/** * @file v3math.h * @brief LLVector3 class header file. * * $LicenseInfo:firstyear=2000&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_V3MATH_H #define LL_V3MATH_H #include "llerror.h" #include "llmath.h" #include "llsd.h" class LLVector2; class LLVector4; class LLVector4a; class LLMatrix3; class LLMatrix4; class LLVector3d; class LLQuaternion; // LLvector3 = |x y z w| static constexpr U32 LENGTHOFVECTOR3 = 3; class LLVector3 { public: F32 mV[LENGTHOFVECTOR3]; static const LLVector3 zero; static const LLVector3 x_axis; static const LLVector3 y_axis; static const LLVector3 z_axis; static const LLVector3 x_axis_neg; static const LLVector3 y_axis_neg; static const LLVector3 z_axis_neg; static const LLVector3 all_one; inline LLVector3(); // Initializes LLVector3 to (0, 0, 0) inline LLVector3(const F32 x, const F32 y, const F32 z); // Initializes LLVector3 to (x. y, z) inline explicit LLVector3(const F32 *vec); // Initializes LLVector3 to (vec[0]. vec[1], vec[2]) explicit LLVector3(const LLVector2 &vec); // Initializes LLVector3 to (vec[0]. vec[1], 0) explicit LLVector3(const LLVector3d &vec); // Initializes LLVector3 to (vec[0]. vec[1], vec[2]) explicit LLVector3(const LLVector4 &vec); // Initializes LLVector4 to (vec[0]. vec[1], vec[2]) explicit LLVector3(const LLVector4a& vec); // Initializes LLVector4 to (vec[0]. vec[1], vec[2]) explicit LLVector3(const LLSD& sd); LLSD getValue() const; void setValue(const LLSD& sd); inline bool isFinite() const; // checks to see if all values of LLVector3 are finite bool clamp(F32 min, F32 max); // Clamps all values to (min,max), returns true if data changed bool clamp(const LLVector3 &min_vec, const LLVector3 &max_vec); // Scales vector by another vector bool clampLength( F32 length_limit ); // Scales vector to limit length to a value void quantize16(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz); // changes the vector to reflect quatization void quantize8(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz); // changes the vector to reflect quatization void snap(S32 sig_digits); // snaps x,y,z to sig_digits decimal places bool abs(); // sets all values to absolute value of original value (first octant), returns true if changed inline void clear(); // Clears LLVector3 to (0, 0, 0) inline void setZero(); // Clears LLVector3 to (0, 0, 0) inline void clearVec(); // deprecated inline void zeroVec(); // deprecated inline void set(F32 x, F32 y, F32 z); // Sets LLVector3 to (x, y, z, 1) inline void set(const LLVector3 &vec); // Sets LLVector3 to vec inline void set(const F32 *vec); // Sets LLVector3 to vec const LLVector3& set(const LLVector4 &vec); const LLVector3& set(const LLVector3d &vec);// Sets LLVector3 to vec inline void setVec(F32 x, F32 y, F32 z); // deprecated inline void setVec(const LLVector3 &vec); // deprecated inline void setVec(const F32 *vec); // deprecated const LLVector3& setVec(const LLVector4 &vec); // deprecated const LLVector3& setVec(const LLVector3d &vec); // deprecated F32 length() const; // Returns magnitude of LLVector3 F32 lengthSquared() const; // Returns magnitude squared of LLVector3 F32 magVec() const; // deprecated F32 magVecSquared() const; // deprecated inline F32 normalize(); // Normalizes and returns the magnitude of LLVector3 inline F32 normVec(); // deprecated inline bool inRange( F32 min, F32 max ) const; // Returns true if all values of the vector are between min and max const LLVector3& rotVec(F32 angle, const LLVector3 &vec); // Rotates about vec by angle radians const LLVector3& rotVec(F32 angle, F32 x, F32 y, F32 z); // Rotates about x,y,z by angle radians const LLVector3& rotVec(const LLMatrix3 &mat); // Rotates by LLMatrix4 mat const LLVector3& rotVec(const LLQuaternion &q); // Rotates by LLQuaternion q const LLVector3& transVec(const LLMatrix4& mat); // Transforms by LLMatrix4 mat (mat * v) const LLVector3& scaleVec(const LLVector3& vec); // scales per component by vec LLVector3 scaledVec(const LLVector3& vec) const; // get a copy of this vector scaled by vec bool isNull() const; // Returns true if vector has a _very_small_ length bool isExactlyZero() const { return !mV[VX] && !mV[VY] && !mV[VZ]; } F32 operator[](int idx) const { return mV[idx]; } F32 &operator[](int idx) { return mV[idx]; } friend LLVector3 operator+(const LLVector3 &a, const LLVector3 &b); // Return vector a + b friend LLVector3 operator-(const LLVector3 &a, const LLVector3 &b); // Return vector a minus b friend F32 operator*(const LLVector3 &a, const LLVector3 &b); // Return a dot b friend LLVector3 operator%(const LLVector3 &a, const LLVector3 &b); // Return a cross b friend LLVector3 operator*(const LLVector3 &a, F32 k); // Return a times scaler k friend LLVector3 operator/(const LLVector3 &a, F32 k); // Return a divided by scaler k friend LLVector3 operator*(F32 k, const LLVector3 &a); // Return a times scaler k friend bool operator==(const LLVector3 &a, const LLVector3 &b); // Return a == b friend bool operator!=(const LLVector3 &a, const LLVector3 &b); // Return a != b // less than operator useful for using vectors as std::map keys friend bool operator<(const LLVector3 &a, const LLVector3 &b); // Return a < b friend const LLVector3& operator+=(LLVector3 &a, const LLVector3 &b); // Return vector a + b friend const LLVector3& operator-=(LLVector3 &a, const LLVector3 &b); // Return vector a minus b friend const LLVector3& operator%=(LLVector3 &a, const LLVector3 &b); // Return a cross b friend const LLVector3& operator*=(LLVector3 &a, const LLVector3 &b); // Returns a * b; friend const LLVector3& operator*=(LLVector3 &a, F32 k); // Return a times scaler k friend const LLVector3& operator/=(LLVector3 &a, F32 k); // Return a divided by scaler k friend const LLVector3& operator*=(LLVector3 &a, const LLQuaternion &b); // Returns a * b; friend LLVector3 operator-(const LLVector3 &a); // Return vector -a friend std::ostream& operator<<(std::ostream& s, const LLVector3 &a); // Stream a static bool parseVector3(const std::string& buf, LLVector3* value); }; typedef LLVector3 LLSimLocalVec; // Non-member functions F32 angle_between(const LLVector3 &a, const LLVector3 &b); // Returns angle (radians) between a and b bool are_parallel(const LLVector3 &a, const LLVector3 &b, F32 epsilon=F_APPROXIMATELY_ZERO); // Returns true if a and b are very close to parallel F32 dist_vec(const LLVector3 &a, const LLVector3 &b); // Returns distance between a and b F32 dist_vec_squared(const LLVector3 &a, const LLVector3 &b);// Returns distance squared between a and b F32 dist_vec_squared2D(const LLVector3 &a, const LLVector3 &b);// Returns distance squared between a and b ignoring Z component LLVector3 projected_vec(const LLVector3 &a, const LLVector3 &b); // Returns vector a projected on vector b LLVector3 inverse_projected_vec(const LLVector3 &a, const LLVector3 &b); // Returns vector a scaled such that projected_vec(inverse_projected_vec(a, b), b) == b; LLVector3 parallel_component(const LLVector3 &a, const LLVector3 &b); // Returns vector a projected on vector b (same as projected_vec) LLVector3 orthogonal_component(const LLVector3 &a, const LLVector3 &b); // Returns component of vector a not parallel to vector b (same as projected_vec) LLVector3 lerp(const LLVector3 &a, const LLVector3 &b, F32 u); // Returns a vector that is a linear interpolation between a and b LLVector3 point_to_box_offset(LLVector3& pos, const LLVector3* box); // Displacement from query point to nearest point on bounding box. bool box_valid_and_non_zero(const LLVector3* box); inline LLVector3::LLVector3() { mV[VX] = 0.f; mV[VY] = 0.f; mV[VZ] = 0.f; } inline LLVector3::LLVector3(const F32 x, const F32 y, const F32 z) { mV[VX] = x; mV[VY] = y; mV[VZ] = z; } inline LLVector3::LLVector3(const F32 *vec) { mV[VX] = vec[VX]; mV[VY] = vec[VY]; mV[VZ] = vec[VZ]; } /* inline LLVector3::LLVector3(const LLVector3 ©) { mV[VX] = copy.mV[VX]; mV[VY] = copy.mV[VY]; mV[VZ] = copy.mV[VZ]; } */ // Destructors // checker inline bool LLVector3::isFinite() const { return (llfinite(mV[VX]) && llfinite(mV[VY]) && llfinite(mV[VZ])); } // Clear and Assignment Functions inline void LLVector3::clear() { mV[VX] = 0.f; mV[VY] = 0.f; mV[VZ] = 0.f; } inline void LLVector3::setZero() { mV[VX] = 0.f; mV[VY] = 0.f; mV[VZ] = 0.f; } inline void LLVector3::clearVec() { mV[VX] = 0.f; mV[VY] = 0.f; mV[VZ] = 0.f; } inline void LLVector3::zeroVec() { mV[VX] = 0.f; mV[VY] = 0.f; mV[VZ] = 0.f; } inline void LLVector3::set(F32 x, F32 y, F32 z) { mV[VX] = x; mV[VY] = y; mV[VZ] = z; } inline void LLVector3::set(const LLVector3& vec) { mV[VX] = vec.mV[VX]; mV[VY] = vec.mV[VY]; mV[VZ] = vec.mV[VZ]; } inline void LLVector3::set(const F32* vec) { mV[VX] = vec[0]; mV[VY] = vec[1]; mV[VZ] = vec[2]; } // deprecated inline void LLVector3::setVec(F32 x, F32 y, F32 z) { mV[VX] = x; mV[VY] = y; mV[VZ] = z; } // deprecated inline void LLVector3::setVec(const LLVector3& vec) { mV[VX] = vec.mV[VX]; mV[VY] = vec.mV[VY]; mV[VZ] = vec.mV[VZ]; } // deprecated inline void LLVector3::setVec(const F32* vec) { mV[VX] = vec[0]; mV[VY] = vec[1]; mV[VZ] = vec[2]; } inline F32 LLVector3::normalize() { F32 mag = (F32) sqrt(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]); F32 oomag; if (mag > FP_MAG_THRESHOLD) { oomag = 1.f/mag; mV[VX] *= oomag; mV[VY] *= oomag; mV[VZ] *= oomag; } else { mV[VX] = 0.f; mV[VY] = 0.f; mV[VZ] = 0.f; mag = 0; } return (mag); } // deprecated inline F32 LLVector3::normVec() { F32 mag = sqrt(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]); F32 oomag; if (mag > FP_MAG_THRESHOLD) { oomag = 1.f/mag; mV[VX] *= oomag; mV[VY] *= oomag; mV[VZ] *= oomag; } else { mV[VX] = 0.f; mV[VY] = 0.f; mV[VZ] = 0.f; mag = 0; } return (mag); } // LLVector3 Magnitude and Normalization Functions inline F32 LLVector3::length() const { return sqrt(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]); } inline F32 LLVector3::lengthSquared() const { return mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]; } inline F32 LLVector3::magVec() const { return sqrt(mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]); } inline F32 LLVector3::magVecSquared() const { return mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ]; } inline bool LLVector3::inRange( F32 min, F32 max ) const { return mV[VX] >= min && mV[VX] <= max && mV[VY] >= min && mV[VY] <= max && mV[VZ] >= min && mV[VZ] <= max; } inline LLVector3 operator+(const LLVector3& a, const LLVector3& b) { LLVector3 c(a); return c += b; } inline LLVector3 operator-(const LLVector3& a, const LLVector3& b) { LLVector3 c(a); return c -= b; } inline F32 operator*(const LLVector3& a, const LLVector3& b) { return (a.mV[VX]*b.mV[VX] + a.mV[VY]*b.mV[VY] + a.mV[VZ]*b.mV[VZ]); } inline LLVector3 operator%(const LLVector3& a, const LLVector3& b) { return LLVector3( a.mV[VY]*b.mV[VZ] - b.mV[VY]*a.mV[VZ], a.mV[VZ]*b.mV[VX] - b.mV[VZ]*a.mV[VX], a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY] ); } inline LLVector3 operator/(const LLVector3& a, F32 k) { F32 t = 1.f / k; return LLVector3( a.mV[VX] * t, a.mV[VY] * t, a.mV[VZ] * t ); } inline LLVector3 operator*(const LLVector3& a, F32 k) { return LLVector3( a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k ); } inline LLVector3 operator*(F32 k, const LLVector3& a) { return LLVector3( a.mV[VX] * k, a.mV[VY] * k, a.mV[VZ] * k ); } inline bool operator==(const LLVector3& a, const LLVector3& b) { return ( (a.mV[VX] == b.mV[VX]) &&(a.mV[VY] == b.mV[VY]) &&(a.mV[VZ] == b.mV[VZ])); } inline bool operator!=(const LLVector3& a, const LLVector3& b) { return ( (a.mV[VX] != b.mV[VX]) ||(a.mV[VY] != b.mV[VY]) ||(a.mV[VZ] != b.mV[VZ])); } inline bool operator<(const LLVector3& a, const LLVector3& b) { return (a.mV[VX] < b.mV[VX] || (a.mV[VX] == b.mV[VX] && (a.mV[VY] < b.mV[VY] || ((a.mV[VY] == b.mV[VY]) && a.mV[VZ] < b.mV[VZ])))); } inline const LLVector3& operator+=(LLVector3& a, const LLVector3& b) { a.mV[VX] += b.mV[VX]; a.mV[VY] += b.mV[VY]; a.mV[VZ] += b.mV[VZ]; return a; } inline const LLVector3& operator-=(LLVector3& a, const LLVector3& b) { a.mV[VX] -= b.mV[VX]; a.mV[VY] -= b.mV[VY]; a.mV[VZ] -= b.mV[VZ]; return a; } inline const LLVector3& operator%=(LLVector3& a, const LLVector3& b) { LLVector3 ret( a.mV[VY]*b.mV[VZ] - b.mV[VY]*a.mV[VZ], a.mV[VZ]*b.mV[VX] - b.mV[VZ]*a.mV[VX], a.mV[VX]*b.mV[VY] - b.mV[VX]*a.mV[VY]); a = ret; return a; } inline const LLVector3& operator*=(LLVector3& a, F32 k) { a.mV[VX] *= k; a.mV[VY] *= k; a.mV[VZ] *= k; return a; } inline const LLVector3& operator*=(LLVector3& a, const LLVector3& b) { a.mV[VX] *= b.mV[VX]; a.mV[VY] *= b.mV[VY]; a.mV[VZ] *= b.mV[VZ]; return a; } inline const LLVector3& operator/=(LLVector3& a, F32 k) { a.mV[VX] /= k; a.mV[VY] /= k; a.mV[VZ] /= k; return a; } inline const LLVector3& operator/=(LLVector3& a, const LLVector3& b) { a.mV[VX] /= b.mV[VX]; a.mV[VY] /= b.mV[VY]; a.mV[VZ] /= b.mV[VZ]; return a; } inline LLVector3 operator-(const LLVector3& a) { return LLVector3( -a.mV[VX], -a.mV[VY], -a.mV[VZ] ); } inline F32 dist_vec(const LLVector3& a, const LLVector3& b) { F32 x = a.mV[VX] - b.mV[VX]; F32 y = a.mV[VY] - b.mV[VY]; F32 z = a.mV[VZ] - b.mV[VZ]; return sqrt( x*x + y*y + z*z ); } inline F32 dist_vec_squared(const LLVector3& a, const LLVector3& b) { F32 x = a.mV[VX] - b.mV[VX]; F32 y = a.mV[VY] - b.mV[VY]; F32 z = a.mV[VZ] - b.mV[VZ]; return x*x + y*y + z*z; } inline F32 dist_vec_squared2D(const LLVector3& a, const LLVector3& b) { F32 x = a.mV[VX] - b.mV[VX]; F32 y = a.mV[VY] - b.mV[VY]; return x*x + y*y; } inline LLVector3 projected_vec(const LLVector3& a, const LLVector3& b) { F32 bb = b * b; if (bb > FP_MAG_THRESHOLD * FP_MAG_THRESHOLD) { return ((a * b) / bb) * b; } else { return b.zero; } } inline LLVector3 inverse_projected_vec(const LLVector3& a, const LLVector3& b) { LLVector3 normalized_a = a; normalized_a.normalize(); LLVector3 normalized_b = b; F32 b_length = normalized_b.normalize(); F32 dot_product = normalized_a * normalized_b; //NB: if a _|_ b, then returns an infinite vector return normalized_a * (b_length / dot_product); } inline LLVector3 parallel_component(const LLVector3& a, const LLVector3& b) { return projected_vec(a, b); } inline LLVector3 orthogonal_component(const LLVector3& a, const LLVector3& b) { return a - projected_vec(a, b); } inline LLVector3 lerp(const LLVector3& a, const LLVector3& b, F32 u) { return LLVector3( a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u, a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u, a.mV[VZ] + (b.mV[VZ] - a.mV[VZ]) * u); } inline bool LLVector3::isNull() const { if ( F_APPROXIMATELY_ZERO > mV[VX]*mV[VX] + mV[VY]*mV[VY] + mV[VZ]*mV[VZ] ) { return true; } return false; } inline void update_min_max(LLVector3& min, LLVector3& max, const LLVector3& pos) { for (U32 i = 0; i < 3; i++) { if (min.mV[i] > pos.mV[i]) { min.mV[i] = pos.mV[i]; } if (max.mV[i] < pos.mV[i]) { max.mV[i] = pos.mV[i]; } } } inline void update_min_max(LLVector3& min, LLVector3& max, const F32* pos) { for (U32 i = 0; i < 3; i++) { if (min.mV[i] > pos[i]) { min.mV[i] = pos[i]; } if (max.mV[i] < pos[i]) { max.mV[i] = pos[i]; } } } inline F32 angle_between(const LLVector3& a, const LLVector3& b) { F32 ab = a * b; // dotproduct if (ab == -0.0f) { ab = 0.0f; // get rid of negative zero } LLVector3 c = a % b; // crossproduct return atan2f(sqrtf(c * c), ab); // return the angle } inline bool are_parallel(const LLVector3& a, const LLVector3& b, F32 epsilon) { LLVector3 an = a; LLVector3 bn = b; an.normalize(); bn.normalize(); F32 dot = an * bn; if ( (1.0f - fabs(dot)) < epsilon) { return true; } return false; } inline std::ostream& operator<<(std::ostream& s, const LLVector3 &a) { s << "{ " << a.mV[VX] << ", " << a.mV[VY] << ", " << a.mV[VZ] << " }"; return s; } #endif