/** * @file v3math.cpp * @brief LLVector3 class implementation. * * $LicenseInfo:firstyear=2000&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" #include "v3math.h" //#include "vmath.h" #include "v2math.h" #include "v4math.h" #include "m4math.h" #include "m3math.h" #include "llquaternion.h" #include "llquantize.h" #include "v3dmath.h" // LLVector3 // WARNING: Don't use these for global const definitions! // For example: // const LLQuaternion(0.5f * F_PI, LLVector3::zero); // at the top of a *.cpp file might not give you what you think. const LLVector3 LLVector3::zero(0,0,0); const LLVector3 LLVector3::x_axis(1.f, 0, 0); const LLVector3 LLVector3::y_axis(0, 1.f, 0); const LLVector3 LLVector3::z_axis(0, 0, 1.f); const LLVector3 LLVector3::x_axis_neg(-1.f, 0, 0); const LLVector3 LLVector3::y_axis_neg(0, -1.f, 0); const LLVector3 LLVector3::z_axis_neg(0, 0, -1.f); const LLVector3 LLVector3::all_one(1.f,1.f,1.f); // Clamps each values to range (min,max). // Returns true if data changed. bool LLVector3::clamp(F32 min, F32 max) { bool ret{ false }; if (mV[VX] < min) { mV[VX] = min; ret = true; } if (mV[VY] < min) { mV[VY] = min; ret = true; } if (mV[VZ] < min) { mV[VZ] = min; ret = true; } if (mV[VX] > max) { mV[VX] = max; ret = true; } if (mV[VY] > max) { mV[VY] = max; ret = true; } if (mV[VZ] > max) { mV[VZ] = max; ret = true; } return ret; } // Clamps length to an upper limit. // Returns true if the data changed bool LLVector3::clampLength( F32 length_limit ) { bool changed{ false }; F32 len = length(); if (llfinite(len)) { if ( len > length_limit) { normalize(); if (length_limit < 0.f) { length_limit = 0.f; } mV[VX] *= length_limit; mV[VY] *= length_limit; mV[VZ] *= length_limit; changed = true; } } else { // this vector may still be salvagable F32 max_abs_component = 0.f; for (S32 i = 0; i < 3; ++i) { F32 abs_component = fabs(mV[i]); if (llfinite(abs_component)) { if (abs_component > max_abs_component) { max_abs_component = abs_component; } } else { // no it can't be salvaged --> clear it clear(); changed = true; break; } } if (!changed) { // yes it can be salvaged --> // bring the components down before we normalize mV[VX] /= max_abs_component; mV[VY] /= max_abs_component; mV[VZ] /= max_abs_component; normalize(); if (length_limit < 0.f) { length_limit = 0.f; } mV[VX] *= length_limit; mV[VY] *= length_limit; mV[VZ] *= length_limit; } } return changed; } bool LLVector3::clamp(const LLVector3& min_vec, const LLVector3& max_vec) { bool ret{ false }; if (mV[VX] < min_vec[0]) { mV[VX] = min_vec[0]; ret = true; } if (mV[VY] < min_vec[1]) { mV[VY] = min_vec[1]; ret = true; } if (mV[VZ] < min_vec[2]) { mV[VZ] = min_vec[2]; ret = true; } if (mV[VX] > max_vec[0]) { mV[VX] = max_vec[0]; ret = true; } if (mV[VY] > max_vec[1]) { mV[VY] = max_vec[1]; ret = true; } if (mV[VZ] > max_vec[2]) { mV[VZ] = max_vec[2]; ret = true; } return ret; } // Sets all values to absolute value of their original values // Returns true if data changed bool LLVector3::abs() { bool ret{ false }; if (mV[VX] < 0.f) { mV[VX] = -mV[VX]; ret = true; } if (mV[VY] < 0.f) { mV[VY] = -mV[VY]; ret = true; } if (mV[VZ] < 0.f) { mV[VZ] = -mV[VZ]; ret = true; } return ret; } // Quatizations void LLVector3::quantize16(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz) { F32 x = mV[VX]; F32 y = mV[VY]; F32 z = mV[VZ]; x = U16_to_F32(F32_to_U16(x, lowerxy, upperxy), lowerxy, upperxy); y = U16_to_F32(F32_to_U16(y, lowerxy, upperxy), lowerxy, upperxy); z = U16_to_F32(F32_to_U16(z, lowerz, upperz), lowerz, upperz); mV[VX] = x; mV[VY] = y; mV[VZ] = z; } void LLVector3::quantize8(F32 lowerxy, F32 upperxy, F32 lowerz, F32 upperz) { mV[VX] = U8_to_F32(F32_to_U8(mV[VX], lowerxy, upperxy), lowerxy, upperxy);; mV[VY] = U8_to_F32(F32_to_U8(mV[VY], lowerxy, upperxy), lowerxy, upperxy); mV[VZ] = U8_to_F32(F32_to_U8(mV[VZ], lowerz, upperz), lowerz, upperz); } void LLVector3::snap(S32 sig_digits) { mV[VX] = snap_to_sig_figs(mV[VX], sig_digits); mV[VY] = snap_to_sig_figs(mV[VY], sig_digits); mV[VZ] = snap_to_sig_figs(mV[VZ], sig_digits); } const LLVector3& LLVector3::rotVec(const LLMatrix3& mat) { *this = *this * mat; return *this; } const LLVector3& LLVector3::rotVec(const LLQuaternion& q) { *this = *this * q; return *this; } const LLVector3& LLVector3::transVec(const LLMatrix4& mat) { setVec( mV[VX] * mat.mMatrix[VX][VX] + mV[VY] * mat.mMatrix[VX][VY] + mV[VZ] * mat.mMatrix[VX][VZ] + mat.mMatrix[VX][VW], mV[VX] * mat.mMatrix[VY][VX] + mV[VY] * mat.mMatrix[VY][VY] + mV[VZ] * mat.mMatrix[VY][VZ] + mat.mMatrix[VY][VW], mV[VX] * mat.mMatrix[VZ][VX] + mV[VY] * mat.mMatrix[VZ][VY] + mV[VZ] * mat.mMatrix[VZ][VZ] + mat.mMatrix[VZ][VW]); return *this; } const LLVector3& LLVector3::rotVec(F32 angle, const LLVector3& vec) { if ( !vec.isExactlyZero() && angle ) { *this = *this * LLQuaternion(angle, vec); } return *this; } const LLVector3& LLVector3::rotVec(F32 angle, F32 x, F32 y, F32 z) { LLVector3 vec(x, y, z); if ( !vec.isExactlyZero() && angle ) { *this = *this * LLQuaternion(angle, vec); } return *this; } const LLVector3& LLVector3::scaleVec(const LLVector3& vec) { mV[VX] *= vec.mV[VX]; mV[VY] *= vec.mV[VY]; mV[VZ] *= vec.mV[VZ]; return *this; } LLVector3 LLVector3::scaledVec(const LLVector3& vec) const { LLVector3 ret = LLVector3(*this); ret.scaleVec(vec); return ret; } const LLVector3& LLVector3::set(const LLVector3d& vec) { mV[VX] = (F32)vec.mdV[VX]; mV[VY] = (F32)vec.mdV[VY]; mV[VZ] = (F32)vec.mdV[VZ]; return (*this); } const LLVector3& LLVector3::set(const LLVector4& vec) { mV[VX] = vec.mV[VX]; mV[VY] = vec.mV[VY]; mV[VZ] = vec.mV[VZ]; return (*this); } const LLVector3& LLVector3::setVec(const LLVector3d& vec) { mV[VX] = (F32)vec.mdV[0]; mV[VY] = (F32)vec.mdV[1]; mV[VZ] = (F32)vec.mdV[2]; return (*this); } const LLVector3& LLVector3::setVec(const LLVector4& vec) { mV[VX] = vec.mV[VX]; mV[VY] = vec.mV[VY]; mV[VZ] = vec.mV[VZ]; return (*this); } LLVector3::LLVector3(const LLVector2 &vec) { mV[VX] = (F32)vec.mV[VX]; mV[VY] = (F32)vec.mV[VY]; mV[VZ] = 0; } LLVector3::LLVector3(const LLVector3d& vec) { mV[VX] = (F32)vec.mdV[VX]; mV[VY] = (F32)vec.mdV[VY]; mV[VZ] = (F32)vec.mdV[VZ]; } LLVector3::LLVector3(const LLVector4& vec) { mV[VX] = (F32)vec.mV[VX]; mV[VY] = (F32)vec.mV[VY]; mV[VZ] = (F32)vec.mV[VZ]; } LLVector3::LLVector3(const LLVector4a& vec) : LLVector3(vec.getF32ptr()) { } LLVector3::LLVector3(const LLSD& sd) { setValue(sd); } LLSD LLVector3::getValue() const { LLSD ret; ret[0] = mV[VX]; ret[1] = mV[VY]; ret[2] = mV[VZ]; return ret; } void LLVector3::setValue(const LLSD& sd) { mV[VX] = (F32) sd[0].asReal(); mV[VY] = (F32) sd[1].asReal(); mV[VZ] = (F32) sd[2].asReal(); } const LLVector3& operator*=(LLVector3& a, const LLQuaternion& rot) { const F32 rw = - rot.mQ[VX] * a.mV[VX] - rot.mQ[VY] * a.mV[VY] - rot.mQ[VZ] * a.mV[VZ]; const F32 rx = rot.mQ[VW] * a.mV[VX] + rot.mQ[VY] * a.mV[VZ] - rot.mQ[VZ] * a.mV[VY]; const F32 ry = rot.mQ[VW] * a.mV[VY] + rot.mQ[VZ] * a.mV[VX] - rot.mQ[VX] * a.mV[VZ]; const F32 rz = rot.mQ[VW] * a.mV[VZ] + rot.mQ[VX] * a.mV[VY] - rot.mQ[VY] * a.mV[VX]; a.mV[VX] = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY]; a.mV[VY] = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ]; a.mV[VZ] = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX]; return a; } // static bool LLVector3::parseVector3(const std::string& buf, LLVector3* value) { if( buf.empty() || value == nullptr) { return false; } LLVector3 v; S32 count = sscanf( buf.c_str(), "%f %f %f", v.mV + 0, v.mV + 1, v.mV + 2 ); if( 3 == count ) { value->setVec( v ); return true; } return false; } // Displacement from query point to nearest neighbor point on bounding box. // Returns zero vector for points within or on the box. LLVector3 point_to_box_offset(LLVector3& pos, const LLVector3* box) { LLVector3 offset; for (S32 k=0; k<3; k++) { offset[k] = 0; if (pos[k] < box[0][k]) { offset[k] = pos[k] - box[0][k]; } else if (pos[k] > box[1][k]) { offset[k] = pos[k] - box[1][k]; } } return offset; } bool box_valid_and_non_zero(const LLVector3* box) { if (!box[0].isFinite() || !box[1].isFinite()) { return false; } LLVector3 zero_vec; zero_vec.clear(); if ((box[0] != zero_vec) || (box[1] != zero_vec)) { return true; } return false; }