/** 
 * @file llpartdata.cpp
 * @brief Particle system data packing
 *
 * $LicenseInfo:firstyear=2003&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2010, Linden Research, Inc.
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * 
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#include "linden_common.h"

#include "llpartdata.h"
#include "message.h"

#include "lldatapacker.h"
#include "v4coloru.h"

#include "llsdutil.h"
#include "llsdutil_math.h"



const S32 PS_PART_DATA_GLOW_SIZE = 2;
const S32 PS_PART_DATA_BLEND_SIZE = 2;
const S32 PS_LEGACY_PART_DATA_BLOCK_SIZE = 4 + 2 + 4 + 4 + 2 + 2; //18
const S32 PS_SYS_DATA_BLOCK_SIZE = 68;
const S32 PS_MAX_DATA_BLOCK_SIZE = PS_SYS_DATA_BLOCK_SIZE+
									PS_LEGACY_PART_DATA_BLOCK_SIZE +
									PS_PART_DATA_BLEND_SIZE +
									PS_PART_DATA_GLOW_SIZE+
									8; //two S32 size fields

const S32 PS_LEGACY_DATA_BLOCK_SIZE = PS_SYS_DATA_BLOCK_SIZE + PS_LEGACY_PART_DATA_BLOCK_SIZE;

const F32 MAX_PART_SCALE = 4.f;

bool LLPartData::hasGlow() const
{
	return mStartGlow > 0.f || mEndGlow > 0.f;
}

bool LLPartData::hasBlendFunc() const
{
	return mBlendFuncSource != LLPartData::LL_PART_BF_SOURCE_ALPHA || mBlendFuncDest != LLPartData::LL_PART_BF_ONE_MINUS_SOURCE_ALPHA;
}

S32 LLPartData::getSize() const
{
	S32 size = PS_LEGACY_PART_DATA_BLOCK_SIZE;
	if (hasGlow()) size += PS_PART_DATA_GLOW_SIZE;
	if (hasBlendFunc()) size += PS_PART_DATA_BLEND_SIZE;

	return size;
}


BOOL LLPartData::unpackLegacy(LLDataPacker &dp)
{
	LLColor4U coloru;

	dp.unpackU32(mFlags, "pdflags");
	dp.unpackFixed(mMaxAge, "pdmaxage", FALSE, 8, 8);

	dp.unpackColor4U(coloru, "pdstartcolor");
	mStartColor.setVec(coloru);
	dp.unpackColor4U(coloru, "pdendcolor");
	mEndColor.setVec(coloru);
	dp.unpackFixed(mStartScale.mV[0], "pdstartscalex", FALSE, 3, 5);
	dp.unpackFixed(mStartScale.mV[1], "pdstartscaley", FALSE, 3, 5);
	dp.unpackFixed(mEndScale.mV[0], "pdendscalex", FALSE, 3, 5);
	dp.unpackFixed(mEndScale.mV[1], "pdendscaley", FALSE, 3, 5);

	mStartGlow = 0.f;
	mEndGlow = 0.f;
	mBlendFuncSource = LLPartData::LL_PART_BF_SOURCE_ALPHA;
	mBlendFuncDest = LLPartData::LL_PART_BF_ONE_MINUS_SOURCE_ALPHA;

	return TRUE;
}

BOOL LLPartData::unpack(LLDataPacker &dp)
{
	S32 size = 0;
	dp.unpackS32(size, "partsize");

	unpackLegacy(dp);
	size -= PS_LEGACY_PART_DATA_BLOCK_SIZE;

	if (mFlags & LL_PART_DATA_GLOW)
	{
		if (size < PS_PART_DATA_GLOW_SIZE) return FALSE;

		U8 tmp_glow = 0;
		dp.unpackU8(tmp_glow,"pdstartglow");
		mStartGlow = tmp_glow / 255.f;
		dp.unpackU8(tmp_glow,"pdendglow");
		mEndGlow = tmp_glow / 255.f;

		size -= PS_PART_DATA_GLOW_SIZE;
	}
	else
	{
		mStartGlow = 0.f;
		mEndGlow = 0.f;
	}

	if (mFlags & LL_PART_DATA_BLEND)
	{
		if (size < PS_PART_DATA_BLEND_SIZE) return FALSE;
		dp.unpackU8(mBlendFuncSource,"pdblendsource");
		dp.unpackU8(mBlendFuncDest,"pdblenddest");
		size -= PS_PART_DATA_BLEND_SIZE;
	}
	else
	{
		mBlendFuncSource = LLPartData::LL_PART_BF_SOURCE_ALPHA;
		mBlendFuncDest = LLPartData::LL_PART_BF_ONE_MINUS_SOURCE_ALPHA;
	}

	if (size > 0)
	{ //leftover bytes, unrecognized parameters
		U8 feh = 0;
		while (size > 0)
		{ //read remaining bytes in block
			dp.unpackU8(feh, "whippang");
			size--;
		}

		//this particle system won't display properly, better to not show anything
		return FALSE;
	}


	return TRUE;
}

void LLPartData::setFlags(const U32 flags)
{
	mFlags = flags;
}


void LLPartData::setMaxAge(const F32 max_age)
{
	mMaxAge = llclamp(max_age, 0.f, 30.f);
}


void LLPartData::setStartScale(const F32 xs, const F32 ys)
{
	mStartScale.mV[VX] = llmin(xs, MAX_PART_SCALE);
	mStartScale.mV[VY] = llmin(ys, MAX_PART_SCALE);
}


void LLPartData::setEndScale(const F32 xs, const F32 ys)
{
	mEndScale.mV[VX] = llmin(xs, MAX_PART_SCALE);
	mEndScale.mV[VY] = llmin(ys, MAX_PART_SCALE);
}


void LLPartData::setStartColor(const LLVector3 &rgb)
{
	mStartColor.setVec(rgb.mV[0], rgb.mV[1], rgb.mV[2]);
}


void LLPartData::setEndColor(const LLVector3 &rgb)
{
	mEndColor.setVec(rgb.mV[0], rgb.mV[1], rgb.mV[2]);
}

void LLPartData::setStartAlpha(const F32 alpha)
{
	mStartColor.mV[3] = alpha;
}
void LLPartData::setEndAlpha(const F32 alpha)
{
	mEndColor.mV[3] = alpha;
}

// static
bool LLPartData::validBlendFunc(S32 func)
{
	if (func >= 0
		&& func < LL_PART_BF_COUNT
		&& func != UNSUPPORTED_DEST_ALPHA
		&& func != UNSUPPORTED_ONE_MINUS_DEST_ALPHA)
	{
		return true;
	}
	return false;
}

LLPartSysData::LLPartSysData()
{
	mCRC = 0;
	mFlags = 0;

	mPartData.mFlags = 0;
	mPartData.mStartColor = LLColor4(1.f, 1.f, 1.f, 1.f);
	mPartData.mEndColor = LLColor4(1.f, 1.f, 1.f, 1.f);
	mPartData.mStartScale = LLVector2(1.f, 1.f);
	mPartData.mEndScale = LLVector2(1.f, 1.f);
	mPartData.mMaxAge = 10.0;
	mPartData.mBlendFuncSource = LLPartData::LL_PART_BF_SOURCE_ALPHA;
	mPartData.mBlendFuncDest = LLPartData::LL_PART_BF_ONE_MINUS_SOURCE_ALPHA;
	mPartData.mStartGlow = 0.f;
	mPartData.mEndGlow = 0.f;

	mMaxAge = 0.0;
	mStartAge = 0.0;
	mPattern = LL_PART_SRC_PATTERN_DROP;			// Pattern for particle velocity
	mInnerAngle = 0.0;								// Inner angle of PATTERN_ANGLE_*
	mOuterAngle = 0.0;								// Outer angle of PATTERN_ANGLE_*
	mBurstRate = 0.1f;								// How often to do a burst of particles
	mBurstPartCount = 1;							// How many particles in a burst
	mBurstSpeedMin = 1.f;						// Minimum particle velocity
	mBurstSpeedMax = 1.f;						// Maximum particle velocity
	mBurstRadius = 0.f;

	mNumParticles = 0;
}

BOOL LLPartSysData::unpackSystem(LLDataPacker &dp)
{
	dp.unpackU32(mCRC, "pscrc");
	dp.unpackU32(mFlags, "psflags");
	dp.unpackU8(mPattern, "pspattern");
	dp.unpackFixed(mMaxAge, "psmaxage", FALSE, 8, 8);
	dp.unpackFixed(mStartAge, "psstartage", FALSE, 8, 8);
	dp.unpackFixed(mInnerAngle, "psinnerangle", FALSE, 3, 5);
	dp.unpackFixed(mOuterAngle, "psouterangle", FALSE, 3, 5);
	dp.unpackFixed(mBurstRate, "psburstrate", FALSE, 8, 8);
	mBurstRate = llmax(0.01f, mBurstRate);
	dp.unpackFixed(mBurstRadius, "psburstradius", FALSE, 8, 8);
	dp.unpackFixed(mBurstSpeedMin, "psburstspeedmin", FALSE, 8, 8);
	dp.unpackFixed(mBurstSpeedMax, "psburstspeedmax", FALSE, 8, 8);
	dp.unpackU8(mBurstPartCount, "psburstpartcount");

	dp.unpackFixed(mAngularVelocity.mV[0], "psangvelx", TRUE, 8, 7);
	dp.unpackFixed(mAngularVelocity.mV[1], "psangvely", TRUE, 8, 7);
	dp.unpackFixed(mAngularVelocity.mV[2], "psangvelz", TRUE, 8, 7);

	dp.unpackFixed(mPartAccel.mV[0], "psaccelx", TRUE, 8, 7);
	dp.unpackFixed(mPartAccel.mV[1], "psaccely", TRUE, 8, 7);
	dp.unpackFixed(mPartAccel.mV[2], "psaccelz", TRUE, 8, 7);

	dp.unpackUUID(mPartImageID, "psuuid");
	dp.unpackUUID(mTargetUUID, "pstargetuuid");
	return TRUE;
}

BOOL LLPartSysData::unpackLegacy(LLDataPacker &dp)
{
	unpackSystem(dp);
	mPartData.unpackLegacy(dp);

	return TRUE;
}

BOOL LLPartSysData::unpack(LLDataPacker &dp)
{
	// syssize is currently unused.  Adding now when modifying the 'version to make extensible in the future
	S32 size = 0;
	dp.unpackS32(size, "syssize");
	
	if (size != PS_SYS_DATA_BLOCK_SIZE)
	{ //unexpected size, this viewer doesn't know how to parse this particle system
		
		//skip to LLPartData block
		U8 feh = 0;
		
		for (U32 i = 0; i < size; ++i)
		{
			dp.unpackU8(feh, "whippang");
		}
				
		dp.unpackS32(size, "partsize");
		//skip LLPartData block
		for (U32 i = 0; i < size; ++i)
		{
			dp.unpackU8(feh, "whippang");
		}
		return FALSE;
	}

	unpackSystem(dp);
	
	return mPartData.unpack(dp);
}

std::ostream& operator<<(std::ostream& s, const LLPartSysData &data)
{
	s << "Flags: " << std::hex << data.mFlags;
	s << " Pattern: " << std::hex << (U32) data.mPattern << "\n";
	s << "Age: [" << data.mStartAge << ", " << data.mMaxAge << "]\n";
	s << "Angle: [" << data.mInnerAngle << ", " << data.mOuterAngle << "]\n";
	s << "Burst Rate: " << data.mBurstRate << "\n";
	s << "Burst Radius: " << data.mBurstRadius << "\n";
	s << "Burst Speed: [" << data.mBurstSpeedMin << ", " << data.mBurstSpeedMax << "]\n";
	s << "Burst Part Count: " << std::hex << (U32) data.mBurstPartCount << "\n";
	s << "Angular Velocity: " << data.mAngularVelocity << "\n";
	s << "Accel: " << data.mPartAccel;
	return s;
}

BOOL LLPartSysData::isNullPS(const S32 block_num)
{
	U8 ps_data_block[PS_MAX_DATA_BLOCK_SIZE];
	U32 crc;

	S32 size;
	// Check size of block
	size = gMessageSystem->getSize("ObjectData", block_num, "PSBlock");
	
	if (!size)
	{
		return TRUE;
	}
	
	if (size > PS_MAX_DATA_BLOCK_SIZE)
	{
		//size is too big, newer particle version unsupported
		return TRUE;
	}

	gMessageSystem->getBinaryData("ObjectData", "PSBlock", ps_data_block, size, block_num, PS_MAX_DATA_BLOCK_SIZE);

	LLDataPackerBinaryBuffer dp(ps_data_block, size);
	if (size > PS_LEGACY_DATA_BLOCK_SIZE)
	{
		// non legacy systems pack a size before the CRC
		S32 tmp = 0;
		dp.unpackS32(tmp, "syssize");

		if (tmp > PS_SYS_DATA_BLOCK_SIZE)
		{ //unknown system data block size, don't know how to parse it, treat as NULL
			return TRUE;
		}
	}

	dp.unpackU32(crc, "crc");

	if (crc == 0)
	{
		return TRUE;
	}
	return FALSE;
}

BOOL LLPartSysData::unpackBlock(const S32 block_num)
{
	U8 ps_data_block[PS_MAX_DATA_BLOCK_SIZE];

	// Check size of block
	S32 size = gMessageSystem->getSize("ObjectData", block_num, "PSBlock");

	if (size > PS_MAX_DATA_BLOCK_SIZE)
	{
		// Larger packets are newer and unsupported
		return FALSE;
	}

	// Get from message
	gMessageSystem->getBinaryData("ObjectData", "PSBlock", ps_data_block, size, block_num, PS_MAX_DATA_BLOCK_SIZE);

	LLDataPackerBinaryBuffer dp(ps_data_block, size);

	if (size == PS_LEGACY_DATA_BLOCK_SIZE)
	{
		return unpackLegacy(dp);
	}
	else
	{
		return unpack(dp);
	}
}

bool LLPartSysData::isLegacyCompatible() const
{
	return !mPartData.hasGlow() && !mPartData.hasBlendFunc();
}

void LLPartSysData::clampSourceParticleRate()
{
	F32 particle_rate = 0;
	particle_rate = mBurstPartCount/mBurstRate;
	if (particle_rate > 256.f)
	{
		mBurstPartCount = llfloor(((F32)mBurstPartCount)*(256.f/particle_rate));
	}
}

void LLPartSysData::setPartAccel(const LLVector3 &accel)
{
	mPartAccel.mV[VX] = llclamp(accel.mV[VX], -100.f, 100.f);
	mPartAccel.mV[VY] = llclamp(accel.mV[VY], -100.f, 100.f);
	mPartAccel.mV[VZ] = llclamp(accel.mV[VZ], -100.f, 100.f);
}