/** * @file v2math.cpp * @brief LLVector2 class implementation. * * $LicenseInfo:firstyear=2000&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" #include "v2math.h" #include "v3math.h" #include "v4math.h" #include "m4math.h" #include "m3math.h" #include "llquaternion.h" // LLVector2 LLVector2 LLVector2::zero(0,0); // Non-member functions // Sets all values to absolute value of their original values // Returns true if data changed bool LLVector2::abs() { bool ret{ false }; if (mV[VX] < 0.f) { mV[VX] = -mV[VX]; ret = true; } if (mV[VY] < 0.f) { mV[VY] = -mV[VY]; ret = true; } return ret; } F32 angle_between(const LLVector2& a, const LLVector2& b) { LLVector2 an = a; LLVector2 bn = b; an.normVec(); bn.normVec(); F32 cosine = an * bn; F32 angle = (cosine >= 1.0f) ? 0.0f : (cosine <= -1.0f) ? F_PI : acos(cosine); return angle; } bool are_parallel(const LLVector2& a, const LLVector2& b, F32 epsilon) { LLVector2 an = a; LLVector2 bn = b; an.normVec(); bn.normVec(); F32 dot = an * bn; if ( (1.0f - fabs(dot)) < epsilon) { return true; } return false; } F32 dist_vec(const LLVector2& a, const LLVector2& b) { F32 x = a.mV[VX] - b.mV[VX]; F32 y = a.mV[VY] - b.mV[VY]; return (F32) sqrt( x*x + y*y ); } F32 dist_vec_squared(const LLVector2& a, const LLVector2& b) { F32 x = a.mV[VX] - b.mV[VX]; F32 y = a.mV[VY] - b.mV[VY]; return x*x + y*y; } F32 dist_vec_squared2D(const LLVector2& a, const LLVector2& b) { F32 x = a.mV[VX] - b.mV[VX]; F32 y = a.mV[VY] - b.mV[VY]; return x*x + y*y; } LLVector2 lerp(const LLVector2& a, const LLVector2& b, F32 u) { return LLVector2( a.mV[VX] + (b.mV[VX] - a.mV[VX]) * u, a.mV[VY] + (b.mV[VY] - a.mV[VY]) * u ); } LLSD LLVector2::getValue() const { LLSD ret; ret[0] = mV[VX]; ret[1] = mV[VY]; return ret; } void LLVector2::setValue(const LLSD& sd) { mV[VX] = (F32) sd[0].asReal(); mV[VY] = (F32) sd[1].asReal(); }