/** * @file llmeshoptimizer.cpp * @brief Wrapper around meshoptimizer * * $LicenseInfo:firstyear=2021&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2021, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "llmeshoptimizer.h" #include "meshoptimizer.h" #include "llmath.h" #include "v2math.h" LLMeshOptimizer::LLMeshOptimizer() { // Todo: Looks like for memory management, we can add allocator and deallocator callbacks // Should be one time // meshopt_setAllocator(allocate, deallocate); } LLMeshOptimizer::~LLMeshOptimizer() { } //static void LLMeshOptimizer::generateShadowIndexBufferU32(U32 *destination, const U32 *indices, U64 index_count, const LLVector4a * vertex_positions, const LLVector4a * normals, const LLVector2 * text_coords, U64 vertex_count ) { meshopt_Stream streams[3]; S32 index = 0; if (vertex_positions) { streams[index].data = (const float*)vertex_positions; // Despite being LLVector4a, only x, y and z are in use streams[index].size = sizeof(F32) * 3; streams[index].stride = sizeof(F32) * 4; index++; } if (normals) { streams[index].data = (const float*)normals; streams[index].size = sizeof(F32) * 3; streams[index].stride = sizeof(F32) * 4; index++; } if (text_coords) { streams[index].data = (const float*)text_coords; streams[index].size = sizeof(F32) * 2; streams[index].stride = sizeof(F32) * 2; index++; } if (index == 0) { // invalid return; } meshopt_generateShadowIndexBufferMulti(destination, indices, index_count, vertex_count, streams, index ); } //static void LLMeshOptimizer::generateShadowIndexBufferU16(U16 *destination, const U16 *indices, U64 index_count, const LLVector4a * vertex_positions, const LLVector4a * normals, const LLVector2 * text_coords, U64 vertex_count ) { meshopt_Stream streams[3]; S32 index = 0; if (vertex_positions) { streams[index].data = (const float*)vertex_positions; streams[index].size = sizeof(F32) * 3; streams[index].stride = sizeof(F32) * 4; index++; } if (normals) { streams[index].data = (const float*)normals; streams[index].size = sizeof(F32) * 3; streams[index].stride = sizeof(F32) * 4; index++; } if (text_coords) { streams[index].data = (const float*)text_coords; streams[index].size = sizeof(F32) * 2; streams[index].stride = sizeof(F32) * 2; index++; } if (index == 0) { // invalid return; } meshopt_generateShadowIndexBufferMulti(destination, indices, index_count, vertex_count, streams, index); } void LLMeshOptimizer::optimizeVertexCacheU32(U32 * destination, const U32 * indices, U64 index_count, U64 vertex_count) { meshopt_optimizeVertexCache(destination, indices, index_count, vertex_count); } void LLMeshOptimizer::optimizeVertexCacheU16(U16 * destination, const U16 * indices, U64 index_count, U64 vertex_count) { meshopt_optimizeVertexCache(destination, indices, index_count, vertex_count); } size_t LLMeshOptimizer::generateRemapMultiU32( unsigned int* remap, const U32 * indices, U64 index_count, const LLVector4a * vertex_positions, const LLVector4a * normals, const LLVector2 * text_coords, U64 vertex_count) { meshopt_Stream streams[] = { {(const float*)vertex_positions, sizeof(F32) * 3, sizeof(F32) * 4}, {(const float*)normals, sizeof(F32) * 3, sizeof(F32) * 4}, {(const float*)text_coords, sizeof(F32) * 2, sizeof(F32) * 2}, }; // Remap can function without indices, // but providing indices helps with removing unused vertices U64 indeces_cmp = indices ? index_count : vertex_count; // meshopt_generateVertexRemapMulti will throw an assert if (indices[i] >= vertex_count) return meshopt_generateVertexRemapMulti(&remap[0], indices, indeces_cmp, vertex_count, streams, sizeof(streams) / sizeof(streams[0])); } size_t LLMeshOptimizer::generateRemapMultiU16( unsigned int* remap, const U16 * indices, U64 index_count, const LLVector4a * vertex_positions, const LLVector4a * normals, const LLVector2 * text_coords, U64 vertex_count) { S32 out_of_range_count = 0; U32* indices_u32 = NULL; if (indices) { indices_u32 = (U32*)ll_aligned_malloc_32(index_count * sizeof(U32)); for (U64 i = 0; i < index_count; i++) { if (indices[i] < vertex_count) { indices_u32[i] = (U32)indices[i]; } else { out_of_range_count++; indices_u32[i] = 0; } } } if (out_of_range_count) { LL_WARNS() << out_of_range_count << " indices are out of range." << LL_ENDL; } size_t unique = generateRemapMultiU32(remap, indices_u32, index_count, vertex_positions, normals, text_coords, vertex_count); ll_aligned_free_32(indices_u32); return unique; } void LLMeshOptimizer::remapIndexBufferU32(U32 * destination_indices, const U32 * indices, U64 index_count, const unsigned int* remap) { meshopt_remapIndexBuffer(destination_indices, indices, index_count, remap); } void LLMeshOptimizer::remapIndexBufferU16(U16 * destination_indices, const U16 * indices, U64 index_count, const unsigned int* remap) { meshopt_remapIndexBuffer(destination_indices, indices, index_count, remap); } void LLMeshOptimizer::remapPositionsBuffer(LLVector4a * destination_vertices, const LLVector4a * vertex_positions, U64 vertex_count, const unsigned int* remap) { meshopt_remapVertexBuffer((float*)destination_vertices, (const float*)vertex_positions, vertex_count, sizeof(LLVector4a), remap); } void LLMeshOptimizer::remapNormalsBuffer(LLVector4a * destination_normalss, const LLVector4a * normals, U64 mormals_count, const unsigned int* remap) { meshopt_remapVertexBuffer((float*)destination_normalss, (const float*)normals, mormals_count, sizeof(LLVector4a), remap); } void LLMeshOptimizer::remapUVBuffer(LLVector2 * destination_uvs, const LLVector2 * uv_positions, U64 uv_count, const unsigned int* remap) { meshopt_remapVertexBuffer((float*)destination_uvs, (const float*)uv_positions, uv_count, sizeof(LLVector2), remap); } //static U64 LLMeshOptimizer::simplifyU32(U32 *destination, const U32 *indices, U64 index_count, const LLVector4a *vertex_positions, U64 vertex_count, U64 vertex_positions_stride, U64 target_index_count, F32 target_error, bool sloppy, F32* result_error ) { if (sloppy) { return meshopt_simplifySloppy(destination, indices, index_count, (const float*)vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, result_error ); } else { return meshopt_simplify(destination, indices, index_count, (const float*)vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, 0, result_error ); } } //static U64 LLMeshOptimizer::simplify(U16 *destination, const U16 *indices, U64 index_count, const LLVector4a *vertex_positions, U64 vertex_count, U64 vertex_positions_stride, U64 target_index_count, F32 target_error, bool sloppy, F32* result_error ) { if (sloppy) { return meshopt_simplifySloppy(destination, indices, index_count, (const float*)vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, result_error ); } else { return meshopt_simplify(destination, indices, index_count, (const float*)vertex_positions, vertex_count, vertex_positions_stride, target_index_count, target_error, 0, result_error ); } }