/** * @file v3dmath.h * @brief High precision 3 dimensional vector. * * $LicenseInfo:firstyear=2000&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_V3DMATH_H #define LL_V3DMATH_H #include "llerror.h" #include "v3math.h" class LLVector3d { public: F64 mdV[3]; const static LLVector3d zero; const static LLVector3d x_axis; const static LLVector3d y_axis; const static LLVector3d z_axis; const static LLVector3d x_axis_neg; const static LLVector3d y_axis_neg; const static LLVector3d z_axis_neg; inline LLVector3d(); // Initializes LLVector3d to (0, 0, 0) inline LLVector3d(const F64 x, const F64 y, const F64 z); // Initializes LLVector3d to (x. y, z) inline explicit LLVector3d(const F64 *vec); // Initializes LLVector3d to (vec[0]. vec[1], vec[2]) inline explicit LLVector3d(const LLVector3 &vec); explicit LLVector3d(const LLSD& sd) { setValue(sd); } void setValue(const LLSD& sd) { mdV[VX] = sd[0].asReal(); mdV[VY] = sd[1].asReal(); mdV[VZ] = sd[2].asReal(); } LLSD getValue() const { LLSD ret; ret[0] = mdV[VX]; ret[1] = mdV[VY]; ret[2] = mdV[VZ]; return ret; } inline bool isFinite() const; // checks to see if all values of LLVector3d are finite bool clamp(const F64 min, const F64 max); // Clamps all values to (min,max), returns true if data changed bool abs(); // sets all values to absolute value of original value (first octant), returns true if changed inline const LLVector3d& clear(); // Clears LLVector3d to (0, 0, 0, 1) inline const LLVector3d& clearVec(); // deprecated inline const LLVector3d& setZero(); // Zero LLVector3d to (0, 0, 0, 0) inline const LLVector3d& zeroVec(); // deprecated inline const LLVector3d& set(const F64 x, const F64 y, const F64 z); // Sets LLVector3d to (x, y, z, 1) inline const LLVector3d& set(const LLVector3d &vec); // Sets LLVector3d to vec inline const LLVector3d& set(const F64 *vec); // Sets LLVector3d to vec inline const LLVector3d& set(const LLVector3 &vec); inline const LLVector3d& setVec(const F64 x, const F64 y, const F64 z); // deprecated inline const LLVector3d& setVec(const LLVector3d &vec); // deprecated inline const LLVector3d& setVec(const F64 *vec); // deprecated inline const LLVector3d& setVec(const LLVector3 &vec); // deprecated F64 magVec() const; // deprecated F64 magVecSquared() const; // deprecated inline F64 normVec(); // deprecated F64 length() const; // Returns magnitude of LLVector3d F64 lengthSquared() const; // Returns magnitude squared of LLVector3d inline F64 normalize(); // Normalizes and returns the magnitude of LLVector3d const LLVector3d& rotVec(const F64 angle, const LLVector3d &vec); // Rotates about vec by angle radians const LLVector3d& rotVec(const F64 angle, const F64 x, const F64 y, const F64 z); // Rotates about x,y,z by angle radians const LLVector3d& rotVec(const LLMatrix3 &mat); // Rotates by LLMatrix4 mat const LLVector3d& rotVec(const LLQuaternion &q); // Rotates by LLQuaternion q bool isNull() const; // Returns true if vector has a _very_small_ length bool isExactlyZero() const { return !mdV[VX] && !mdV[VY] && !mdV[VZ]; } const LLVector3d& operator=(const LLVector4 &a); F64 operator[](int idx) const { return mdV[idx]; } F64 &operator[](int idx) { return mdV[idx]; } friend LLVector3d operator+(const LLVector3d& a, const LLVector3d& b); // Return vector a + b friend LLVector3d operator-(const LLVector3d& a, const LLVector3d& b); // Return vector a minus b friend F64 operator*(const LLVector3d& a, const LLVector3d& b); // Return a dot b friend LLVector3d operator%(const LLVector3d& a, const LLVector3d& b); // Return a cross b friend LLVector3d operator*(const LLVector3d& a, const F64 k); // Return a times scaler k friend LLVector3d operator/(const LLVector3d& a, const F64 k); // Return a divided by scaler k friend LLVector3d operator*(const F64 k, const LLVector3d& a); // Return a times scaler k friend bool operator==(const LLVector3d& a, const LLVector3d& b); // Return a == b friend bool operator!=(const LLVector3d& a, const LLVector3d& b); // Return a != b friend const LLVector3d& operator+=(LLVector3d& a, const LLVector3d& b); // Return vector a + b friend const LLVector3d& operator-=(LLVector3d& a, const LLVector3d& b); // Return vector a minus b friend const LLVector3d& operator%=(LLVector3d& a, const LLVector3d& b); // Return a cross b friend const LLVector3d& operator*=(LLVector3d& a, const F64 k); // Return a times scaler k friend const LLVector3d& operator/=(LLVector3d& a, const F64 k); // Return a divided by scaler k friend LLVector3d operator-(const LLVector3d& a); // Return vector -a friend std::ostream& operator<<(std::ostream& s, const LLVector3d& a); // Stream a static bool parseVector3d(const std::string& buf, LLVector3d* value); }; typedef LLVector3d LLGlobalVec; inline const LLVector3d &LLVector3d::set(const LLVector3 &vec) { mdV[VX] = vec.mV[VX]; mdV[VY] = vec.mV[VY]; mdV[VZ] = vec.mV[VZ]; return *this; } inline const LLVector3d &LLVector3d::setVec(const LLVector3 &vec) { mdV[VX] = vec.mV[VX]; mdV[VY] = vec.mV[VY]; mdV[VZ] = vec.mV[VZ]; return *this; } inline LLVector3d::LLVector3d(void) { mdV[VX] = 0.f; mdV[VY] = 0.f; mdV[VZ] = 0.f; } inline LLVector3d::LLVector3d(const F64 x, const F64 y, const F64 z) { mdV[VX] = x; mdV[VY] = y; mdV[VZ] = z; } inline LLVector3d::LLVector3d(const F64 *vec) { mdV[VX] = vec[VX]; mdV[VY] = vec[VY]; mdV[VZ] = vec[VZ]; } inline LLVector3d::LLVector3d(const LLVector3 &vec) { mdV[VX] = vec.mV[VX]; mdV[VY] = vec.mV[VY]; mdV[VZ] = vec.mV[VZ]; } /* inline LLVector3d::LLVector3d(const LLVector3d ©) { mdV[VX] = copy.mdV[VX]; mdV[VY] = copy.mdV[VY]; mdV[VZ] = copy.mdV[VZ]; } */ // Destructors // checker inline bool LLVector3d::isFinite() const { return (llfinite(mdV[VX]) && llfinite(mdV[VY]) && llfinite(mdV[VZ])); } // Clear and Assignment Functions inline const LLVector3d& LLVector3d::clear(void) { mdV[VX] = 0.f; mdV[VY] = 0.f; mdV[VZ] = 0.f; return (*this); } inline const LLVector3d& LLVector3d::clearVec(void) { mdV[VX] = 0.f; mdV[VY] = 0.f; mdV[VZ] = 0.f; return (*this); } inline const LLVector3d& LLVector3d::setZero(void) { mdV[VX] = 0.f; mdV[VY] = 0.f; mdV[VZ] = 0.f; return (*this); } inline const LLVector3d& LLVector3d::zeroVec(void) { mdV[VX] = 0.f; mdV[VY] = 0.f; mdV[VZ] = 0.f; return (*this); } inline const LLVector3d& LLVector3d::set(const F64 x, const F64 y, const F64 z) { mdV[VX] = x; mdV[VY] = y; mdV[VZ] = z; return (*this); } inline const LLVector3d& LLVector3d::set(const LLVector3d &vec) { mdV[VX] = vec.mdV[VX]; mdV[VY] = vec.mdV[VY]; mdV[VZ] = vec.mdV[VZ]; return (*this); } inline const LLVector3d& LLVector3d::set(const F64 *vec) { mdV[VX] = vec[0]; mdV[VY] = vec[1]; mdV[VZ] = vec[2]; return (*this); } inline const LLVector3d& LLVector3d::setVec(const F64 x, const F64 y, const F64 z) { mdV[VX] = x; mdV[VY] = y; mdV[VZ] = z; return (*this); } inline const LLVector3d& LLVector3d::setVec(const LLVector3d& vec) { mdV[VX] = vec.mdV[VX]; mdV[VY] = vec.mdV[VY]; mdV[VZ] = vec.mdV[VZ]; return (*this); } inline const LLVector3d& LLVector3d::setVec(const F64* vec) { mdV[VX] = vec[VX]; mdV[VY] = vec[VY]; mdV[VZ] = vec[VZ]; return (*this); } inline F64 LLVector3d::normVec() { F64 mag = sqrt(mdV[VX]*mdV[VX] + mdV[VY]*mdV[VY] + mdV[VZ]*mdV[VZ]); F64 oomag; if (mag > FP_MAG_THRESHOLD) { oomag = 1.f/mag; mdV[VX] *= oomag; mdV[VY] *= oomag; mdV[VZ] *= oomag; } else { mdV[VX] = 0.f; mdV[VY] = 0.f; mdV[VZ] = 0.f; mag = 0; } return (mag); } inline F64 LLVector3d::normalize() { F64 mag = sqrt(mdV[VX]*mdV[VX] + mdV[VY]*mdV[VY] + mdV[VZ]*mdV[VZ]); F64 oomag; if (mag > FP_MAG_THRESHOLD) { oomag = 1.f/mag; mdV[VX] *= oomag; mdV[VY] *= oomag; mdV[VZ] *= oomag; } else { mdV[VX] = 0.f; mdV[VY] = 0.f; mdV[VZ] = 0.f; mag = 0; } return (mag); } // LLVector3d Magnitude and Normalization Functions inline F64 LLVector3d::magVec() const { return sqrt(mdV[VX]*mdV[VX] + mdV[VY]*mdV[VY] + mdV[VZ]*mdV[VZ]); } inline F64 LLVector3d::magVecSquared() const { return mdV[VX]*mdV[VX] + mdV[VY]*mdV[VY] + mdV[VZ]*mdV[VZ]; } inline F64 LLVector3d::length() const { return sqrt(mdV[VX]*mdV[VX] + mdV[VY]*mdV[VY] + mdV[VZ]*mdV[VZ]); } inline F64 LLVector3d::lengthSquared() const { return mdV[VX]*mdV[VX] + mdV[VY]*mdV[VY] + mdV[VZ]*mdV[VZ]; } inline LLVector3d operator+(const LLVector3d& a, const LLVector3d& b) { LLVector3d c(a); return c += b; } inline LLVector3d operator-(const LLVector3d& a, const LLVector3d& b) { LLVector3d c(a); return c -= b; } inline F64 operator*(const LLVector3d& a, const LLVector3d& b) { return (a.mdV[VX]*b.mdV[VX] + a.mdV[VY]*b.mdV[VY] + a.mdV[VZ]*b.mdV[VZ]); } inline LLVector3d operator%(const LLVector3d& a, const LLVector3d& b) { return LLVector3d( a.mdV[VY]*b.mdV[VZ] - b.mdV[VY]*a.mdV[VZ], a.mdV[VZ]*b.mdV[VX] - b.mdV[VZ]*a.mdV[VX], a.mdV[VX]*b.mdV[VY] - b.mdV[VX]*a.mdV[VY] ); } inline LLVector3d operator/(const LLVector3d& a, const F64 k) { F64 t = 1.f / k; return LLVector3d( a.mdV[VX] * t, a.mdV[VY] * t, a.mdV[VZ] * t ); } inline LLVector3d operator*(const LLVector3d& a, const F64 k) { return LLVector3d( a.mdV[VX] * k, a.mdV[VY] * k, a.mdV[VZ] * k ); } inline LLVector3d operator*(F64 k, const LLVector3d& a) { return LLVector3d( a.mdV[VX] * k, a.mdV[VY] * k, a.mdV[VZ] * k ); } inline bool operator==(const LLVector3d& a, const LLVector3d& b) { return ( (a.mdV[VX] == b.mdV[VX]) &&(a.mdV[VY] == b.mdV[VY]) &&(a.mdV[VZ] == b.mdV[VZ])); } inline bool operator!=(const LLVector3d& a, const LLVector3d& b) { return ( (a.mdV[VX] != b.mdV[VX]) ||(a.mdV[VY] != b.mdV[VY]) ||(a.mdV[VZ] != b.mdV[VZ])); } inline const LLVector3d& operator+=(LLVector3d& a, const LLVector3d& b) { a.mdV[VX] += b.mdV[VX]; a.mdV[VY] += b.mdV[VY]; a.mdV[VZ] += b.mdV[VZ]; return a; } inline const LLVector3d& operator-=(LLVector3d& a, const LLVector3d& b) { a.mdV[VX] -= b.mdV[VX]; a.mdV[VY] -= b.mdV[VY]; a.mdV[VZ] -= b.mdV[VZ]; return a; } inline const LLVector3d& operator%=(LLVector3d& a, const LLVector3d& b) { LLVector3d ret( a.mdV[VY]*b.mdV[VZ] - b.mdV[VY]*a.mdV[VZ], a.mdV[VZ]*b.mdV[VX] - b.mdV[VZ]*a.mdV[VX], a.mdV[VX]*b.mdV[VY] - b.mdV[VX]*a.mdV[VY]); a = ret; return a; } inline const LLVector3d& operator*=(LLVector3d& a, const F64 k) { a.mdV[VX] *= k; a.mdV[VY] *= k; a.mdV[VZ] *= k; return a; } inline const LLVector3d& operator/=(LLVector3d& a, const F64 k) { F64 t = 1.f / k; a.mdV[VX] *= t; a.mdV[VY] *= t; a.mdV[VZ] *= t; return a; } inline LLVector3d operator-(const LLVector3d& a) { return LLVector3d( -a.mdV[VX], -a.mdV[VY], -a.mdV[VZ] ); } inline F64 dist_vec(const LLVector3d& a, const LLVector3d& b) { F64 x = a.mdV[VX] - b.mdV[VX]; F64 y = a.mdV[VY] - b.mdV[VY]; F64 z = a.mdV[VZ] - b.mdV[VZ]; return (F32) sqrt( x*x + y*y + z*z ); } inline F64 dist_vec_squared(const LLVector3d& a, const LLVector3d& b) { F64 x = a.mdV[VX] - b.mdV[VX]; F64 y = a.mdV[VY] - b.mdV[VY]; F64 z = a.mdV[VZ] - b.mdV[VZ]; return x*x + y*y + z*z; } inline F64 dist_vec_squared2D(const LLVector3d& a, const LLVector3d& b) { F64 x = a.mdV[VX] - b.mdV[VX]; F64 y = a.mdV[VY] - b.mdV[VY]; return x*x + y*y; } inline LLVector3d lerp(const LLVector3d& a, const LLVector3d& b, const F64 u) { return LLVector3d( a.mdV[VX] + (b.mdV[VX] - a.mdV[VX]) * u, a.mdV[VY] + (b.mdV[VY] - a.mdV[VY]) * u, a.mdV[VZ] + (b.mdV[VZ] - a.mdV[VZ]) * u); } inline bool LLVector3d::isNull() const { if ( F_APPROXIMATELY_ZERO > mdV[VX]*mdV[VX] + mdV[VY]*mdV[VY] + mdV[VZ]*mdV[VZ] ) { return true; } return false; } inline F64 angle_between(const LLVector3d& a, const LLVector3d& b) { LLVector3d an = a; LLVector3d bn = b; an.normalize(); bn.normalize(); F64 cosine = an * bn; F64 angle = (cosine >= 1.0f) ? 0.0f : (cosine <= -1.0f) ? F_PI : acos(cosine); return angle; } inline bool are_parallel(const LLVector3d& a, const LLVector3d& b, const F64 epsilon) { LLVector3d an = a; LLVector3d bn = b; an.normalize(); bn.normalize(); F64 dot = an * bn; if ( (1.0f - fabs(dot)) < epsilon) { return true; } return false; } inline LLVector3d projected_vec(const LLVector3d& a, const LLVector3d& b) { LLVector3d project_axis = b; project_axis.normalize(); return project_axis * (a * project_axis); } inline LLVector3d inverse_projected_vec(const LLVector3d& a, const LLVector3d& b) { LLVector3d normalized_a = a; normalized_a.normalize(); LLVector3d normalized_b = b; F64 b_length = normalized_b.normalize(); F64 dot_product = normalized_a * normalized_b; return normalized_a * (b_length / dot_product); } #endif // LL_V3DMATH_H