/** * @file m3math.cpp * @brief LLMatrix3 class implementation. * * $LicenseInfo:firstyear=2000&license=viewergpl$ * * Copyright (c) 2000-2007, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlife.com/developers/opensource/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at http://secondlife.com/developers/opensource/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ #include "linden_common.h" //#include "vmath.h" #include "v3math.h" #include "v3dmath.h" #include "v4math.h" #include "m4math.h" #include "m3math.h" #include "llquaternion.h" // LLMatrix3 // ji // LLMatrix3 = |00 01 02 | // |10 11 12 | // |20 21 22 | // LLMatrix3 = |fx fy fz | forward-axis // |lx ly lz | left-axis // |ux uy uz | up-axis // Constructors LLMatrix3::LLMatrix3(const LLQuaternion &q) { setRot(q); } LLMatrix3::LLMatrix3(const F32 angle, const LLVector3 &vec) { LLQuaternion quat(angle, vec); setRot(quat); } LLMatrix3::LLMatrix3(const F32 angle, const LLVector3d &vec) { LLVector3 vec_f; vec_f.setVec(vec); LLQuaternion quat(angle, vec_f); setRot(quat); } LLMatrix3::LLMatrix3(const F32 angle, const LLVector4 &vec) { LLQuaternion quat(angle, vec); setRot(quat); } LLMatrix3::LLMatrix3(const F32 angle, const F32 x, const F32 y, const F32 z) { LLVector3 vec(x, y, z); LLQuaternion quat(angle, vec); setRot(quat); } LLMatrix3::LLMatrix3(const F32 roll, const F32 pitch, const F32 yaw) { setRot(roll,pitch,yaw); } // From Matrix and Quaternion FAQ void LLMatrix3::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const { F64 angle_x, angle_y, angle_z; F64 cx, cy, cz; // cosine of angle_x, angle_y, angle_z F64 sx, sz; // sine of angle_x, angle_y, angle_z angle_y = asin(llclamp(mMatrix[2][0], -1.f, 1.f)); cy = cos(angle_y); if (fabs(cy) > 0.005) // non-zero { // no gimbal lock cx = mMatrix[2][2] / cy; sx = - mMatrix[2][1] / cy; angle_x = (F32) atan2(sx, cx); cz = mMatrix[0][0] / cy; sz = - mMatrix[1][0] / cy; angle_z = (F32) atan2(sz, cz); } else { // yup, gimbal lock angle_x = 0; // some tricky math thereby avoided, see article cz = mMatrix[1][1]; sz = mMatrix[0][1]; angle_z = atan2(sz, cz); } *roll = (F32)angle_x; *pitch = (F32)angle_y; *yaw = (F32)angle_z; } // Clear and Assignment Functions const LLMatrix3& LLMatrix3::setIdentity() { mMatrix[0][0] = 1.f; mMatrix[0][1] = 0.f; mMatrix[0][2] = 0.f; mMatrix[1][0] = 0.f; mMatrix[1][1] = 1.f; mMatrix[1][2] = 0.f; mMatrix[2][0] = 0.f; mMatrix[2][1] = 0.f; mMatrix[2][2] = 1.f; return (*this); } const LLMatrix3& LLMatrix3::clear() { mMatrix[0][0] = 0.f; mMatrix[0][1] = 0.f; mMatrix[0][2] = 0.f; mMatrix[1][0] = 0.f; mMatrix[1][1] = 0.f; mMatrix[1][2] = 0.f; mMatrix[2][0] = 0.f; mMatrix[2][1] = 0.f; mMatrix[2][2] = 0.f; return (*this); } const LLMatrix3& LLMatrix3::setZero() { mMatrix[0][0] = 0.f; mMatrix[0][1] = 0.f; mMatrix[0][2] = 0.f; mMatrix[1][0] = 0.f; mMatrix[1][1] = 0.f; mMatrix[1][2] = 0.f; mMatrix[2][0] = 0.f; mMatrix[2][1] = 0.f; mMatrix[2][2] = 0.f; return (*this); } // various useful mMatrix functions const LLMatrix3& LLMatrix3::transpose() { // transpose the matrix F32 temp; temp = mMatrix[VX][VY]; mMatrix[VX][VY] = mMatrix[VY][VX]; mMatrix[VY][VX] = temp; temp = mMatrix[VX][VZ]; mMatrix[VX][VZ] = mMatrix[VZ][VX]; mMatrix[VZ][VX] = temp; temp = mMatrix[VY][VZ]; mMatrix[VY][VZ] = mMatrix[VZ][VY]; mMatrix[VZ][VY] = temp; return *this; } F32 LLMatrix3::determinant() const { // Is this a useful method when we assume the matrices are valid rotation // matrices throughout this implementation? return mMatrix[0][0] * (mMatrix[1][1] * mMatrix[2][2] - mMatrix[1][2] * mMatrix[2][1]) + mMatrix[0][1] * (mMatrix[1][2] * mMatrix[2][0] - mMatrix[1][0] * mMatrix[2][2]) + mMatrix[0][2] * (mMatrix[1][0] * mMatrix[2][1] - mMatrix[1][1] * mMatrix[2][0]); } // inverts this matrix void LLMatrix3::invert() { // fails silently if determinant is zero too small F32 det = determinant(); const F32 VERY_SMALL_DETERMINANT = 0.000001f; if (fabs(det) > VERY_SMALL_DETERMINANT) { // invertiable LLMatrix3 t(*this); mMatrix[VX][VX] = ( t.mMatrix[VY][VY] * t.mMatrix[VZ][VZ] - t.mMatrix[VY][VZ] * t.mMatrix[VZ][VY] ) / det; mMatrix[VY][VX] = ( t.mMatrix[VY][VZ] * t.mMatrix[VZ][VX] - t.mMatrix[VY][VX] * t.mMatrix[VZ][VZ] ) / det; mMatrix[VZ][VX] = ( t.mMatrix[VY][VX] * t.mMatrix[VZ][VY] - t.mMatrix[VY][VY] * t.mMatrix[VZ][VX] ) / det; mMatrix[VX][VY] = ( t.mMatrix[VZ][VY] * t.mMatrix[VX][VZ] - t.mMatrix[VZ][VZ] * t.mMatrix[VX][VY] ) / det; mMatrix[VY][VY] = ( t.mMatrix[VZ][VZ] * t.mMatrix[VX][VX] - t.mMatrix[VZ][VX] * t.mMatrix[VX][VZ] ) / det; mMatrix[VZ][VY] = ( t.mMatrix[VZ][VX] * t.mMatrix[VX][VY] - t.mMatrix[VZ][VY] * t.mMatrix[VX][VX] ) / det; mMatrix[VX][VZ] = ( t.mMatrix[VX][VY] * t.mMatrix[VY][VZ] - t.mMatrix[VX][VZ] * t.mMatrix[VY][VY] ) / det; mMatrix[VY][VZ] = ( t.mMatrix[VX][VZ] * t.mMatrix[VY][VX] - t.mMatrix[VX][VX] * t.mMatrix[VY][VZ] ) / det; mMatrix[VZ][VZ] = ( t.mMatrix[VX][VX] * t.mMatrix[VY][VY] - t.mMatrix[VX][VY] * t.mMatrix[VY][VX] ) / det; } } // does not assume a rotation matrix, and does not divide by determinant, assuming results will be renormalized const LLMatrix3& LLMatrix3::adjointTranspose() { LLMatrix3 adjoint_transpose; adjoint_transpose.mMatrix[VX][VX] = mMatrix[VY][VY] * mMatrix[VZ][VZ] - mMatrix[VY][VZ] * mMatrix[VZ][VY] ; adjoint_transpose.mMatrix[VY][VX] = mMatrix[VY][VZ] * mMatrix[VZ][VX] - mMatrix[VY][VX] * mMatrix[VZ][VZ] ; adjoint_transpose.mMatrix[VZ][VX] = mMatrix[VY][VX] * mMatrix[VZ][VY] - mMatrix[VY][VY] * mMatrix[VZ][VX] ; adjoint_transpose.mMatrix[VX][VY] = mMatrix[VZ][VY] * mMatrix[VX][VZ] - mMatrix[VZ][VZ] * mMatrix[VX][VY] ; adjoint_transpose.mMatrix[VY][VY] = mMatrix[VZ][VZ] * mMatrix[VX][VX] - mMatrix[VZ][VX] * mMatrix[VX][VZ] ; adjoint_transpose.mMatrix[VZ][VY] = mMatrix[VZ][VX] * mMatrix[VX][VY] - mMatrix[VZ][VY] * mMatrix[VX][VX] ; adjoint_transpose.mMatrix[VX][VZ] = mMatrix[VX][VY] * mMatrix[VY][VZ] - mMatrix[VX][VZ] * mMatrix[VY][VY] ; adjoint_transpose.mMatrix[VY][VZ] = mMatrix[VX][VZ] * mMatrix[VY][VX] - mMatrix[VX][VX] * mMatrix[VY][VZ] ; adjoint_transpose.mMatrix[VZ][VZ] = mMatrix[VX][VX] * mMatrix[VY][VY] - mMatrix[VX][VY] * mMatrix[VY][VX] ; *this = adjoint_transpose; return *this; } // SJB: This code is correct for a logicly stored (non-transposed) matrix; // Our matrices are stored transposed, OpenGL style, so this generates the // INVERSE quaternion (-x, -y, -z, w)! // Because we use similar logic in LLQuaternion::getMatrix3, // we are internally consistant so everything works OK :) LLQuaternion LLMatrix3::quaternion() const { LLQuaternion quat; F32 tr, s, q[4]; U32 i, j, k; U32 nxt[3] = {1, 2, 0}; tr = mMatrix[0][0] + mMatrix[1][1] + mMatrix[2][2]; // check the diagonal if (tr > 0.f) { s = (F32)sqrt (tr + 1.f); quat.mQ[VS] = s / 2.f; s = 0.5f / s; quat.mQ[VX] = (mMatrix[1][2] - mMatrix[2][1]) * s; quat.mQ[VY] = (mMatrix[2][0] - mMatrix[0][2]) * s; quat.mQ[VZ] = (mMatrix[0][1] - mMatrix[1][0]) * s; } else { // diagonal is negative i = 0; if (mMatrix[1][1] > mMatrix[0][0]) i = 1; if (mMatrix[2][2] > mMatrix[i][i]) i = 2; j = nxt[i]; k = nxt[j]; s = (F32)sqrt ((mMatrix[i][i] - (mMatrix[j][j] + mMatrix[k][k])) + 1.f); q[i] = s * 0.5f; if (s != 0.f) s = 0.5f / s; q[3] = (mMatrix[j][k] - mMatrix[k][j]) * s; q[j] = (mMatrix[i][j] + mMatrix[j][i]) * s; q[k] = (mMatrix[i][k] + mMatrix[k][i]) * s; quat.setQuat(q); } return quat; } // These functions take Rotation arguments const LLMatrix3& LLMatrix3::setRot(const F32 angle, const F32 x, const F32 y, const F32 z) { setRot(LLQuaternion(angle,x,y,z)); return *this; } const LLMatrix3& LLMatrix3::setRot(const F32 angle, const LLVector3 &vec) { setRot(LLQuaternion(angle, vec)); return *this; } const LLMatrix3& LLMatrix3::setRot(const F32 roll, const F32 pitch, const F32 yaw) { // Rotates RH about x-axis by 'roll' then // rotates RH about the old y-axis by 'pitch' then // rotates RH about the original z-axis by 'yaw'. // . // /|\ yaw axis // | __. // ._ ___| /| pitch axis // _||\ \\ |-. / // \|| \_______\_|__\_/_______ // | _ _ o o o_o_o_o o /_\_ ________\ roll axis // // /_______/ /__________> / // /_,-' // / // /__,-' F32 cx, sx, cy, sy, cz, sz; F32 cxsy, sxsy; cx = (F32)cos(roll); //A sx = (F32)sin(roll); //B cy = (F32)cos(pitch); //C sy = (F32)sin(pitch); //D cz = (F32)cos(yaw); //E sz = (F32)sin(yaw); //F cxsy = cx * sy; //AD sxsy = sx * sy; //BD mMatrix[0][0] = cy * cz; mMatrix[1][0] = -cy * sz; mMatrix[2][0] = sy; mMatrix[0][1] = sxsy * cz + cx * sz; mMatrix[1][1] = -sxsy * sz + cx * cz; mMatrix[2][1] = -sx * cy; mMatrix[0][2] = -cxsy * cz + sx * sz; mMatrix[1][2] = cxsy * sz + sx * cz; mMatrix[2][2] = cx * cy; return *this; } const LLMatrix3& LLMatrix3::setRot(const LLQuaternion &q) { *this = q.getMatrix3(); return *this; } const LLMatrix3& LLMatrix3::setRows(const LLVector3 &fwd, const LLVector3 &left, const LLVector3 &up) { mMatrix[0][0] = fwd.mV[0]; mMatrix[0][1] = fwd.mV[1]; mMatrix[0][2] = fwd.mV[2]; mMatrix[1][0] = left.mV[0]; mMatrix[1][1] = left.mV[1]; mMatrix[1][2] = left.mV[2]; mMatrix[2][0] = up.mV[0]; mMatrix[2][1] = up.mV[1]; mMatrix[2][2] = up.mV[2]; return *this; } const LLMatrix3& LLMatrix3::setRow( U32 rowIndex, const LLVector3& row ) { llassert( rowIndex >= 0 && rowIndex < NUM_VALUES_IN_MAT3 ); mMatrix[rowIndex][0] = row[0]; mMatrix[rowIndex][1] = row[1]; mMatrix[rowIndex][2] = row[2]; return *this; } const LLMatrix3& LLMatrix3::setCol( U32 colIndex, const LLVector3& col ) { llassert( colIndex >= 0 && colIndex < NUM_VALUES_IN_MAT3 ); mMatrix[0][colIndex] = col[0]; mMatrix[1][colIndex] = col[1]; mMatrix[2][colIndex] = col[2]; return *this; } // Rotate exisitng mMatrix const LLMatrix3& LLMatrix3::rotate(const F32 angle, const F32 x, const F32 y, const F32 z) { LLMatrix3 mat(angle, x, y, z); *this *= mat; return *this; } const LLMatrix3& LLMatrix3::rotate(const F32 angle, const LLVector3 &vec) { LLMatrix3 mat(angle, vec); *this *= mat; return *this; } const LLMatrix3& LLMatrix3::rotate(const F32 roll, const F32 pitch, const F32 yaw) { LLMatrix3 mat(roll, pitch, yaw); *this *= mat; return *this; } const LLMatrix3& LLMatrix3::rotate(const LLQuaternion &q) { LLMatrix3 mat(q); *this *= mat; return *this; } void LLMatrix3::add(const LLMatrix3& other_matrix) { for (S32 i = 0; i < 3; ++i) { for (S32 j = 0; j < 3; ++j) { mMatrix[i][j] += other_matrix.mMatrix[i][j]; } } } LLVector3 LLMatrix3::getFwdRow() const { return LLVector3(mMatrix[VX]); } LLVector3 LLMatrix3::getLeftRow() const { return LLVector3(mMatrix[VY]); } LLVector3 LLMatrix3::getUpRow() const { return LLVector3(mMatrix[VZ]); } const LLMatrix3& LLMatrix3::orthogonalize() { LLVector3 x_axis(mMatrix[VX]); LLVector3 y_axis(mMatrix[VY]); LLVector3 z_axis(mMatrix[VZ]); x_axis.normVec(); y_axis -= x_axis * (x_axis * y_axis); y_axis.normVec(); z_axis = x_axis % y_axis; setRows(x_axis, y_axis, z_axis); return (*this); } // LLMatrix3 Operators LLMatrix3 operator*(const LLMatrix3 &a, const LLMatrix3 &b) { U32 i, j; LLMatrix3 mat; for (i = 0; i < NUM_VALUES_IN_MAT3; i++) { for (j = 0; j < NUM_VALUES_IN_MAT3; j++) { mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + a.mMatrix[j][1] * b.mMatrix[1][i] + a.mMatrix[j][2] * b.mMatrix[2][i]; } } return mat; } /* Not implemented to help enforce code consistency with the syntax of row-major notation. This is a Good Thing. LLVector3 operator*(const LLMatrix3 &a, const LLVector3 &b) { LLVector3 vec; // matrix operates "from the left" on column vector vec.mV[VX] = a.mMatrix[VX][VX] * b.mV[VX] + a.mMatrix[VX][VY] * b.mV[VY] + a.mMatrix[VX][VZ] * b.mV[VZ]; vec.mV[VY] = a.mMatrix[VY][VX] * b.mV[VX] + a.mMatrix[VY][VY] * b.mV[VY] + a.mMatrix[VY][VZ] * b.mV[VZ]; vec.mV[VZ] = a.mMatrix[VZ][VX] * b.mV[VX] + a.mMatrix[VZ][VY] * b.mV[VY] + a.mMatrix[VZ][VZ] * b.mV[VZ]; return vec; } */ LLVector3 operator*(const LLVector3 &a, const LLMatrix3 &b) { // matrix operates "from the right" on row vector return LLVector3( a.mV[VX] * b.mMatrix[VX][VX] + a.mV[VY] * b.mMatrix[VY][VX] + a.mV[VZ] * b.mMatrix[VZ][VX], a.mV[VX] * b.mMatrix[VX][VY] + a.mV[VY] * b.mMatrix[VY][VY] + a.mV[VZ] * b.mMatrix[VZ][VY], a.mV[VX] * b.mMatrix[VX][VZ] + a.mV[VY] * b.mMatrix[VY][VZ] + a.mV[VZ] * b.mMatrix[VZ][VZ] ); } LLVector3d operator*(const LLVector3d &a, const LLMatrix3 &b) { // matrix operates "from the right" on row vector return LLVector3d( a.mdV[VX] * b.mMatrix[VX][VX] + a.mdV[VY] * b.mMatrix[VY][VX] + a.mdV[VZ] * b.mMatrix[VZ][VX], a.mdV[VX] * b.mMatrix[VX][VY] + a.mdV[VY] * b.mMatrix[VY][VY] + a.mdV[VZ] * b.mMatrix[VZ][VY], a.mdV[VX] * b.mMatrix[VX][VZ] + a.mdV[VY] * b.mMatrix[VY][VZ] + a.mdV[VZ] * b.mMatrix[VZ][VZ] ); } bool operator==(const LLMatrix3 &a, const LLMatrix3 &b) { U32 i, j; for (i = 0; i < NUM_VALUES_IN_MAT3; i++) { for (j = 0; j < NUM_VALUES_IN_MAT3; j++) { if (a.mMatrix[j][i] != b.mMatrix[j][i]) return FALSE; } } return TRUE; } bool operator!=(const LLMatrix3 &a, const LLMatrix3 &b) { U32 i, j; for (i = 0; i < NUM_VALUES_IN_MAT3; i++) { for (j = 0; j < NUM_VALUES_IN_MAT3; j++) { if (a.mMatrix[j][i] != b.mMatrix[j][i]) return TRUE; } } return FALSE; } const LLMatrix3& operator*=(LLMatrix3 &a, const LLMatrix3 &b) { U32 i, j; LLMatrix3 mat; for (i = 0; i < NUM_VALUES_IN_MAT3; i++) { for (j = 0; j < NUM_VALUES_IN_MAT3; j++) { mat.mMatrix[j][i] = a.mMatrix[j][0] * b.mMatrix[0][i] + a.mMatrix[j][1] * b.mMatrix[1][i] + a.mMatrix[j][2] * b.mMatrix[2][i]; } } a = mat; return a; } const LLMatrix3& operator*=(LLMatrix3 &a, F32 scalar ) { for( U32 i = 0; i < NUM_VALUES_IN_MAT3; ++i ) { for( U32 j = 0; j < NUM_VALUES_IN_MAT3; ++j ) { a.mMatrix[i][j] *= scalar; } } return a; } std::ostream& operator<<(std::ostream& s, const LLMatrix3 &a) { s << "{ " << a.mMatrix[VX][VX] << ", " << a.mMatrix[VX][VY] << ", " << a.mMatrix[VX][VZ] << "; " << a.mMatrix[VY][VX] << ", " << a.mMatrix[VY][VY] << ", " << a.mMatrix[VY][VZ] << "; " << a.mMatrix[VZ][VX] << ", " << a.mMatrix[VZ][VY] << ", " << a.mMatrix[VZ][VZ] << " }"; return s; }