/** * @file m3math.h * @brief LLMatrix3 class header file. * * $LicenseInfo:firstyear=2000&license=viewergpl$ * * Copyright (c) 2000-2007, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlife.com/developers/opensource/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at http://secondlife.com/developers/opensource/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ #ifndef LL_M3MATH_H #define LL_M3MATH_H #include "llerror.h" class LLVector4; class LLVector3; class LLVector3d; class LLQuaternion; // NOTA BENE: Currently assuming a right-handed, z-up universe // ji // LLMatrix3 = | 00 01 02 | // | 10 11 12 | // | 20 21 22 | // LLMatrix3 = | fx fy fz | forward-axis // | lx ly lz | left-axis // | ux uy uz | up-axis // NOTE: The world of computer graphics uses column-vectors and matricies that // "operate to the left". static const U32 NUM_VALUES_IN_MAT3 = 3; class LLMatrix3 { public: F32 mMatrix[NUM_VALUES_IN_MAT3][NUM_VALUES_IN_MAT3]; LLMatrix3(void); // Initializes Matrix to identity matrix explicit LLMatrix3(const F32 *mat); // Initializes Matrix to values in mat explicit LLMatrix3(const LLQuaternion &q); // Initializes Matrix with rotation q LLMatrix3(const F32 angle, const F32 x, const F32 y, const F32 z); // Initializes Matrix with axis angle LLMatrix3(const F32 angle, const LLVector3 &vec); // Initializes Matrix with axis angle LLMatrix3(const F32 angle, const LLVector3d &vec); // Initializes Matrix with axis angle LLMatrix3(const F32 angle, const LLVector4 &vec); // Initializes Matrix with axis angle LLMatrix3(const F32 roll, const F32 pitch, const F32 yaw); // Initializes Matrix with Euler angles ////////////////////////////// // // Matrix initializers - these replace any existing values in the matrix // // various useful matrix functions const LLMatrix3& identity(); // Load identity matrix const LLMatrix3& zero(); // Clears Matrix to zero /////////////////////////// // // Matrix setters - set some properties without modifying others // // These functions take Rotation arguments const LLMatrix3& setRot(const F32 angle, const F32 x, const F32 y, const F32 z); // Calculate rotation matrix for rotating angle radians about (x, y, z) const LLMatrix3& setRot(const F32 angle, const LLVector3 &vec); // Calculate rotation matrix for rotating angle radians about vec const LLMatrix3& setRot(const F32 roll, const F32 pitch, const F32 yaw); // Calculate rotation matrix from Euler angles const LLMatrix3& setRot(const LLQuaternion &q); // Transform matrix by Euler angles and translating by pos const LLMatrix3& setRows(const LLVector3 &x_axis, const LLVector3 &y_axis, const LLVector3 &z_axis); /////////////////////////// // // Get properties of a matrix // LLQuaternion quaternion() const; // Returns quaternion from mat void getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const; // Returns Euler angles, in radians // Axis extraction routines LLVector3 getFwdRow() const; LLVector3 getLeftRow() const; LLVector3 getUpRow() const; F32 determinant() const; // Return determinant /////////////////////////// // // Operations on an existing matrix // const LLMatrix3& transpose(); // Transpose MAT4 const LLMatrix3& invert(); // Invert MAT4 const LLMatrix3& orthogonalize(); // Orthogonalizes X, then Y, then Z const LLMatrix3& adjointTranspose(); // returns transpose of matrix adjoint, for multiplying normals // Rotate existing matrix // Note: the two lines below are equivalent: // foo.rotate(bar) // foo = foo * bar // That is, foo.rotMat3(bar) multiplies foo by bar FROM THE RIGHT const LLMatrix3& rotate(const F32 angle, const F32 x, const F32 y, const F32 z); // Rotate matrix by rotating angle radians about (x, y, z) const LLMatrix3& rotate(const F32 angle, const LLVector3 &vec); // Rotate matrix by rotating angle radians about vec const LLMatrix3& rotate(const F32 roll, const F32 pitch, const F32 yaw); // Rotate matrix by roll (about x), pitch (about y), and yaw (about z) const LLMatrix3& rotate(const LLQuaternion &q); // Transform matrix by Euler angles and translating by pos // This operator is misleading as to operation direction // friend LLVector3 operator*(const LLMatrix3 &a, const LLVector3 &b); // Apply rotation a to vector b friend LLVector3 operator*(const LLVector3 &a, const LLMatrix3 &b); // Apply rotation b to vector a friend LLVector3d operator*(const LLVector3d &a, const LLMatrix3 &b); // Apply rotation b to vector a friend LLMatrix3 operator*(const LLMatrix3 &a, const LLMatrix3 &b); // Return a * b friend bool operator==(const LLMatrix3 &a, const LLMatrix3 &b); // Return a == b friend bool operator!=(const LLMatrix3 &a, const LLMatrix3 &b); // Return a != b friend const LLMatrix3& operator*=(LLMatrix3 &a, const LLMatrix3 &b); // Return a * b friend std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a); // Stream a }; inline LLMatrix3::LLMatrix3(void) { mMatrix[0][0] = 1.f; mMatrix[0][1] = 0.f; mMatrix[0][2] = 0.f; mMatrix[1][0] = 0.f; mMatrix[1][1] = 1.f; mMatrix[1][2] = 0.f; mMatrix[2][0] = 0.f; mMatrix[2][1] = 0.f; mMatrix[2][2] = 1.f; } inline LLMatrix3::LLMatrix3(const F32 *mat) { mMatrix[0][0] = mat[0]; mMatrix[0][1] = mat[1]; mMatrix[0][2] = mat[2]; mMatrix[1][0] = mat[3]; mMatrix[1][1] = mat[4]; mMatrix[1][2] = mat[5]; mMatrix[2][0] = mat[6]; mMatrix[2][1] = mat[7]; mMatrix[2][2] = mat[8]; } #endif // Rotation matrix hints... // Inverse of Rotation Matrices // ---------------------------- // If R is a rotation matrix that rotate vectors from Frame-A to Frame-B, // then the transpose of R will rotate vectors from Frame-B to Frame-A. // Creating Rotation Matricies From Object Axes // -------------------------------------------- // Suppose you know the three axes of some object in some "absolute-frame". // If you take those three vectors and throw them into the rows of // a rotation matrix what do you get? // // R = | X0 X1 X2 | // | Y0 Y1 Y2 | // | Z0 Z1 Z2 | // // Yeah, but what does it mean? // // Transpose the matrix and have it operate on a vector... // // V * R_transpose = [ V0 V1 V2 ] * | X0 Y0 Z0 | // | X1 Y1 Z1 | // | X2 Y2 Z2 | // // = [ V*X V*Y V*Z ] // // = components of V that are parallel to the three object axes // // = transformation of V into object frame // // Since the transformation of a rotation matrix is its inverse, then // R must rotate vectors from the object-frame into the absolute-frame.