x4 domArray = pMatrix->getValue();
                        for (int i = 0; i < 4; i++)
                        {
                            for (int j = 0; j < 4; j++)
                            {
                                workingTransform.mMatrix[i][j] = domArray[i + j * 4];
                            }
                        }
                    }
                    else
                    {
                        LL_WARNS() << "The found element is not translate or matrix node - most likely a corrupt export!" << LL_ENDL;
                    }
                }
                else
                {
                    extractTranslationViaElement(pTranslateElement, workingTransform);
                }
            }

        //Store the working transform relative to the nodes name.
        jointTransforms[pNode->getName()] = workingTransform;
    }

    //2. handle the nodes children

    //Gather and handle the incoming nodes children
    daeTArray< daeSmartRef<daeElement> > childOfChild = pNode->getChildren();
    S32 childOfChildCount = childOfChild.getCount();

    for (S32 i = 0; i < childOfChildCount; ++i)
    {
        domNode* pChildNode = daeSafeCast<domNode>( childOfChild[i] );
        if ( pChildNode )
        {
            processJointNode( pChildNode, jointTransforms );
        }
    }
}
//-----------------------------------------------------------------------------
// getChildFromElement()
//-----------------------------------------------------------------------------
daeElement* LLDAELoader::getChildFromElement( daeElement* pElement, std::string const & name )
{
    daeElement* pChildOfElement = pElement->getChild( name.c_str() );
    if ( pChildOfElement )
    {
        return pChildOfElement;
    }
    LL_DEBUGS("Mesh")<< "Could not find a child [" << name << "] for the element: \"" << pElement->getAttribute("id") << "\"" << LL_ENDL;
    return NULL;
}

void LLDAELoader::processElement( daeElement* element, bool& badElement, DAE* dae)
{
    LLMatrix4 saved_transform;
    bool pushed_mat = false;

    domNode* node = daeSafeCast<domNode>(element);
    if (node)
    {
        pushed_mat = true;
        saved_transform = mTransform;
    }

    domTranslate* translate = daeSafeCast<domTranslate>(element);
    if (translate)
    {
        domFloat3 dom_value = translate->getValue();

        LLMatrix4 translation;
        translation.setTranslation(LLVector3(dom_value[0], dom_value[1], dom_value[2]));

        translation *= mTransform;
        mTransform = translation;
        mTransform.condition();
    }

    domRotate* rotate = daeSafeCast<domRotate>(element);
    if (rotate)
    {
        domFloat4 dom_value = rotate->getValue();

        LLMatrix4 rotation;
        rotation.initRotTrans(dom_value[3] * DEG_TO_RAD, LLVector3(dom_value[0], dom_value[1], dom_value[2]), LLVector3(0, 0, 0));

        rotation *= mTransform;
        mTransform = rotation;
        mTransform.condition();
    }

    domScale* scale = daeSafeCast<domScale>(element);
    if (scale)
    {
        domFloat3 dom_value = scale->getValue();


        LLVector3 scale_vector = LLVector3(dom_value[0], dom_value[1], dom_value[2]);
        scale_vector.abs(); // Set all values positive, since we don't currently support mirrored meshes
        LLMatrix4 scaling;
        scaling.initScale(scale_vector);

        scaling *= mTransform;
        mTransform = scaling;
        mTransform.condition();
    }

    domMatrix* matrix = daeSafeCast<domMatrix>(element);
    if (matrix)
    {
        domFloat4x4 dom_value = matrix->getValue();

        LLMatrix4 matrix_transform;

        for (int i = 0; i < 4; i++)
        {
            for(int j = 0; j < 4; j++)
            {
                matrix_transform.mMatrix[i][j] = dom_value[i + j*4];
            }
        }

        matrix_transform *= mTransform;
        mTransform = matrix_transform;
        mTransform.condition();
    }

    domInstance_geometry* instance_geo = daeSafeCast<domInstance_geometry>(element);
    if (instance_geo)
    {
        domGeometry* geo = daeSafeCast<domGeometry>(instance_geo->getUrl().getElement());
        if (geo)
        {
            domMesh* mesh = daeSafeCast<domMesh>(geo->getDescendant(daeElement::matchType(domMesh::ID())));
            if (mesh)
            {

                std::vector< LLPointer< LLModel > >::iterator i = mModelsMap[mesh].begin();
                while (i != mModelsMap[mesh].end())
                {
                    LLModel* model = *i;

                    LLMatrix4 transformation = mTransform;

                    if (mTransform.determinant() < 0)
                    { //negative scales are not supported
                        LL_INFOS() << "Negative scale detected, unsupported transform.  domInstance_geometry: " << getElementLabel(instance_geo) << LL_ENDL;
                        LLSD args;
                        args["Message"] = "NegativeScaleTrans";
                        args["LABEL"] = getElementLabel(instance_geo);
                        mWarningsArray.append(args);

                        badElement = true;
                    }

                    LLModelLoader::material_map materials = getMaterials(model, instance_geo, dae);

                    // adjust the transformation to compensate for mesh normalization
                    LLVector3 mesh_scale_vector;
                    LLVector3 mesh_translation_vector;
                    model->getNormalizedScaleTranslation(mesh_scale_vector, mesh_translation_vector);

                    LLMatrix4 mesh_translation;
                    mesh_translation.setTranslation(mesh_translation_vector);
                    mesh_translation *= transformation;
                    transformation = mesh_translation;

                    LLMatrix4 mesh_scale;
                    mesh_scale.initScale(mesh_scale_vector);
                    mesh_scale *= transformation;
                    transformation = mesh_scale;

                    if (transformation.determinant() < 0)
                    { //negative scales are not supported
                        LL_INFOS() << "Negative scale detected, unsupported post-normalization transform.  domInstance_geometry: " << getElementLabel(instance_geo) << LL_ENDL;
                        LLSD args;
                        args["Message"] = "NegativeScaleNormTrans";
                        args["LABEL"] = getElementLabel(instance_geo);
                        mWarningsArray.append(args);
                        badElement = true;
                    }

                    std::string label;

                    if (model->mLabel.empty())
                    {
                        label = getLodlessLabel(instance_geo);

                        llassert(!label.empty());

                        if (model->mSubmodelID)
                        {
                            label += (char)((int)'a' + model->mSubmodelID);
                        }

                        model->mLabel = label + lod_suffix[mLod];
                    }
                    else
                    {
                        // Don't change model's name if possible, it will play havoc with scenes that already use said model.
                        size_t ext_pos = getSuffixPosition(model->mLabel);
                        if (ext_pos != -1)
                        {
                            label = model->mLabel.substr(0, ext_pos);
                        }
                        else
                        {
                            label = model->mLabel;
                        }
                    }

                    mScene[transformation].push_back(LLModelInstance(model, label, transformation, materials));
                    stretch_extents(model, transformation, mExtents[0], mExtents[1], mFirstTransform);
                    i++;
                }
            }
        }
        else
        {
            LL_INFOS()<<"Unable to resolve geometry URL."<<LL_ENDL;
            LLSD args;
            args["Message"] = "CantResolveGeometryUrl";
            mWarningsArray.append(args);
            badElement = true;
        }

    }

    domInstance_node* instance_node = daeSafeCast<domInstance_node>(element);
    if (instance_node)
    {
        daeElement* instance = instance_node->getUrl().getElement();
        if (instance)
        {
            processElement(instance,badElement, dae);
        }
    }

    //process children
    daeTArray< daeSmartRef<daeElement> > children = element->getChildren();
    int childCount = children.getCount();
    for (S32 i = 0; i < childCount; i++)
    {
        processElement(children[i],badElement, dae);
    }

    if (pushed_mat)
    { //this element was a node, restore transform before processiing siblings
        mTransform = saved_transform;
    }
}

std::map<std::string, LLImportMaterial> LLDAELoader::getMaterials(LLModel* model, domInstance_geometry* instance_geo, DAE* dae)
{
    std::map<std::string, LLImportMaterial> materials;
    for (int i = 0; i < model->mMaterialList.size(); i++)
    {
        LLImportMaterial import_material;

        domInstance_material* instance_mat = NULL;

        domBind_material::domTechnique_common* technique =
        daeSafeCast<domBind_material::domTechnique_common>(instance_geo->getDescendant(daeElement::matchType(domBind_material::domTechnique_common::ID())));

        if (technique)
        {
            daeTArray< daeSmartRef<domInstance_material> > inst_materials = technique->getChildrenByType<domInstance_material>();
            for (int j = 0; j < inst_materials.getCount(); j++)
            {
                std::string symbol(inst_materials[j]->getSymbol());

                if (symbol == model->mMaterialList[i]) // found the binding
                {
                    instance_mat = inst_materials[j];
                    break;
                }
            }
        }

        if (instance_mat)
        {
            domMaterial* material = daeSafeCast<domMaterial>(instance_mat->getTarget().getElement());
            if (material)
            {
                domInstance_effect* instance_effect =
                daeSafeCast<domInstance_effect>(material->getDescendant(daeElement::matchType(domInstance_effect::ID())));
                if (instance_effect)
                {
                    domEffect* effect = daeSafeCast<domEffect>(instance_effect->getUrl().getElement());
                    if (effect)
                    {
                        domProfile_COMMON* profile =
                        daeSafeCast<domProfile_COMMON>(effect->getDescendant(daeElement::matchType(domProfile_COMMON::ID())));
                        if (profile)
                        {
                            import_material = profileToMaterial(profile, dae);
                        }
                    }
                }
            }
        }

        import_material.mBinding = model->mMaterialList[i];
        materials[model->mMaterialList[i]] = import_material;
    }

    return materials;
}

LLImportMaterial LLDAELoader::profileToMaterial(domProfile_COMMON* material, DAE* dae)
{
    LLImportMaterial mat;
    mat.mFullbright = FALSE;

    daeElement* diffuse = material->getDescendant("diffuse");
    if (diffuse)
    {
        domCommon_color_or_texture_type_complexType::domTexture* texture =
        daeSafeCast<domCommon_color_or_texture_type_complexType::domTexture>(diffuse->getDescendant("texture"));
        if (texture)
        {
            domCommon_newparam_type_Array newparams = material->getNewparam_array();
            if (newparams.getCount())
            {

                for (S32 i = 0; i < newparams.getCount(); i++)
                {
                    domFx_surface_common* surface = newparams[i]->getSurface();
                    if (surface)
                    {
                        domFx_surface_init_common* init = surface->getFx_surface_init_common();
                        if (init)
                        {
                            domFx_surface_init_from_common_Array init_from = init->getInit_from_array();

                            if (init_from.getCount() > i)
                            {
                                domImage* image = daeSafeCast<domImage>(init_from[i]->getValue().getElement());
                                if (image)
                                {
                                    // we only support init_from now - embedded data will come later
                                    domImage::domInit_from* init = image->getInit_from();
                                    if (init)
                                    {
                                        mat.mDiffuseMapFilename = cdom::uriToNativePath(init->getValue().str());
                                        mat.mDiffuseMapLabel = getElementLabel(material);
                                    }
                                }
                            }
                        }
                    }
                }
            }
            else if (texture->getTexture())
            {
                domImage* image = NULL;
                dae->getDatabase()->getElement((daeElement**) &image, 0, texture->getTexture(), COLLADA_TYPE_IMAGE);
                if (image)
                {
                    // we only support init_from now - embedded data will come later
                    domImage::domInit_from* init = image->getInit_from();
                    if (init)
                    {
                        std::string image_path_value = cdom::uriToNativePath(init->getValue().str());

#if LL_WINDOWS
                        // Work-around DOM tendency to resort to UNC names which are only confusing for downstream...
                        //
                        std::string::iterator i = image_path_value.begin();
                        while (*i == '\\')
                            i++;
                        mat.mDiffuseMapFilename.assign(i, image_path_value.end());
#else
                        mat.mDiffuseMapFilename = image_path_value;
#endif
                        mat.mDiffuseMapLabel = getElementLabel(material);
                    }
                }
            }
        }

        domCommon_color_or_texture_type_complexType::domColor* color =
        daeSafeCast<domCommon_color_or_texture_type_complexType::domColor>(diffuse->getDescendant("color"));
        if (color)
        {
            domFx_color_common domfx_color = color->getValue();
            LLColor4 value = LLColor4(domfx_color[0], domfx_color[1], domfx_color[2], domfx_color[3]);
            mat.mDiffuseColor = value;
        }
    }

    daeElement* emission = material->getDescendant("emission");
    if (emission)
    {
        LLColor4 emission_color = getDaeColor(emission);
        if (((emission_color[0] + emission_color[1] + emission_color[2]) / 3.0) > 0.25)
        {
            mat.mFullbright = TRUE;
        }
    }

    return mat;
}

// try to get a decent label for this element
std::string LLDAELoader::getElementLabel(daeElement *element)
{
    // if we have a name attribute, use it
    std::string name = element->getAttribute("name");
    if (name.length())
    {
        return name;
    }

    // if we have an ID attribute, use it
    if (element->getID())
    {
        return std::string(element->getID());
    }

    // if we have a parent, use it
    daeElement* parent = element->getParent();
    std::string index_string;
    if (parent)
    {
        // retrieve index to distinguish items inside same parent
        size_t ind = 0;
        parent->getChildren().find(element, ind);

        if (ind > 0)
        {
            index_string = "_" + std::to_string(ind);
        }

        // if parent has a name or ID, use it
        std::string name = parent->getAttribute("name");
        if (!name.length())
        {
            name = std::string(parent->getID());
        }

        if (name.length())
        {
            // make sure that index won't mix up with pre-named lod extensions
            size_t ext_pos = getSuffixPosition(name);

            if (ext_pos == -1)
            {
                return name + index_string;
            }
            else
            {
                return name.insert(ext_pos, index_string);
            }
        }
    }

    // try to use our type
    daeString element_name = element->getElementName();
    if (element_name)
    {
        return std::string(element_name) + index_string;
    }

    // if all else fails, use "object"
    return std::string("object") + index_string;
}

// static
size_t LLDAELoader::getSuffixPosition(std::string label)
{
    if ((label.find("_LOD") != -1) || (label.find("_PHYS") != -1))
    {
        return label.rfind('_');
    }
    return -1;
}

// static
std::string LLDAELoader::getLodlessLabel(daeElement *element)
{
    std::string label = getElementLabel(element);
    size_t ext_pos = getSuffixPosition(label);
    if (ext_pos != -1)
    {
        return label.substr(0, ext_pos);
    }
    return label;
}

LLColor4 LLDAELoader::getDaeColor(daeElement* element)
{
    LLColor4 value;
    domCommon_color_or_texture_type_complexType::domColor* color =
    daeSafeCast<domCommon_color_or_texture_type_complexType::domColor>(element->getDescendant("color"));
    if (color)
    {
        domFx_color_common domfx_color = color->getValue();
        value = LLColor4(domfx_color[0], domfx_color[1], domfx_color[2], domfx_color[3]);
    }

    return value;
}

bool LLDAELoader::addVolumeFacesFromDomMesh(LLModel* pModel,domMesh* mesh, LLSD& log_msg)
{
    LLModel::EModelStatus status = LLModel::NO_ERRORS;
    domTriangles_Array& tris = mesh->getTriangles_array();

    for (U32 i = 0; i < tris.getCount(); ++i)
    {
        domTrianglesRef& tri = tris.get(i);

        status = load_face_from_dom_triangles(pModel->getVolumeFaces(), pModel->getMaterialList(), tri, log_msg);
        pModel->mStatus = status;
        if(status != LLModel::NO_ERRORS)
        {
            pModel->ClearFacesAndMaterials();
            return false;
        }
    }

    domPolylist_Array& polys = mesh->getPolylist_array();
    for (U32 i = 0; i < polys.getCount(); ++i)
    {
        domPolylistRef& poly = polys.get(i);
        status = load_face_from_dom_polylist(pModel->getVolumeFaces(), pModel->getMaterialList(), poly, log_msg);

        if(status != LLModel::NO_ERRORS)
        {
            pModel->ClearFacesAndMaterials();
            return false;
        }
    }

    domPolygons_Array& polygons = mesh->getPolygons_array();

    for (U32 i = 0; i < polygons.getCount(); ++i)
    {
        domPolygonsRef& poly = polygons.get(i);

        status = load_face_from_dom_polygons(pModel->getVolumeFaces(), pModel->getMaterialList(), poly);

        if(status != LLModel::NO_ERRORS)
        {
            pModel->ClearFacesAndMaterials();
            return false;
        }
    }

    return (status == LLModel::NO_ERRORS);
}

//static diff version supports creating multiple models when material counts spill
// over the 8 face server-side limit
//
bool LLDAELoader::loadModelsFromDomMesh(domMesh* mesh, std::vector<LLModel*>& models_out, U32 submodel_limit)
{

    LLVolumeParams volume_params;
    volume_params.setType(LL_PCODE_PROFILE_SQUARE, LL_PCODE_PATH_LINE);

    models_out.clear();

    LLModel* ret = new LLModel(volume_params, 0.f);

    std::string model_name = getLodlessLabel(mesh);
    ret->mLabel = model_name + lod_suffix[mLod];

    llassert(!ret->mLabel.empty());

    // Like a monkey, ready to be shot into space
    //
    ret->ClearFacesAndMaterials();

    // Get the whole set of volume faces
    //
    addVolumeFacesFromDomMesh(ret, mesh, mWarningsArray);

    U32 volume_faces = ret->getNumVolumeFaces();

    // Side-steps all manner of issues when splitting models
    // and matching lower LOD materials to base models
    //
    ret->sortVolumeFacesByMaterialName();

    bool normalized = false;

    int submodelID = 0;

    // remove all faces that definitely won't fit into one model and submodel limit
    U32 face_limit = (submodel_limit + 1) * LL_SCULPT_MESH_MAX_FACES;
    if (face_limit < volume_faces)
    {
        ret->setNumVolumeFaces(face_limit);
    }

    LLVolume::face_list_t remainder;
    do
    {
        // Insure we do this once with the whole gang and not per-model
        //
        if (!normalized && !mNoNormalize)
        {
            normalized = true;
            ret->normalizeVolumeFaces();
        }

        ret->trimVolumeFacesToSize(LL_SCULPT_MESH_MAX_FACES, &remainder);

        // remove unused/redundant vertices after normalizing
        if (!mNoOptimize)
        {
            ret->remapVolumeFaces();
        }

        volume_faces = remainder.size();

        models_out.push_back(ret);

        // If we have left-over volume faces, create another model
        // to absorb them...
        //
        if (volume_faces)
        {
            LLModel* next = new LLModel(volume_params, 0.f);
            next->mSubmodelID = ++submodelID;
            next->mLabel = model_name + (char)((int)'a' + next->mSubmodelID) + lod_suffix[mLod];
            next->getVolumeFaces() = remainder;
            next->mNormalizedScale = ret->mNormalizedScale;
            next->mNormalizedTranslation = ret->mNormalizedTranslation;

            if ( ret->mMaterialList.size() > LL_SCULPT_MESH_MAX_FACES)
            {
                next->mMaterialList.assign(ret->mMaterialList.begin() + LL_SCULPT_MESH_MAX_FACES, ret->mMaterialList.end());
            }
            ret = next;
        }

        remainder.clear();

    } while (volume_faces);

    return true;
}