/** 

 * @file llvolume.cpp
 *
 * $LicenseInfo:firstyear=2002&license=viewerlgpl$
 * Second Life Viewer Source Code
 * Copyright (C) 2010, Linden Research, Inc.
 * 
 * This library is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation;
 * version 2.1 of the License only.
 * 
 * This library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public
 * License along with this library; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301  USA
 * 
 * Linden Research, Inc., 945 Battery Street, San Francisco, CA  94111  USA
 * $/LicenseInfo$
 */

#include "linden_common.h"
#include "llmemory.h"
#include "llmath.h"

#include <set>
#if !LL_WINDOWS
#include <stdint.h>
#endif
#include <cmath>

#include "llerror.h"
#include "llmemtype.h"

#include "llvolumemgr.h"
#include "v2math.h"
#include "v3math.h"
#include "v4math.h"
#include "m4math.h"
#include "m3math.h"
#include "llmatrix3a.h"
#include "lloctree.h"
#include "lldarray.h"
#include "llvolume.h"
#include "llvolumeoctree.h"
#include "llstl.h"
#include "llsdserialize.h"
#include "llvector4a.h"
#include "llmatrix4a.h"
#include "lltimer.h"

#define DEBUG_SILHOUETTE_BINORMALS 0
#define DEBUG_SILHOUETTE_NORMALS 0 // TomY: Use this to display normals using the silhouette
#define DEBUG_SILHOUETTE_EDGE_MAP 0 // DaveP: Use this to display edge map using the silhouette

const F32 CUT_MIN = 0.f;
const F32 CUT_MAX = 1.f;
const F32 MIN_CUT_DELTA = 0.02f;

const F32 HOLLOW_MIN = 0.f;
const F32 HOLLOW_MAX = 0.95f;
const F32 HOLLOW_MAX_SQUARE	= 0.7f;

const F32 TWIST_MIN = -1.f;
const F32 TWIST_MAX =  1.f;

const F32 RATIO_MIN = 0.f;
const F32 RATIO_MAX = 2.f; // Tom Y: Inverted sense here: 0 = top taper, 2 = bottom taper

const F32 HOLE_X_MIN= 0.05f;
const F32 HOLE_X_MAX= 1.0f;

const F32 HOLE_Y_MIN= 0.05f;
const F32 HOLE_Y_MAX= 0.5f;

const F32 SHEAR_MIN = -0.5f;
const F32 SHEAR_MAX =  0.5f;

const F32 REV_MIN = 1.f;
const F32 REV_MAX = 4.f;

const F32 TAPER_MIN = -1.f;
const F32 TAPER_MAX =  1.f;

const F32 SKEW_MIN	= -0.95f;
const F32 SKEW_MAX	=  0.95f;

const F32 SCULPT_MIN_AREA = 0.002f;
const S32 SCULPT_MIN_AREA_DETAIL = 1;

extern BOOL gDebugGL;

void assert_aligned(void* ptr, uintptr_t alignment)
{
#if 0
	uintptr_t t = (uintptr_t) ptr;
	if (t%alignment != 0)
	{
		llerrs << "Alignment check failed." << llendl;
	}
#endif
}

BOOL check_same_clock_dir( const LLVector3& pt1, const LLVector3& pt2, const LLVector3& pt3, const LLVector3& norm)
{    
	LLVector3 test = (pt2-pt1)%(pt3-pt2);

	//answer
	if(test * norm < 0) 
	{
		return FALSE;
	}
	else 
	{
		return TRUE;
	}
} 

BOOL LLLineSegmentBoxIntersect(const LLVector3& start, const LLVector3& end, const LLVector3& center, const LLVector3& size)
{
	return LLLineSegmentBoxIntersect(start.mV, end.mV, center.mV, size.mV);
}

BOOL LLLineSegmentBoxIntersect(const F32* start, const F32* end, const F32* center, const F32* size)
{
	F32 fAWdU[3];
	F32 dir[3];
	F32 diff[3];

	for (U32 i = 0; i < 3; i++)
	{
		dir[i] = 0.5f * (end[i] - start[i]);
		diff[i] = (0.5f * (end[i] + start[i])) - center[i];
		fAWdU[i] = fabsf(dir[i]);
		if(fabsf(diff[i])>size[i] + fAWdU[i]) return false;
	}

	float f;
	f = dir[1] * diff[2] - dir[2] * diff[1];    if(fabsf(f)>size[1]*fAWdU[2] + size[2]*fAWdU[1])  return false;
	f = dir[2] * diff[0] - dir[0] * diff[2];    if(fabsf(f)>size[0]*fAWdU[2] + size[2]*fAWdU[0])  return false;
	f = dir[0] * diff[1] - dir[1] * diff[0];    if(fabsf(f)>size[0]*fAWdU[1] + size[1]*fAWdU[0])  return false;
	
	return true;
}



// intersect test between triangle vert0, vert1, vert2 and a ray from orig in direction dir.
// returns TRUE if intersecting and returns barycentric coordinates in intersection_a, intersection_b,
// and returns the intersection point along dir in intersection_t.

// Moller-Trumbore algorithm
BOOL LLTriangleRayIntersect(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir,
							F32& intersection_a, F32& intersection_b, F32& intersection_t)
{
	
	/* find vectors for two edges sharing vert0 */
	LLVector4a edge1;
	edge1.setSub(vert1, vert0);
	
	LLVector4a edge2;
	edge2.setSub(vert2, vert0);

	/* begin calculating determinant - also used to calculate U parameter */
	LLVector4a pvec;
	pvec.setCross3(dir, edge2);

	/* if determinant is near zero, ray lies in plane of triangle */
	LLVector4a det;
	det.setAllDot3(edge1, pvec);
	
	if (det.greaterEqual(LLVector4a::getEpsilon()).getGatheredBits() & 0x7)
	{
		/* calculate distance from vert0 to ray origin */
		LLVector4a tvec;
		tvec.setSub(orig, vert0);

		/* calculate U parameter and test bounds */
		LLVector4a u;
		u.setAllDot3(tvec,pvec);

		if ((u.greaterEqual(LLVector4a::getZero()).getGatheredBits() & 0x7) &&
			(u.lessEqual(det).getGatheredBits() & 0x7))
		{
			/* prepare to test V parameter */
			LLVector4a qvec;
			qvec.setCross3(tvec, edge1);
			
			/* calculate V parameter and test bounds */
			LLVector4a v;
			v.setAllDot3(dir, qvec);

			
			//if (!(v < 0.f || u + v > det))

			LLVector4a sum_uv;
			sum_uv.setAdd(u, v);

			S32 v_gequal = v.greaterEqual(LLVector4a::getZero()).getGatheredBits() & 0x7;
			S32 sum_lequal = sum_uv.lessEqual(det).getGatheredBits() & 0x7;

			if (v_gequal  && sum_lequal)
			{
				/* calculate t, scale parameters, ray intersects triangle */
				LLVector4a t;
				t.setAllDot3(edge2,qvec);

				t.div(det);
				u.div(det);
				v.div(det);
				
				intersection_a = u[0];
				intersection_b = v[0];
				intersection_t = t[0];
				return TRUE;
			}
		}
	}
		
	return FALSE;
} 

BOOL LLTriangleRayIntersectTwoSided(const LLVector4a& vert0, const LLVector4a& vert1, const LLVector4a& vert2, const LLVector4a& orig, const LLVector4a& dir,
							F32& intersection_a, F32& intersection_b, F32& intersection_t)
{
	F32 u, v, t;
	
	/* find vectors for two edges sharing vert0 */
	LLVector4a edge1;
	edge1.setSub(vert1, vert0);
	
	
	LLVector4a edge2;
	edge2.setSub(vert2, vert0);

	/* begin calculating determinant - also used to calculate U parameter */
	LLVector4a pvec;
	pvec.setCross3(dir, edge2);

	/* if determinant is near zero, ray lies in plane of triangle */
	F32 det = edge1.dot3(pvec).getF32();

	
	if (det > -F_APPROXIMATELY_ZERO && det < F_APPROXIMATELY_ZERO)
	{
		return FALSE;
	}

	F32 inv_det = 1.f / det;

	/* calculate distance from vert0 to ray origin */
	LLVector4a tvec;
	tvec.setSub(orig, vert0);
	
	/* calculate U parameter and test bounds */
	u = (tvec.dot3(pvec).getF32()) * inv_det;
	if (u < 0.f || u > 1.f)
	{
		return FALSE;
	}

	/* prepare to test V parameter */
	tvec.sub(edge1);
		
	/* calculate V parameter and test bounds */
	v = (dir.dot3(tvec).getF32()) * inv_det;
	
	if (v < 0.f || u + v > 1.f)
	{
		return FALSE;
	}

	/* calculate t, ray intersects triangle */
	t = (edge2.dot3(tvec).getF32()) * inv_det;
	
	intersection_a = u;
	intersection_b = v;
	intersection_t = t;
	
	
	return TRUE;
} 

//helper for non-aligned vectors
BOOL LLTriangleRayIntersect(const LLVector3& vert0, const LLVector3& vert1, const LLVector3& vert2, const LLVector3& orig, const LLVector3& dir,
							F32& intersection_a, F32& intersection_b, F32& intersection_t, BOOL two_sided)
{
	LLVector4a vert0a, vert1a, vert2a, origa, dira;
	vert0a.load3(vert0.mV);
	vert1a.load3(vert1.mV);
	vert2a.load3(vert2.mV);
	origa.load3(orig.mV);
	dira.load3(dir.mV);

	if (two_sided)
	{
		return LLTriangleRayIntersectTwoSided(vert0a, vert1a, vert2a, origa, dira, 
				intersection_a, intersection_b, intersection_t);
	}
	else
	{
		return LLTriangleRayIntersect(vert0a, vert1a, vert2a, origa, dira, 
				intersection_a, intersection_b, intersection_t);
	}
}

class LLVolumeOctreeRebound : public LLOctreeTravelerDepthFirst<LLVolumeTriangle>
{
public:
	const LLVolumeFace* mFace;

	LLVolumeOctreeRebound(const LLVolumeFace* face)
	{
		mFace = face;
	}

	virtual void visit(const LLOctreeNode<LLVolumeTriangle>* branch)
	{ //this is a depth first traversal, so it's safe to assum all children have complete
		//bounding data

		LLVolumeOctreeListener* node = (LLVolumeOctreeListener*) branch->getListener(0);

		LLVector4a& min = node->mExtents[0];
		LLVector4a& max = node->mExtents[1];

		if (!branch->getData().empty())
		{ //node has data, find AABB that binds data set
			const LLVolumeTriangle* tri = *(branch->getData().begin());
			
			//initialize min/max to first available vertex
			min = *(tri->mV[0]);
			max = *(tri->mV[0]);
			
			for (LLOctreeNode<LLVolumeTriangle>::const_element_iter iter = 
				branch->getData().begin(); iter != branch->getData().end(); ++iter)
			{ //for each triangle in node

				//stretch by triangles in node
				tri = *iter;
				
				min.setMin(min, *tri->mV[0]);
				min.setMin(min, *tri->mV[1]);
				min.setMin(min, *tri->mV[2]);

				max.setMax(max, *tri->mV[0]);
				max.setMax(max, *tri->mV[1]);
				max.setMax(max, *tri->mV[2]);
			}
		}
		else if (!branch->getChildren().empty())
		{ //no data, but child nodes exist
			LLVolumeOctreeListener* child = (LLVolumeOctreeListener*) branch->getChild(0)->getListener(0);

			//initialize min/max to extents of first child
			min = child->mExtents[0];
			max = child->mExtents[1];
		}
		else
		{
			llerrs << "Empty leaf" << llendl;
		}

		for (S32 i = 0; i < branch->getChildCount(); ++i)
		{  //stretch by child extents
			LLVolumeOctreeListener* child = (LLVolumeOctreeListener*) branch->getChild(i)->getListener(0);
			min.setMin(min, child->mExtents[0]);
			max.setMax(max, child->mExtents[1]);
		}

		node->mBounds[0].setAdd(min, max);
		node->mBounds[0].mul(0.5f);

		node->mBounds[1].setSub(max,min);
		node->mBounds[1].mul(0.5f);
	}
};

//-------------------------------------------------------------------
// statics
//-------------------------------------------------------------------


//----------------------------------------------------

LLProfile::Face* LLProfile::addCap(S16 faceID)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	Face *face   = vector_append(mFaces, 1);
	
	face->mIndex = 0;
	face->mCount = mTotal;
	face->mScaleU= 1.0f;
	face->mCap   = TRUE;
	face->mFaceID = faceID;
	return face;
}

LLProfile::Face* LLProfile::addFace(S32 i, S32 count, F32 scaleU, S16 faceID, BOOL flat)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	Face *face   = vector_append(mFaces, 1);
	
	face->mIndex = i;
	face->mCount = count;
	face->mScaleU= scaleU;

	face->mFlat = flat;
	face->mCap   = FALSE;
	face->mFaceID = faceID;
	return face;
}

//static
S32 LLProfile::getNumNGonPoints(const LLProfileParams& params, S32 sides, F32 offset, F32 bevel, F32 ang_scale, S32 split)
{ // this is basically LLProfile::genNGon stripped down to only the operations that influence the number of points
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	S32 np = 0;

	// Generate an n-sided "circular" path.
	// 0 is (1,0), and we go counter-clockwise along a circular path from there.
	F32 t, t_step, t_first, t_fraction;
	
	F32 begin  = params.getBegin();
	F32 end    = params.getEnd();

	t_step = 1.0f / sides;
	
	t_first = floor(begin * sides) / (F32)sides;

	// pt1 is the first point on the fractional face.
	// Starting t and ang values for the first face
	t = t_first;
	
	// Increment to the next point.
	// pt2 is the end point on the fractional face
	t += t_step;
	
	t_fraction = (begin - t_first)*sides;

	// Only use if it's not almost exactly on an edge.
	if (t_fraction < 0.9999f)
	{
		np++;
	}

	// There's lots of potential here for floating point error to generate unneeded extra points - DJS 04/05/02
	while (t < end)
	{
		// Iterate through all the integer steps of t.
		np++;

		t += t_step;
	}

	t_fraction = (end - (t - t_step))*sides;

	// Find the fraction that we need to add to the end point.
	t_fraction = (end - (t - t_step))*sides;
	if (t_fraction > 0.0001f)
	{
		np++;
	}

	// If we're sliced, the profile is open.
	if ((end - begin)*ang_scale < 0.99f)
	{
		if (params.getHollow() <= 0)
		{
			// put center point if not hollow.
			np++;
		}
	}
	
	return np;
}

// What is the bevel parameter used for? - DJS 04/05/02
// Bevel parameter is currently unused but presumedly would support
// filleted and chamfered corners
void LLProfile::genNGon(const LLProfileParams& params, S32 sides, F32 offset, F32 bevel, F32 ang_scale, S32 split)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	// Generate an n-sided "circular" path.
	// 0 is (1,0), and we go counter-clockwise along a circular path from there.
	const F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f };
	F32 scale = 0.5f;
	F32 t, t_step, t_first, t_fraction, ang, ang_step;
	LLVector3 pt1,pt2;

	F32 begin  = params.getBegin();
	F32 end    = params.getEnd();

	t_step = 1.0f / sides;
	ang_step = 2.0f*F_PI*t_step*ang_scale;

	// Scale to have size "match" scale.  Compensates to get object to generally fill bounding box.

	S32 total_sides = llround(sides / ang_scale);	// Total number of sides all around

	if (total_sides < 8)
	{
		scale = tableScale[total_sides];
	}

	t_first = floor(begin * sides) / (F32)sides;

	// pt1 is the first point on the fractional face.
	// Starting t and ang values for the first face
	t = t_first;
	ang = 2.0f*F_PI*(t*ang_scale + offset);
	pt1.setVec(cos(ang)*scale,sin(ang)*scale, t);

	// Increment to the next point.
	// pt2 is the end point on the fractional face
	t += t_step;
	ang += ang_step;
	pt2.setVec(cos(ang)*scale,sin(ang)*scale,t);

	t_fraction = (begin - t_first)*sides;

	// Only use if it's not almost exactly on an edge.
	if (t_fraction < 0.9999f)
	{
		LLVector3 new_pt = lerp(pt1, pt2, t_fraction);
		mProfile.push_back(new_pt);
	}

	// There's lots of potential here for floating point error to generate unneeded extra points - DJS 04/05/02
	while (t < end)
	{
		// Iterate through all the integer steps of t.
		pt1.setVec(cos(ang)*scale,sin(ang)*scale,t);

		if (mProfile.size() > 0) {
			LLVector3 p = mProfile[mProfile.size()-1];
			for (S32 i = 0; i < split && mProfile.size() > 0; i++) {
				mProfile.push_back(p+(pt1-p) * 1.0f/(float)(split+1) * (float)(i+1));
			}
		}
		mProfile.push_back(pt1);

		t += t_step;
		ang += ang_step;
	}

	t_fraction = (end - (t - t_step))*sides;

	// pt1 is the first point on the fractional face
	// pt2 is the end point on the fractional face
	pt2.setVec(cos(ang)*scale,sin(ang)*scale,t);

	// Find the fraction that we need to add to the end point.
	t_fraction = (end - (t - t_step))*sides;
	if (t_fraction > 0.0001f)
	{
		LLVector3 new_pt = lerp(pt1, pt2, t_fraction);
		
		if (mProfile.size() > 0) {
			LLVector3 p = mProfile[mProfile.size()-1];
			for (S32 i = 0; i < split && mProfile.size() > 0; i++) {
				mProfile.push_back(p+(new_pt-p) * 1.0f/(float)(split+1) * (float)(i+1));
			}
		}
		mProfile.push_back(new_pt);
	}

	// If we're sliced, the profile is open.
	if ((end - begin)*ang_scale < 0.99f)
	{
		if ((end - begin)*ang_scale > 0.5f)
		{
			mConcave = TRUE;
		}
		else
		{
			mConcave = FALSE;
		}
		mOpen = TRUE;
		if (params.getHollow() <= 0)
		{
			// put center point if not hollow.
			mProfile.push_back(LLVector3(0,0,0));
		}
	}
	else
	{
		// The profile isn't open.
		mOpen = FALSE;
		mConcave = FALSE;
	}

	mTotal = mProfile.size();
}

void LLProfile::genNormals(const LLProfileParams& params)
{
	S32 count = mProfile.size();

	S32 outer_count;
	if (mTotalOut)
	{
		outer_count = mTotalOut;
	}
	else
	{
		outer_count = mTotal / 2;
	}

	mEdgeNormals.resize(count * 2);
	mEdgeCenters.resize(count * 2);
	mNormals.resize(count);

	LLVector2 pt0,pt1;

	BOOL hollow = (params.getHollow() > 0);

	S32 i0, i1, i2, i3, i4;

	// Parametrically generate normal
	for (i2 = 0; i2 < count; i2++)
	{
		mNormals[i2].mV[0] = mProfile[i2].mV[0];
		mNormals[i2].mV[1] = mProfile[i2].mV[1];
		if (hollow && (i2 >= outer_count))
		{
			mNormals[i2] *= -1.f;
		}
		if (mNormals[i2].magVec() < 0.001)
		{
			// Special case for point at center, get adjacent points.
			i1 = (i2 - 1) >= 0 ? i2 - 1 : count - 1;
			i0 = (i1 - 1) >= 0 ? i1 - 1 : count - 1;
			i3 = (i2 + 1) < count ? i2 + 1 : 0;
			i4 = (i3 + 1) < count ? i3 + 1 : 0;

			pt0.setVec(mProfile[i1].mV[VX] + mProfile[i1].mV[VX] - mProfile[i0].mV[VX], 
				mProfile[i1].mV[VY] + mProfile[i1].mV[VY] - mProfile[i0].mV[VY]);
			pt1.setVec(mProfile[i3].mV[VX] + mProfile[i3].mV[VX] - mProfile[i4].mV[VX], 
				mProfile[i3].mV[VY] + mProfile[i3].mV[VY] - mProfile[i4].mV[VY]);

			mNormals[i2] = pt0 + pt1;
			mNormals[i2] *= 0.5f;
		}
		mNormals[i2].normVec();
	}

	S32 num_normal_sets = isConcave() ? 2 : 1;
	for (S32 normal_set = 0; normal_set < num_normal_sets; normal_set++)
	{
		S32 point_num;
		for (point_num = 0; point_num < mTotal; point_num++)
		{
			LLVector3 point_1 = mProfile[point_num];
			point_1.mV[VZ] = 0.f;

			LLVector3 point_2;
			
			if (isConcave() && normal_set == 0 && point_num == (mTotal - 1) / 2)
			{
				point_2 = mProfile[mTotal - 1];
			}
			else if (isConcave() && normal_set == 1 && point_num == mTotal - 1)
			{
				point_2 = mProfile[(mTotal - 1) / 2];
			}
			else
			{
				LLVector3 delta_pos;
				S32 neighbor_point = (point_num + 1) % mTotal;
				while(delta_pos.magVecSquared() < 0.01f * 0.01f)
				{
					point_2 = mProfile[neighbor_point];
					delta_pos = point_2 - point_1;
					neighbor_point = (neighbor_point + 1) % mTotal;
					if (neighbor_point == point_num)
					{
						break;
					}
				}
			}

			point_2.mV[VZ] = 0.f;
			LLVector3 face_normal = (point_2 - point_1) % LLVector3::z_axis;
			face_normal.normVec();
			mEdgeNormals[normal_set * count + point_num] = face_normal;
			mEdgeCenters[normal_set * count + point_num] = lerp(point_1, point_2, 0.5f);
		}
	}
}


// Hollow is percent of the original bounding box, not of this particular
// profile's geometry.  Thus, a swept triangle needs lower hollow values than
// a swept square.
LLProfile::Face* LLProfile::addHole(const LLProfileParams& params, BOOL flat, F32 sides, F32 offset, F32 box_hollow, F32 ang_scale, S32 split)
{
	// Note that addHole will NOT work for non-"circular" profiles, if we ever decide to use them.

	// Total add has number of vertices on outside.
	mTotalOut = mTotal;

	// Why is the "bevel" parameter -1? DJS 04/05/02
	genNGon(params, llfloor(sides),offset,-1, ang_scale, split);

	Face *face = addFace(mTotalOut, mTotal-mTotalOut,0,LL_FACE_INNER_SIDE, flat);

	std::vector<LLVector3> pt;
	pt.resize(mTotal) ;

	for (S32 i=mTotalOut;i<mTotal;i++)
	{
		pt[i] = mProfile[i] * box_hollow;
	}

	S32 j=mTotal-1;
	for (S32 i=mTotalOut;i<mTotal;i++)
	{
		mProfile[i] = pt[j--];
	}

	for (S32 i=0;i<(S32)mFaces.size();i++) 
	{
		if (mFaces[i].mCap)
		{
			mFaces[i].mCount *= 2;
		}
	}

	return face;
}

//static
S32 LLProfile::getNumPoints(const LLProfileParams& params, BOOL path_open,F32 detail, S32 split,
						 BOOL is_sculpted, S32 sculpt_size)
{ // this is basically LLProfile::generate stripped down to only operations that influence the number of points
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	if (detail < MIN_LOD)
	{
		detail = MIN_LOD;
	}

	// Generate the face data
	F32 hollow = params.getHollow();

	S32 np = 0;

	switch (params.getCurveType() & LL_PCODE_PROFILE_MASK)
	{
	case LL_PCODE_PROFILE_SQUARE:
		{
			np = getNumNGonPoints(params, 4,-0.375, 0, 1, split);
		
			if (hollow)
			{
				np *= 2;
			}
		}
		break;
	case  LL_PCODE_PROFILE_ISOTRI:
	case  LL_PCODE_PROFILE_RIGHTTRI:
	case  LL_PCODE_PROFILE_EQUALTRI:
		{
			np = getNumNGonPoints(params, 3,0, 0, 1, split);
						
			if (hollow)
			{
				np *= 2;
			}
		}
		break;
	case LL_PCODE_PROFILE_CIRCLE:
		{
			// If this has a square hollow, we should adjust the
			// number of faces a bit so that the geometry lines up.
			U8 hole_type=0;
			F32 circle_detail = MIN_DETAIL_FACES * detail;
			if (hollow)
			{
				hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
				if (hole_type == LL_PCODE_HOLE_SQUARE)
				{
					// Snap to the next multiple of four sides,
					// so that corners line up.
					circle_detail = llceil(circle_detail / 4.0f) * 4.0f;
				}
			}

			S32 sides = (S32)circle_detail;

			if (is_sculpted)
				sides = sculpt_size;
			
			np = getNumNGonPoints(params, sides);
			
			if (hollow)
			{
				np *= 2;
			}
		}
		break;
	case LL_PCODE_PROFILE_CIRCLE_HALF:
		{
			// If this has a square hollow, we should adjust the
			// number of faces a bit so that the geometry lines up.
			U8 hole_type=0;
			// Number of faces is cut in half because it's only a half-circle.
			F32 circle_detail = MIN_DETAIL_FACES * detail * 0.5f;
			if (hollow)
			{
				hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
				if (hole_type == LL_PCODE_HOLE_SQUARE)
				{
					// Snap to the next multiple of four sides (div 2),
					// so that corners line up.
					circle_detail = llceil(circle_detail / 2.0f) * 2.0f;
				}
			}
			np = getNumNGonPoints(params, llfloor(circle_detail), 0.5f, 0.f, 0.5f);
			
			if (hollow)
			{
				np *= 2;
			}

			// Special case for openness of sphere
			if ((params.getEnd() - params.getBegin()) < 1.f)
			{
			}
			else if (!hollow)
			{
				np++;
			}
		}
		break;
	default:
	   break;
	};

	
	return np;
}


BOOL LLProfile::generate(const LLProfileParams& params, BOOL path_open,F32 detail, S32 split,
						 BOOL is_sculpted, S32 sculpt_size)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	if ((!mDirty) && (!is_sculpted))
	{
		return FALSE;
	}
	mDirty = FALSE;

	if (detail < MIN_LOD)
	{
		llinfos << "Generating profile with LOD < MIN_LOD.  CLAMPING" << llendl;
		detail = MIN_LOD;
	}

	mProfile.clear();
	mFaces.clear();

	// Generate the face data
	S32 i;
	F32 begin = params.getBegin();
	F32 end = params.getEnd();
	F32 hollow = params.getHollow();

	// Quick validation to eliminate some server crashes.
	if (begin > end - 0.01f)
	{
		llwarns << "LLProfile::generate() assertion failed (begin >= end)" << llendl;
		return FALSE;
	}

	S32 face_num = 0;

	switch (params.getCurveType() & LL_PCODE_PROFILE_MASK)
	{
	case LL_PCODE_PROFILE_SQUARE:
		{
			genNGon(params, 4,-0.375, 0, 1, split);
			if (path_open)
			{
				addCap (LL_FACE_PATH_BEGIN);
			}

			for (i = llfloor(begin * 4.f); i < llfloor(end * 4.f + .999f); i++)
			{
				addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, TRUE);
			}

			for (i = 0; i <(S32) mProfile.size(); i++)
			{
				// Scale by 4 to generate proper tex coords.
				mProfile[i].mV[2] *= 4.f;
			}

			if (hollow)
			{
				switch (params.getCurveType() & LL_PCODE_HOLE_MASK)
				{
				case LL_PCODE_HOLE_TRIANGLE:
					// This offset is not correct, but we can't change it now... DK 11/17/04
				  	addHole(params, TRUE, 3, -0.375f, hollow, 1.f, split);
					break;
				case LL_PCODE_HOLE_CIRCLE:
					// TODO: Compute actual detail levels for cubes
				  	addHole(params, FALSE, MIN_DETAIL_FACES * detail, -0.375f, hollow, 1.f);
					break;
				case LL_PCODE_HOLE_SAME:
				case LL_PCODE_HOLE_SQUARE:
				default:
					addHole(params, TRUE, 4, -0.375f, hollow, 1.f, split);
					break;
				}
			}
			
			if (path_open) {
				mFaces[0].mCount = mTotal;
			}
		}
		break;
	case  LL_PCODE_PROFILE_ISOTRI:
	case  LL_PCODE_PROFILE_RIGHTTRI:
	case  LL_PCODE_PROFILE_EQUALTRI:
		{
			genNGon(params, 3,0, 0, 1, split);
			for (i = 0; i <(S32) mProfile.size(); i++)
			{
				// Scale by 3 to generate proper tex coords.
				mProfile[i].mV[2] *= 3.f;
			}

			if (path_open)
			{
				addCap(LL_FACE_PATH_BEGIN);
			}

			for (i = llfloor(begin * 3.f); i < llfloor(end * 3.f + .999f); i++)
			{
				addFace((face_num++) * (split +1), split+2, 1, LL_FACE_OUTER_SIDE_0 << i, TRUE);
			}
			if (hollow)
			{
				// Swept triangles need smaller hollowness values,
				// because the triangle doesn't fill the bounding box.
				F32 triangle_hollow = hollow / 2.f;

				switch (params.getCurveType() & LL_PCODE_HOLE_MASK)
				{
				case LL_PCODE_HOLE_CIRCLE:
					// TODO: Actually generate level of detail for triangles
					addHole(params, FALSE, MIN_DETAIL_FACES * detail, 0, triangle_hollow, 1.f);
					break;
				case LL_PCODE_HOLE_SQUARE:
					addHole(params, TRUE, 4, 0, triangle_hollow, 1.f, split);
					break;
				case LL_PCODE_HOLE_SAME:
				case LL_PCODE_HOLE_TRIANGLE:
				default:
					addHole(params, TRUE, 3, 0, triangle_hollow, 1.f, split);
					break;
				}
			}
		}
		break;
	case LL_PCODE_PROFILE_CIRCLE:
		{
			// If this has a square hollow, we should adjust the
			// number of faces a bit so that the geometry lines up.
			U8 hole_type=0;
			F32 circle_detail = MIN_DETAIL_FACES * detail;
			if (hollow)
			{
				hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
				if (hole_type == LL_PCODE_HOLE_SQUARE)
				{
					// Snap to the next multiple of four sides,
					// so that corners line up.
					circle_detail = llceil(circle_detail / 4.0f) * 4.0f;
				}
			}

			S32 sides = (S32)circle_detail;

			if (is_sculpted)
				sides = sculpt_size;
			
			genNGon(params, sides);
			
			if (path_open)
			{
				addCap (LL_FACE_PATH_BEGIN);
			}

			if (mOpen && !hollow)
			{
				addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, FALSE);
			}
			else
			{
				addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, FALSE);
			}

			if (hollow)
			{
				switch (hole_type)
				{
				case LL_PCODE_HOLE_SQUARE:
					addHole(params, TRUE, 4, 0, hollow, 1.f, split);
					break;
				case LL_PCODE_HOLE_TRIANGLE:
					addHole(params, TRUE, 3, 0, hollow, 1.f, split);
					break;
				case LL_PCODE_HOLE_CIRCLE:
				case LL_PCODE_HOLE_SAME:
				default:
					addHole(params, FALSE, circle_detail, 0, hollow, 1.f);
					break;
				}
			}
		}
		break;
	case LL_PCODE_PROFILE_CIRCLE_HALF:
		{
			// If this has a square hollow, we should adjust the
			// number of faces a bit so that the geometry lines up.
			U8 hole_type=0;
			// Number of faces is cut in half because it's only a half-circle.
			F32 circle_detail = MIN_DETAIL_FACES * detail * 0.5f;
			if (hollow)
			{
				hole_type = params.getCurveType() & LL_PCODE_HOLE_MASK;
				if (hole_type == LL_PCODE_HOLE_SQUARE)
				{
					// Snap to the next multiple of four sides (div 2),
					// so that corners line up.
					circle_detail = llceil(circle_detail / 2.0f) * 2.0f;
				}
			}
			genNGon(params, llfloor(circle_detail), 0.5f, 0.f, 0.5f);
			if (path_open)
			{
				addCap(LL_FACE_PATH_BEGIN);
			}
			if (mOpen && !params.getHollow())
			{
				addFace(0,mTotal-1,0,LL_FACE_OUTER_SIDE_0, FALSE);
			}
			else
			{
				addFace(0,mTotal,0,LL_FACE_OUTER_SIDE_0, FALSE);
			}

			if (hollow)
			{
				switch (hole_type)
				{
				case LL_PCODE_HOLE_SQUARE:
					addHole(params, TRUE, 2, 0.5f, hollow, 0.5f, split);
					break;
				case LL_PCODE_HOLE_TRIANGLE:
					addHole(params, TRUE, 3,  0.5f, hollow, 0.5f, split);
					break;
				case LL_PCODE_HOLE_CIRCLE:
				case LL_PCODE_HOLE_SAME:
				default:
					addHole(params, FALSE, circle_detail,  0.5f, hollow, 0.5f);
					break;
				}
			}

			// Special case for openness of sphere
			if ((params.getEnd() - params.getBegin()) < 1.f)
			{
				mOpen = TRUE;
			}
			else if (!hollow)
			{
				mOpen = FALSE;
				mProfile.push_back(mProfile[0]);
				mTotal++;
			}
		}
		break;
	default:
	    llerrs << "Unknown profile: getCurveType()=" << params.getCurveType() << llendl;
		break;
	};

	if (path_open)
	{
		addCap(LL_FACE_PATH_END); // bottom
	}
	
	if ( mOpen) // interior edge caps
	{
		addFace(mTotal-1, 2,0.5,LL_FACE_PROFILE_BEGIN, TRUE); 

		if (hollow)
		{
			addFace(mTotalOut-1, 2,0.5,LL_FACE_PROFILE_END, TRUE);
		}
		else
		{
			addFace(mTotal-2, 2,0.5,LL_FACE_PROFILE_END, TRUE);
		}
	}
	
	//genNormals(params);

	return TRUE;
}



BOOL LLProfileParams::importFile(LLFILE *fp)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	const S32 BUFSIZE = 16384;
	char buffer[BUFSIZE];	/* Flawfinder: ignore */
	// *NOTE: changing the size or type of these buffers will require
	// changing the sscanf below.
	char keyword[256];	/* Flawfinder: ignore */
	char valuestr[256];	/* Flawfinder: ignore */
	keyword[0] = 0;
	valuestr[0] = 0;
	F32 tempF32;
	U32 tempU32;

	while (!feof(fp))
	{
		if (fgets(buffer, BUFSIZE, fp) == NULL)
		{
			buffer[0] = '\0';
		}
		
		sscanf(	/* Flawfinder: ignore */
			buffer,
			" %255s %255s",
			keyword, valuestr);
		if (!strcmp("{", keyword))
		{
			continue;
		}
		if (!strcmp("}",keyword))
		{
			break;
		}
		else if (!strcmp("curve", keyword))
		{
			sscanf(valuestr,"%d",&tempU32);
			setCurveType((U8) tempU32);
		}
		else if (!strcmp("begin",keyword))
		{
			sscanf(valuestr,"%g",&tempF32);
			setBegin(tempF32);
		}
		else if (!strcmp("end",keyword))
		{
			sscanf(valuestr,"%g",&tempF32);
			setEnd(tempF32);
		}
		else if (!strcmp("hollow",keyword))
		{
			sscanf(valuestr,"%g",&tempF32);
			setHollow(tempF32);
		}
		else
		{
			llwarns << "unknown keyword " << keyword << " in profile import" << llendl;
		}
	}

	return TRUE;
}


BOOL LLProfileParams::exportFile(LLFILE *fp) const
{
	fprintf(fp,"\t\tprofile 0\n");
	fprintf(fp,"\t\t{\n");
	fprintf(fp,"\t\t\tcurve\t%d\n", getCurveType());
	fprintf(fp,"\t\t\tbegin\t%g\n", getBegin());
	fprintf(fp,"\t\t\tend\t%g\n", getEnd());
	fprintf(fp,"\t\t\thollow\t%g\n", getHollow());
	fprintf(fp, "\t\t}\n");
	return TRUE;
}


BOOL LLProfileParams::importLegacyStream(std::istream& input_stream)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	const S32 BUFSIZE = 16384;
	char buffer[BUFSIZE];	/* Flawfinder: ignore */
	// *NOTE: changing the size or type of these buffers will require
	// changing the sscanf below.
	char keyword[256];	/* Flawfinder: ignore */
	char valuestr[256];	/* Flawfinder: ignore */
	keyword[0] = 0;
	valuestr[0] = 0;
	F32 tempF32;
	U32 tempU32;

	while (input_stream.good())
	{
		input_stream.getline(buffer, BUFSIZE);
		sscanf(	/* Flawfinder: ignore */
			buffer,
			" %255s %255s",
			keyword,
			valuestr);
		if (!strcmp("{", keyword))
		{
			continue;
		}
		if (!strcmp("}",keyword))
		{
			break;
		}
		else if (!strcmp("curve", keyword))
		{
			sscanf(valuestr,"%d",&tempU32);
			setCurveType((U8) tempU32);
		}
		else if (!strcmp("begin",keyword))
		{
			sscanf(valuestr,"%g",&tempF32);
			setBegin(tempF32);
		}
		else if (!strcmp("end",keyword))
		{
			sscanf(valuestr,"%g",&tempF32);
			setEnd(tempF32);
		}
		else if (!strcmp("hollow",keyword))
		{
			sscanf(valuestr,"%g",&tempF32);
			setHollow(tempF32);
		}
		else
		{
 		llwarns << "unknown keyword " << keyword << " in profile import" << llendl;
		}
	}

	return TRUE;
}


BOOL LLProfileParams::exportLegacyStream(std::ostream& output_stream) const
{
	output_stream <<"\t\tprofile 0\n";
	output_stream <<"\t\t{\n";
	output_stream <<"\t\t\tcurve\t" << (S32) getCurveType() << "\n";
	output_stream <<"\t\t\tbegin\t" << getBegin() << "\n";
	output_stream <<"\t\t\tend\t" << getEnd() << "\n";
	output_stream <<"\t\t\thollow\t" << getHollow() << "\n";
	output_stream << "\t\t}\n";
	return TRUE;
}

LLSD LLProfileParams::asLLSD() const
{
	LLSD sd;

	sd["curve"] = getCurveType();
	sd["begin"] = getBegin();
	sd["end"] = getEnd();
	sd["hollow"] = getHollow();
	return sd;
}

bool LLProfileParams::fromLLSD(LLSD& sd)
{
	setCurveType(sd["curve"].asInteger());
	setBegin((F32)sd["begin"].asReal());
	setEnd((F32)sd["end"].asReal());
	setHollow((F32)sd["hollow"].asReal());
	return true;
}

void LLProfileParams::copyParams(const LLProfileParams &params)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	setCurveType(params.getCurveType());
	setBegin(params.getBegin());
	setEnd(params.getEnd());
	setHollow(params.getHollow());
}


LLPath::~LLPath()
{
}

S32 LLPath::getNumNGonPoints(const LLPathParams& params, S32 sides, F32 startOff, F32 end_scale, F32 twist_scale)
{ //this is basically LLPath::genNGon stripped down to only operations that influence the number of points added
	S32 ret = 0;

	F32 step= 1.0f / sides;
	F32 t	= params.getBegin();
	ret = 1;
	
	t+=step;

	// Snap to a quantized parameter, so that cut does not
	// affect most sample points.
	t = ((S32)(t * sides)) / (F32)sides;

	// Run through the non-cut dependent points.
	while (t < params.getEnd())
	{
		ret++;
		t+=step;
	}

	ret++;

	return ret;
}

void LLPath::genNGon(const LLPathParams& params, S32 sides, F32 startOff, F32 end_scale, F32 twist_scale)
{
	// Generates a circular path, starting at (1, 0, 0), counterclockwise along the xz plane.
	const F32 tableScale[] = { 1, 1, 1, 0.5f, 0.707107f, 0.53f, 0.525f, 0.5f };

	F32 revolutions = params.getRevolutions();
	F32 skew		= params.getSkew();
	F32 skew_mag	= fabs(skew);
	F32 hole_x		= params.getScaleX() * (1.0f - skew_mag);
	F32 hole_y		= params.getScaleY();

	// Calculate taper begin/end for x,y (Negative means taper the beginning)
	F32 taper_x_begin	= 1.0f;
	F32 taper_x_end		= 1.0f - params.getTaperX();
	F32	taper_y_begin	= 1.0f;
	F32	taper_y_end		= 1.0f - params.getTaperY();

	if ( taper_x_end > 1.0f )
	{
		// Flip tapering.
		taper_x_begin	= 2.0f - taper_x_end;
		taper_x_end		= 1.0f;
	}
	if ( taper_y_end > 1.0f )
	{
		// Flip tapering.
		taper_y_begin	= 2.0f - taper_y_end;
		taper_y_end		= 1.0f;
	}

	// For spheres, the radius is usually zero.
	F32 radius_start = 0.5f;
	if (sides < 8)
	{
		radius_start = tableScale[sides];
	}

	// Scale the radius to take the hole size into account.
	radius_start *= 1.0f - hole_y;
	
	// Now check the radius offset to calculate the start,end radius.  (Negative means
	// decrease the start radius instead).
	F32 radius_end    = radius_start;
	F32 radius_offset = params.getRadiusOffset();
	if (radius_offset < 0.f)
	{
		radius_start *= 1.f + radius_offset;
	}
	else
	{
		radius_end   *= 1.f - radius_offset;
	}	

	// Is the path NOT a closed loop?
	mOpen = ( (params.getEnd()*end_scale - params.getBegin() < 1.0f) ||
		      (skew_mag > 0.001f) ||
			  (fabs(taper_x_end - taper_x_begin) > 0.001f) ||
			  (fabs(taper_y_end - taper_y_begin) > 0.001f) ||
			  (fabs(radius_end - radius_start) > 0.001f) );

	F32 ang, c, s;
	LLQuaternion twist, qang;
	PathPt *pt;
	LLVector3 path_axis (1.f, 0.f, 0.f);
	//LLVector3 twist_axis(0.f, 0.f, 1.f);
	F32 twist_begin = params.getTwistBegin() * twist_scale;
	F32 twist_end	= params.getTwist() * twist_scale;

	// We run through this once before the main loop, to make sure
	// the path begins at the correct cut.
	F32 step= 1.0f / sides;
	F32 t	= params.getBegin();
	pt		= vector_append(mPath, 1);
	ang		= 2.0f*F_PI*revolutions * t;
	s		= sin(ang)*lerp(radius_start, radius_end, t);	
	c		= cos(ang)*lerp(radius_start, radius_end, t);


	pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s)
					  + lerp(-skew ,skew, t) * 0.5f,
					c + lerp(0,params.getShear().mV[1],s), 
					s);
	pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t);
	pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t);
	pt->mTexT  = t;
	
	// Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
	twist.setQuat  (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
	// Rotate the point around the circle's center.
	qang.setQuat   (ang,path_axis);
	pt->mRot   = twist * qang;

	t+=step;

	// Snap to a quantized parameter, so that cut does not
	// affect most sample points.
	t = ((S32)(t * sides)) / (F32)sides;

	// Run through the non-cut dependent points.
	while (t < params.getEnd())
	{
		pt		= vector_append(mPath, 1);

		ang = 2.0f*F_PI*revolutions * t;
		c   = cos(ang)*lerp(radius_start, radius_end, t);
		s   = sin(ang)*lerp(radius_start, radius_end, t);

		pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s)
					      + lerp(-skew ,skew, t) * 0.5f,
						c + lerp(0,params.getShear().mV[1],s), 
						s);

		pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t);
		pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t);
		pt->mTexT  = t;

		// Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
		twist.setQuat  (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
		// Rotate the point around the circle's center.
		qang.setQuat   (ang,path_axis);
		pt->mRot	= twist * qang;

		t+=step;
	}

	// Make one final pass for the end cut.
	t = params.getEnd();
	pt		= vector_append(mPath, 1);
	ang = 2.0f*F_PI*revolutions * t;
	c   = cos(ang)*lerp(radius_start, radius_end, t);
	s   = sin(ang)*lerp(radius_start, radius_end, t);

	pt->mPos.setVec(0 + lerp(0,params.getShear().mV[0],s)
					  + lerp(-skew ,skew, t) * 0.5f,
					c + lerp(0,params.getShear().mV[1],s), 
					s);
	pt->mScale.mV[VX] = hole_x * lerp(taper_x_begin, taper_x_end, t);
	pt->mScale.mV[VY] = hole_y * lerp(taper_y_begin, taper_y_end, t);
	pt->mTexT  = t;
	
	// Twist rotates the path along the x,y plane (I think) - DJS 04/05/02
	twist.setQuat  (lerp(twist_begin,twist_end,t) * 2.f * F_PI - F_PI,0,0,1);
	// Rotate the point around the circle's center.
	qang.setQuat   (ang,path_axis);
	pt->mRot   = twist * qang;

	mTotal = mPath.size();
}

const LLVector2 LLPathParams::getBeginScale() const
{
	LLVector2 begin_scale(1.f, 1.f);
	if (getScaleX() > 1)
	{
		begin_scale.mV[0] = 2-getScaleX();
	}
	if (getScaleY() > 1)
	{
		begin_scale.mV[1] = 2-getScaleY();
	}
	return begin_scale;
}

const LLVector2 LLPathParams::getEndScale() const
{
	LLVector2 end_scale(1.f, 1.f);
	if (getScaleX() < 1)
	{
		end_scale.mV[0] = getScaleX();
	}
	if (getScaleY() < 1)
	{
		end_scale.mV[1] = getScaleY();
	}
	return end_scale;
}

S32 LLPath::getNumPoints(const LLPathParams& params, F32 detail)
{ // this is basically LLPath::generate stripped down to only the operations that influence the number of points
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	if (detail < MIN_LOD)
	{
		detail = MIN_LOD;
	}

	S32 np = 2; // hardcode for line

	// Is this 0xf0 mask really necessary?  DK 03/02/05

	switch (params.getCurveType() & 0xf0)
	{
	default:
	case LL_PCODE_PATH_LINE:
		{
			// Take the begin/end twist into account for detail.
			np    = llfloor(fabs(params.getTwistBegin() - params.getTwist()) * 3.5f * (detail-0.5f)) + 2;
		}
		break;

	case LL_PCODE_PATH_CIRCLE:
		{
			// Increase the detail as the revolutions and twist increase.
			F32 twist_mag = fabs(params.getTwistBegin() - params.getTwist());

			S32 sides = (S32)llfloor(llfloor((MIN_DETAIL_FACES * detail + twist_mag * 3.5f * (detail-0.5f))) * params.getRevolutions());

			np = sides;
		}
		break;

	case LL_PCODE_PATH_CIRCLE2:
		{
			//genNGon(params, llfloor(MIN_DETAIL_FACES * detail), 4.f, 0.f);
			np = getNumNGonPoints(params, llfloor(MIN_DETAIL_FACES * detail));
		}
		break;

	case LL_PCODE_PATH_TEST:

		np     = 5;
		break;
	};

	return np;
}

BOOL LLPath::generate(const LLPathParams& params, F32 detail, S32 split,
					  BOOL is_sculpted, S32 sculpt_size)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	if ((!mDirty) && (!is_sculpted))
	{
		return FALSE;
	}

	if (detail < MIN_LOD)
	{
		llinfos << "Generating path with LOD < MIN!  Clamping to 1" << llendl;
		detail = MIN_LOD;
	}

	mDirty = FALSE;
	S32 np = 2; // hardcode for line

	mPath.clear();
	mOpen = TRUE;

	// Is this 0xf0 mask really necessary?  DK 03/02/05
	switch (params.getCurveType() & 0xf0)
	{
	default:
	case LL_PCODE_PATH_LINE:
		{
			// Take the begin/end twist into account for detail.
			np    = llfloor(fabs(params.getTwistBegin() - params.getTwist()) * 3.5f * (detail-0.5f)) + 2;
			if (np < split+2)
			{
				np = split+2;
			}

			mStep = 1.0f / (np-1);
			
			mPath.resize(np);

			LLVector2 start_scale = params.getBeginScale();
			LLVector2 end_scale = params.getEndScale();

			for (S32 i=0;i<np;i++)
			{
				F32 t = lerp(params.getBegin(),params.getEnd(),(F32)i * mStep);
				mPath[i].mPos.setVec(lerp(0,params.getShear().mV[0],t),
									 lerp(0,params.getShear().mV[1],t),
									 t - 0.5f);
				mPath[i].mRot.setQuat(lerp(F_PI * params.getTwistBegin(),F_PI * params.getTwist(),t),0,0,1);
				mPath[i].mScale.mV[0] = lerp(start_scale.mV[0],end_scale.mV[0],t);
				mPath[i].mScale.mV[1] = lerp(start_scale.mV[1],end_scale.mV[1],t);
				mPath[i].mTexT        = t;
			}
		}
		break;

	case LL_PCODE_PATH_CIRCLE:
		{
			// Increase the detail as the revolutions and twist increase.
			F32 twist_mag = fabs(params.getTwistBegin() - params.getTwist());

			S32 sides = (S32)llfloor(llfloor((MIN_DETAIL_FACES * detail + twist_mag * 3.5f * (detail-0.5f))) * params.getRevolutions());

			if (is_sculpted)
				sides = sculpt_size;
			
			genNGon(params, sides);
		}
		break;

	case LL_PCODE_PATH_CIRCLE2:
		{
			if (params.getEnd() - params.getBegin() >= 0.99f &&
				params.getScaleX() >= .99f)
			{
				mOpen = FALSE;
			}

			//genNGon(params, llfloor(MIN_DETAIL_FACES * detail), 4.f, 0.f);
			genNGon(params, llfloor(MIN_DETAIL_FACES * detail));

			F32 t     = 0.f;
			F32 tStep = 1.0f / mPath.size();

			F32 toggle = 0.5f;
			for (S32 i=0;i<(S32)mPath.size();i++)
			{
				mPath[i].mPos.mV[0] = toggle;
				if (toggle == 0.5f)
					toggle = -0.5f;
				else
					toggle = 0.5f;
				t += tStep;
			}
		}

		break;

	case LL_PCODE_PATH_TEST:

		np     = 5;
		mStep = 1.0f / (np-1);
		
		mPath.resize(np);

		for (S32 i=0;i<np;i++)
		{
			F32 t = (F32)i * mStep;
			mPath[i].mPos.setVec(0,
								lerp(0,   -sin(F_PI*params.getTwist()*t)*0.5f,t),
								lerp(-0.5, cos(F_PI*params.getTwist()*t)*0.5f,t));
			mPath[i].mScale.mV[0] = lerp(1,params.getScale().mV[0],t);
			mPath[i].mScale.mV[1] = lerp(1,params.getScale().mV[1],t);
			mPath[i].mTexT  = t;
			mPath[i].mRot.setQuat(F_PI * params.getTwist() * t,1,0,0);
		}

		break;
	};

	if (params.getTwist() != params.getTwistBegin()) mOpen = TRUE;

	//if ((int(fabsf(params.getTwist() - params.getTwistBegin())*100))%100 != 0) {
	//	mOpen = TRUE;
	//}
	
	return TRUE;
}

BOOL LLDynamicPath::generate(const LLPathParams& params, F32 detail, S32 split,
							 BOOL is_sculpted, S32 sculpt_size)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	mOpen = TRUE; // Draw end caps
	if (getPathLength() == 0)
	{
		// Path hasn't been generated yet.
		// Some algorithms later assume at least TWO path points.
		resizePath(2);
		for (U32 i = 0; i < 2; i++)
		{
			mPath[i].mPos.setVec(0, 0, 0);
			mPath[i].mRot.setQuat(0, 0, 0);
			mPath[i].mScale.setVec(1, 1);
			mPath[i].mTexT = 0;
		}
	}

	return TRUE;
}


BOOL LLPathParams::importFile(LLFILE *fp)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	const S32 BUFSIZE = 16384;
	char buffer[BUFSIZE];	/* Flawfinder: ignore */
	// *NOTE: changing the size or type of these buffers will require
	// changing the sscanf below.
	char keyword[256];	/* Flawfinder: ignore */
	char valuestr[256];	/* Flawfinder: ignore */
	keyword[0] = 0;
	valuestr[0] = 0;

	F32 tempF32;
	F32 x, y;
	U32 tempU32;

	while (!feof(fp))
	{
		if (fgets(buffer, BUFSIZE, fp) == NULL)
		{
			buffer[0] = '\0';
		}
		
		sscanf(	/* Flawfinder: ignore */
			buffer,
			" %255s %255s",
			keyword, valuestr);
		if (!strcmp("{", keyword))
		{
			continue;
		}
		if (!strcmp("}",keyword))
		{
			break;
		}
		else if (!strcmp("curve", keyword))
		{
			sscanf(valuestr,"%d",&tempU32);
			setCurveType((U8) tempU32);
		}
		else if (!strcmp("begin",keyword))
		{
			sscanf(valuestr,"%g",&tempF32);
			setBegin(tempF32);
		}
		else if (!strcmp("end",keyword))
		{
			sscanf(valuestr,"%g",&tempF32);
			setEnd(tempF32);
		}
		else if (!strcmp("scale",keyword))
		{
			// Legacy for one dimensional scale per path
			sscanf(valuestr,"%g",&tempF32);
			setScale(tempF32, tempF32);
		}
		else if (!strcmp("scale_x", keyword))
		{
			sscanf(valuestr, "%g", &x);
			setScaleX(x);
		}
		else if (!strcmp("scale_y", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setScaleY(y);
		}
		else if (!strcmp("shear_x", keyword))
		{
			sscanf(valuestr, "%g", &x);
			setShearX(x);
		}
		else if (!strcmp("shear_y", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setShearY(y);
		}
		else if (!strcmp("twist",keyword))
		{
			sscanf(valuestr,"%g",&tempF32);
			setTwist(tempF32);
		}
		else if (!strcmp("twist_begin", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setTwistBegin(y);
		}
		else if (!strcmp("radius_offset", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setRadiusOffset(y);
		}
		else if (!strcmp("taper_x", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setTaperX(y);
		}
		else if (!strcmp("taper_y", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setTaperY(y);
		}
		else if (!strcmp("revolutions", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setRevolutions(y);
		}
		else if (!strcmp("skew", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setSkew(y);
		}
		else
		{
			llwarns << "unknown keyword " << " in path import" << llendl;
		}
	}
	return TRUE;
}


BOOL LLPathParams::exportFile(LLFILE *fp) const
{
	fprintf(fp, "\t\tpath 0\n");
	fprintf(fp, "\t\t{\n");
	fprintf(fp, "\t\t\tcurve\t%d\n", getCurveType());
	fprintf(fp, "\t\t\tbegin\t%g\n", getBegin());
	fprintf(fp, "\t\t\tend\t%g\n", getEnd());
	fprintf(fp, "\t\t\tscale_x\t%g\n", getScaleX() );
	fprintf(fp, "\t\t\tscale_y\t%g\n", getScaleY() );
	fprintf(fp, "\t\t\tshear_x\t%g\n", getShearX() );
	fprintf(fp, "\t\t\tshear_y\t%g\n", getShearY() );
	fprintf(fp,"\t\t\ttwist\t%g\n", getTwist());
	
	fprintf(fp,"\t\t\ttwist_begin\t%g\n", getTwistBegin());
	fprintf(fp,"\t\t\tradius_offset\t%g\n", getRadiusOffset());
	fprintf(fp,"\t\t\ttaper_x\t%g\n", getTaperX());
	fprintf(fp,"\t\t\ttaper_y\t%g\n", getTaperY());
	fprintf(fp,"\t\t\trevolutions\t%g\n", getRevolutions());
	fprintf(fp,"\t\t\tskew\t%g\n", getSkew());

	fprintf(fp, "\t\t}\n");
	return TRUE;
}


BOOL LLPathParams::importLegacyStream(std::istream& input_stream)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	const S32 BUFSIZE = 16384;
	char buffer[BUFSIZE];	/* Flawfinder: ignore */
	// *NOTE: changing the size or type of these buffers will require
	// changing the sscanf below.
	char keyword[256];	/* Flawfinder: ignore */
	char valuestr[256];	/* Flawfinder: ignore */
	keyword[0] = 0;
	valuestr[0] = 0;

	F32 tempF32;
	F32 x, y;
	U32 tempU32;

	while (input_stream.good())
	{
		input_stream.getline(buffer, BUFSIZE);
		sscanf(	/* Flawfinder: ignore */
			buffer,
			" %255s %255s",
			keyword, valuestr);
		if (!strcmp("{", keyword))
		{
			continue;
		}
		if (!strcmp("}",keyword))
		{
			break;
		}
		else if (!strcmp("curve", keyword))
		{
			sscanf(valuestr,"%d",&tempU32);
			setCurveType((U8) tempU32);
		}
		else if (!strcmp("begin",keyword))
		{
			sscanf(valuestr,"%g",&tempF32);
			setBegin(tempF32);
		}
		else if (!strcmp("end",keyword))
		{
			sscanf(valuestr,"%g",&tempF32);
			setEnd(tempF32);
		}
		else if (!strcmp("scale",keyword))
		{
			// Legacy for one dimensional scale per path
			sscanf(valuestr,"%g",&tempF32);
			setScale(tempF32, tempF32);
		}
		else if (!strcmp("scale_x", keyword))
		{
			sscanf(valuestr, "%g", &x);
			setScaleX(x);
		}
		else if (!strcmp("scale_y", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setScaleY(y);
		}
		else if (!strcmp("shear_x", keyword))
		{
			sscanf(valuestr, "%g", &x);
			setShearX(x);
		}
		else if (!strcmp("shear_y", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setShearY(y);
		}
		else if (!strcmp("twist",keyword))
		{
			sscanf(valuestr,"%g",&tempF32);
			setTwist(tempF32);
		}
		else if (!strcmp("twist_begin", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setTwistBegin(y);
		}
		else if (!strcmp("radius_offset", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setRadiusOffset(y);
		}
		else if (!strcmp("taper_x", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setTaperX(y);
		}
		else if (!strcmp("taper_y", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setTaperY(y);
		}
		else if (!strcmp("revolutions", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setRevolutions(y);
		}
		else if (!strcmp("skew", keyword))
		{
			sscanf(valuestr, "%g", &y);
			setSkew(y);
		}
		else
		{
			llwarns << "unknown keyword " << " in path import" << llendl;
		}
	}
	return TRUE;
}


BOOL LLPathParams::exportLegacyStream(std::ostream& output_stream) const
{
	output_stream << "\t\tpath 0\n";
	output_stream << "\t\t{\n";
	output_stream << "\t\t\tcurve\t" << (S32) getCurveType() << "\n";
	output_stream << "\t\t\tbegin\t" << getBegin() << "\n";
	output_stream << "\t\t\tend\t" << getEnd() << "\n";
	output_stream << "\t\t\tscale_x\t" << getScaleX()  << "\n";
	output_stream << "\t\t\tscale_y\t" << getScaleY()  << "\n";
	output_stream << "\t\t\tshear_x\t" << getShearX()  << "\n";
	output_stream << "\t\t\tshear_y\t" << getShearY()  << "\n";
	output_stream <<"\t\t\ttwist\t" << getTwist() << "\n";
	
	output_stream <<"\t\t\ttwist_begin\t" << getTwistBegin() << "\n";
	output_stream <<"\t\t\tradius_offset\t" << getRadiusOffset() << "\n";
	output_stream <<"\t\t\ttaper_x\t" << getTaperX() << "\n";
	output_stream <<"\t\t\ttaper_y\t" << getTaperY() << "\n";
	output_stream <<"\t\t\trevolutions\t" << getRevolutions() << "\n";
	output_stream <<"\t\t\tskew\t" << getSkew() << "\n";

	output_stream << "\t\t}\n";
	return TRUE;
}

LLSD LLPathParams::asLLSD() const
{
	LLSD sd = LLSD();
	sd["curve"] = getCurveType();
	sd["begin"] = getBegin();
	sd["end"] = getEnd();
	sd["scale_x"] = getScaleX();
	sd["scale_y"] = getScaleY();
	sd["shear_x"] = getShearX();
	sd["shear_y"] = getShearY();
	sd["twist"] = getTwist();
	sd["twist_begin"] = getTwistBegin();
	sd["radius_offset"] = getRadiusOffset();
	sd["taper_x"] = getTaperX();
	sd["taper_y"] = getTaperY();
	sd["revolutions"] = getRevolutions();
	sd["skew"] = getSkew();

	return sd;
}

bool LLPathParams::fromLLSD(LLSD& sd)
{
	setCurveType(sd["curve"].asInteger());
	setBegin((F32)sd["begin"].asReal());
	setEnd((F32)sd["end"].asReal());
	setScaleX((F32)sd["scale_x"].asReal());
	setScaleY((F32)sd["scale_y"].asReal());
	setShearX((F32)sd["shear_x"].asReal());
	setShearY((F32)sd["shear_y"].asReal());
	setTwist((F32)sd["twist"].asReal());
	setTwistBegin((F32)sd["twist_begin"].asReal());
	setRadiusOffset((F32)sd["radius_offset"].asReal());
	setTaperX((F32)sd["taper_x"].asReal());
	setTaperY((F32)sd["taper_y"].asReal());
	setRevolutions((F32)sd["revolutions"].asReal());
	setSkew((F32)sd["skew"].asReal());
	return true;
}

void LLPathParams::copyParams(const LLPathParams &params)
{
	setCurveType(params.getCurveType());
	setBegin(params.getBegin());
	setEnd(params.getEnd());
	setScale(params.getScaleX(), params.getScaleY() );
	setShear(params.getShearX(), params.getShearY() );
	setTwist(params.getTwist());
	setTwistBegin(params.getTwistBegin());
	setRadiusOffset(params.getRadiusOffset());
	setTaper( params.getTaperX(), params.getTaperY() );
	setRevolutions(params.getRevolutions());
	setSkew(params.getSkew());
}

S32 profile_delete_lock = 1 ; 
LLProfile::~LLProfile()
{
	if(profile_delete_lock)
	{
		llerrs << "LLProfile should not be deleted here!" << llendl ;
	}
}


S32 LLVolume::sNumMeshPoints = 0;

LLVolume::LLVolume(const LLVolumeParams &params, const F32 detail, const BOOL generate_single_face, const BOOL is_unique)
	: mParams(params)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	mUnique = is_unique;
	mFaceMask = 0x0;
	mDetail = detail;
	mSculptLevel = -2;
	mIsTetrahedron = FALSE;
	mLODScaleBias.setVec(1,1,1);
	mHullPoints = NULL;
	mHullIndices = NULL;
	mNumHullPoints = 0;
	mNumHullIndices = 0;

	// set defaults
	if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_FLEXIBLE)
	{
		mPathp = new LLDynamicPath();
	}
	else
	{
		mPathp = new LLPath();
	}
	mProfilep = new LLProfile();

	mGenerateSingleFace = generate_single_face;

	generate();
	
	if (mParams.getSculptID().isNull() && mParams.getSculptType() == LL_SCULPT_TYPE_NONE)
	{
		createVolumeFaces();
	}
}

void LLVolume::resizePath(S32 length)
{
	mPathp->resizePath(length);
	mVolumeFaces.clear();
}

void LLVolume::regen()
{
	generate();
	createVolumeFaces();
}

void LLVolume::genBinormals(S32 face)
{
	mVolumeFaces[face].createBinormals();
}

LLVolume::~LLVolume()
{
	sNumMeshPoints -= mMesh.size();
	delete mPathp;

	profile_delete_lock = 0 ;
	delete mProfilep;
	profile_delete_lock = 1 ;

	mPathp = NULL;
	mProfilep = NULL;
	mVolumeFaces.clear();

	ll_aligned_free_16(mHullPoints);
	mHullPoints = NULL;
	ll_aligned_free_16(mHullIndices);
	mHullIndices = NULL;
}

BOOL LLVolume::generate()
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	llassert_always(mProfilep);
	
	//Added 10.03.05 Dave Parks
	// Split is a parameter to LLProfile::generate that tesselates edges on the profile 
	// to prevent lighting and texture interpolation errors on triangles that are 
	// stretched due to twisting or scaling on the path.  
	S32 split = (S32) ((mDetail)*0.66f);
	
	if (mParams.getPathParams().getCurveType() == LL_PCODE_PATH_LINE &&
		(mParams.getPathParams().getScale().mV[0] != 1.0f ||
		 mParams.getPathParams().getScale().mV[1] != 1.0f) &&
		(mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_SQUARE ||
		 mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_ISOTRI ||
		 mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_EQUALTRI ||
		 mParams.getProfileParams().getCurveType() == LL_PCODE_PROFILE_RIGHTTRI))
	{
		split = 0;
	}
		 
	mLODScaleBias.setVec(0.5f, 0.5f, 0.5f);
	
	F32 profile_detail = mDetail;
	F32 path_detail = mDetail;
	
	U8 path_type = mParams.getPathParams().getCurveType();
	U8 profile_type = mParams.getProfileParams().getCurveType();
	
	if (path_type == LL_PCODE_PATH_LINE && profile_type == LL_PCODE_PROFILE_CIRCLE)
	{ //cylinders don't care about Z-Axis
		mLODScaleBias.setVec(0.6f, 0.6f, 0.0f);
	}
	else if (path_type == LL_PCODE_PATH_CIRCLE) 
	{	
		mLODScaleBias.setVec(0.6f, 0.6f, 0.6f);
	}
	
	//********************************************************************
	//debug info, to be removed
	if((U32)(mPathp->mPath.size() * mProfilep->mProfile.size()) > (1u << 20))
	{
		llinfos << "sizeS: " << mPathp->mPath.size() << " sizeT: " << mProfilep->mProfile.size() << llendl ;
		llinfos << "path_detail : " << path_detail << " split: " << split << " profile_detail: " << profile_detail << llendl ;
		llinfos << mParams << llendl ;
		llinfos << "more info to check if mProfilep is deleted or not." << llendl ;
		llinfos << mProfilep->mNormals.size() << " : " << mProfilep->mFaces.size() << " : " << mProfilep->mEdgeNormals.size() << " : " << mProfilep->mEdgeCenters.size() << llendl ;

		llerrs << "LLVolume corrupted!" << llendl ;
	}
	//********************************************************************

	BOOL regenPath = mPathp->generate(mParams.getPathParams(), path_detail, split);
	BOOL regenProf = mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(),profile_detail, split);

	if (regenPath || regenProf ) 
	{
		S32 sizeS = mPathp->mPath.size();
		S32 sizeT = mProfilep->mProfile.size();

		//********************************************************************
		//debug info, to be removed
		if((U32)(sizeS * sizeT) > (1u << 20))
		{
			llinfos << "regenPath: " << (S32)regenPath << " regenProf: " << (S32)regenProf << llendl ;
			llinfos << "sizeS: " << sizeS << " sizeT: " << sizeT << llendl ;
			llinfos << "path_detail : " << path_detail << " split: " << split << " profile_detail: " << profile_detail << llendl ;
			llinfos << mParams << llendl ;
			llinfos << "more info to check if mProfilep is deleted or not." << llendl ;
			llinfos << mProfilep->mNormals.size() << " : " << mProfilep->mFaces.size() << " : " << mProfilep->mEdgeNormals.size() << " : " << mProfilep->mEdgeCenters.size() << llendl ;

			llerrs << "LLVolume corrupted!" << llendl ;
		}
		//********************************************************************

		sNumMeshPoints -= mMesh.size();
		mMesh.resize(sizeT * sizeS);
		sNumMeshPoints += mMesh.size();		

		//generate vertex positions

		// Run along the path.
		for (S32 s = 0; s < sizeS; ++s)
		{
			LLVector2  scale = mPathp->mPath[s].mScale;
			LLQuaternion rot = mPathp->mPath[s].mRot;

			// Run along the profile.
			for (S32 t = 0; t < sizeT; ++t)
			{
				S32 m = s*sizeT + t;
				Point& pt = mMesh[m];
				
				pt.mPos.mV[0] = mProfilep->mProfile[t].mV[0] * scale.mV[0];
				pt.mPos.mV[1] = mProfilep->mProfile[t].mV[1] * scale.mV[1];
				pt.mPos.mV[2] = 0.0f;
				pt.mPos       = pt.mPos * rot;
				pt.mPos      += mPathp->mPath[s].mPos;
			}
		}

		for (std::vector<LLProfile::Face>::iterator iter = mProfilep->mFaces.begin();
			 iter != mProfilep->mFaces.end(); ++iter)
		{
			LLFaceID id = iter->mFaceID;
			mFaceMask |= id;
		}
		
		return TRUE;
	}
	return FALSE;
}

void LLVolumeFace::VertexData::init()
{
	if (!mData)
	{
		mData = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*2);
	}
}

LLVolumeFace::VertexData::VertexData()
{
	mData = NULL;
	init();
}
	
LLVolumeFace::VertexData::VertexData(const VertexData& rhs)
{
	mData = NULL;
	*this = rhs;
}

const LLVolumeFace::VertexData& LLVolumeFace::VertexData::operator=(const LLVolumeFace::VertexData& rhs)
{
	if (this != &rhs)
	{
		init();
		LLVector4a::memcpyNonAliased16((F32*) mData, (F32*) rhs.mData, 2*sizeof(LLVector4a));
		mTexCoord = rhs.mTexCoord;
	}
	return *this;
}

LLVolumeFace::VertexData::~VertexData()
{
	ll_aligned_free_16(mData);
	mData = NULL;
}

LLVector4a& LLVolumeFace::VertexData::getPosition()
{
	return mData[POSITION];
}

LLVector4a& LLVolumeFace::VertexData::getNormal()
{
	return mData[NORMAL];
}

const LLVector4a& LLVolumeFace::VertexData::getPosition() const
{
	return mData[POSITION];
}

const LLVector4a& LLVolumeFace::VertexData::getNormal() const
{
	return mData[NORMAL];
}


void LLVolumeFace::VertexData::setPosition(const LLVector4a& pos)
{
	mData[POSITION] = pos;
}

void LLVolumeFace::VertexData::setNormal(const LLVector4a& norm)
{
	mData[NORMAL] = norm;
}

bool LLVolumeFace::VertexData::operator<(const LLVolumeFace::VertexData& rhs)const
{
	const F32* lp = this->getPosition().getF32ptr();
	const F32* rp = rhs.getPosition().getF32ptr();

	if (lp[0] != rp[0])
	{
		return lp[0] < rp[0];
	}

	if (rp[1] != lp[1])
	{
		return lp[1] < rp[1];
	}

	if (rp[2] != lp[2])
	{
		return lp[2] < rp[2];
	}

	lp = getNormal().getF32ptr();
	rp = rhs.getNormal().getF32ptr();

	if (lp[0] != rp[0])
	{
		return lp[0] < rp[0];
	}

	if (rp[1] != lp[1])
	{
		return lp[1] < rp[1];
	}

	if (rp[2] != lp[2])
	{
		return lp[2] < rp[2];
	}

	if (mTexCoord.mV[0] != rhs.mTexCoord.mV[0])
	{
		return mTexCoord.mV[0] < rhs.mTexCoord.mV[0];
	}

	return mTexCoord.mV[1] < rhs.mTexCoord.mV[1];
}

bool LLVolumeFace::VertexData::operator==(const LLVolumeFace::VertexData& rhs)const
{
	return mData[POSITION].equals3(rhs.getPosition()) &&
			mData[NORMAL].equals3(rhs.getNormal()) &&
			mTexCoord == rhs.mTexCoord;
}

bool LLVolumeFace::VertexData::compareNormal(const LLVolumeFace::VertexData& rhs, F32 angle_cutoff) const
{
	bool retval = false;

	const F32 epsilon = 0.00001f;

	if (rhs.mData[POSITION].equals3(mData[POSITION], epsilon) && 
		fabs(rhs.mTexCoord[0]-mTexCoord[0]) < epsilon &&
		fabs(rhs.mTexCoord[1]-mTexCoord[1]) < epsilon)
	{
		if (angle_cutoff > 1.f)
		{
			retval = (mData[NORMAL].equals3(rhs.mData[NORMAL], epsilon));
		}
		else
		{
			F32 cur_angle = rhs.mData[NORMAL].dot3(mData[NORMAL]).getF32();
			retval = cur_angle > angle_cutoff;
		}
	}

	return retval;
}

bool LLVolume::unpackVolumeFaces(std::istream& is, S32 size)
{
	//input stream is now pointing at a zlib compressed block of LLSD
	//decompress block
	LLSD mdl;
	if (!unzip_llsd(mdl, is, size))
	{
		llwarns << "not a valid mesh asset!" << llendl;
		return false;
	}
	
	{
		U32 face_count = mdl.size();

		if (face_count == 0)
		{ //no faces unpacked, treat as failed decode
			llwarns << "found no faces!" << llendl;
			return false;
		}

		mVolumeFaces.resize(face_count);

		for (U32 i = 0; i < face_count; ++i)
		{
			LLVolumeFace& face = mVolumeFaces[i];

			if (mdl[i].has("NoGeometry"))
			{ //face has no geometry, continue
				face.resizeIndices(3);
				face.resizeVertices(1);
				memset(face.mPositions, 0, sizeof(LLVector4a));
				memset(face.mNormals, 0, sizeof(LLVector4a));
				memset(face.mTexCoords, 0, sizeof(LLVector2));
				memset(face.mIndices, 0, sizeof(U16)*3);
				continue;
			}

			LLSD::Binary pos = mdl[i]["Position"];
			LLSD::Binary norm = mdl[i]["Normal"];
			LLSD::Binary tc = mdl[i]["TexCoord0"];
			LLSD::Binary idx = mdl[i]["TriangleList"];

			

			//copy out indices
			face.resizeIndices(idx.size()/2);
			
			if (idx.empty() || face.mNumIndices < 3)
			{ //why is there an empty index list?
				llwarns <<"Empty face present!" << llendl;
				continue;
			}

			U16* indices = (U16*) &(idx[0]);
			U32 count = idx.size()/2;
			for (U32 j = 0; j < count; ++j)
			{
				face.mIndices[j] = indices[j];
			}

			//copy out vertices
			U32 num_verts = pos.size()/(3*2);
			face.resizeVertices(num_verts);

			LLVector3 minp;
			LLVector3 maxp;
			LLVector2 min_tc; 
			LLVector2 max_tc; 
		
			minp.setValue(mdl[i]["PositionDomain"]["Min"]);
			maxp.setValue(mdl[i]["PositionDomain"]["Max"]);
			LLVector4a min_pos, max_pos;
			min_pos.load3(minp.mV);
			max_pos.load3(maxp.mV);

			min_tc.setValue(mdl[i]["TexCoord0Domain"]["Min"]);
			max_tc.setValue(mdl[i]["TexCoord0Domain"]["Max"]);

			LLVector4a pos_range;
			pos_range.setSub(max_pos, min_pos);
			LLVector2 tc_range2 = max_tc - min_tc;
			LLVector4a tc_range;
			tc_range.set(tc_range2[0], tc_range2[1], tc_range2[0], tc_range2[1]);
			LLVector4a min_tc4(min_tc[0], min_tc[1], min_tc[0], min_tc[1]);

			LLVector4a* pos_out = face.mPositions;
			LLVector4a* norm_out = face.mNormals;
			LLVector4a* tc_out = (LLVector4a*) face.mTexCoords;

			{
				U16* v = (U16*) &(pos[0]);
				for (U32 j = 0; j < num_verts; ++j)
				{
					pos_out->set((F32) v[0], (F32) v[1], (F32) v[2]);
					pos_out->div(65535.f);
					pos_out->mul(pos_range);
					pos_out->add(min_pos);
					pos_out++;
					v += 3;
				}

			}

			{
				if (!norm.empty())
				{
					U16* n = (U16*) &(norm[0]);
					for (U32 j = 0; j < num_verts; ++j)
					{
						norm_out->set((F32) n[0], (F32) n[1], (F32) n[2]);
						norm_out->div(65535.f);
						norm_out->mul(2.f);
						norm_out->sub(1.f);
						norm_out++;
						n += 3;
					}
				}
				else
				{
					memset(norm_out, 0, sizeof(LLVector4a)*num_verts);
				}
			}

			{
				if (!tc.empty())
				{
					U16* t = (U16*) &(tc[0]);
					for (U32 j = 0; j < num_verts; j+=2)
					{
						if (j < num_verts-1)
						{
							tc_out->set((F32) t[0], (F32) t[1], (F32) t[2], (F32) t[3]);
						}
						else
						{
							tc_out->set((F32) t[0], (F32) t[1], 0.f, 0.f);
						}

						t += 4;

						tc_out->div(65535.f);
						tc_out->mul(tc_range);
						tc_out->add(min_tc4);

						tc_out++;
					}
				}
				else
				{
					memset(tc_out, 0, sizeof(LLVector2)*num_verts);
				}
			}

			if (mdl[i].has("Weights"))
			{
				face.allocateWeights(num_verts);

				LLSD::Binary weights = mdl[i]["Weights"];

				U32 idx = 0;

				U32 cur_vertex = 0;
				while (idx < weights.size() && cur_vertex < num_verts)
				{
					const U8 END_INFLUENCES = 0xFF;
					U8 joint = weights[idx++];

					U32 cur_influence = 0;
					LLVector4 wght(0,0,0,0);

					while (joint != END_INFLUENCES && idx < weights.size())
					{
						U16 influence = weights[idx++];
						influence |= ((U16) weights[idx++] << 8);

						F32 w = llclamp((F32) influence / 65535.f, 0.f, 0.99999f);
						wght.mV[cur_influence++] = (F32) joint + w;

						if (cur_influence >= 4)
						{
							joint = END_INFLUENCES;
						}
						else
						{
							joint = weights[idx++];
						}
					}

					face.mWeights[cur_vertex].loadua(wght.mV);

					cur_vertex++;
				}

				if (cur_vertex != num_verts || idx != weights.size())
				{
					llwarns << "Vertex weight count does not match vertex count!" << llendl;
				}
					
			}

			// modifier flags?
			bool do_mirror = (mParams.getSculptType() & LL_SCULPT_FLAG_MIRROR);
			bool do_invert = (mParams.getSculptType() &LL_SCULPT_FLAG_INVERT);
			
			
			// translate to actions:
			bool do_reflect_x = false;
			bool do_reverse_triangles = false;
			bool do_invert_normals = false;
			
			if (do_mirror)
			{
				do_reflect_x = true;
				do_reverse_triangles = !do_reverse_triangles;
			}
			
			if (do_invert)
			{
				do_invert_normals = true;
				do_reverse_triangles = !do_reverse_triangles;
			}
			
			// now do the work

			if (do_reflect_x)
			{
				LLVector4a* p = (LLVector4a*) face.mPositions;
				LLVector4a* n = (LLVector4a*) face.mNormals;
				
				for (S32 i = 0; i < face.mNumVertices; i++)
				{
					p[i].mul(-1.0f);
					n[i].mul(-1.0f);
				}
			}

			if (do_invert_normals)
			{
				LLVector4a* n = (LLVector4a*) face.mNormals;
				
				for (S32 i = 0; i < face.mNumVertices; i++)
				{
					n[i].mul(-1.0f);
				}
			}

			if (do_reverse_triangles)
			{
				for (U32 j = 0; j < face.mNumIndices; j += 3)
				{
					// swap the 2nd and 3rd index
					S32 swap = face.mIndices[j+1];
					face.mIndices[j+1] = face.mIndices[j+2];
					face.mIndices[j+2] = swap;
				}
			}

			//calculate bounding box
			LLVector4a& min = face.mExtents[0];
			LLVector4a& max = face.mExtents[1];

			if (face.mNumVertices < 3)
			{ //empty face, use a dummy 1cm (at 1m scale) bounding box
				min.splat(-0.005f);
				max.splat(0.005f);
			}
			else
			{
				min = max = face.mPositions[0];

				for (S32 i = 1; i < face.mNumVertices; ++i)
				{
					min.setMin(min, face.mPositions[i]);
					max.setMax(max, face.mPositions[i]);
				}

				if (face.mTexCoords)
				{
					LLVector2& min_tc = face.mTexCoordExtents[0];
					LLVector2& max_tc = face.mTexCoordExtents[1];

					min_tc = face.mTexCoords[0];
					max_tc = face.mTexCoords[0];

					for (U32 j = 1; j < face.mNumVertices; ++j)
					{
						update_min_max(min_tc, max_tc, face.mTexCoords[j]);
					}
				}
				else
				{
					face.mTexCoordExtents[0].set(0,0);
					face.mTexCoordExtents[1].set(1,1);
				}
			}
		}
	}
	
	mSculptLevel = 0;  // success!

	cacheOptimize();

	return true;
}

void tetrahedron_set_normal(LLVolumeFace::VertexData* cv)
{
	LLVector4a v0;
	v0.setSub(cv[1].getPosition(), cv[0].getNormal());
	LLVector4a v1;
	v1.setSub(cv[2].getNormal(), cv[0].getPosition());
	
	cv[0].getNormal().setCross3(v0,v1);
	cv[0].getNormal().normalize3fast();
	cv[1].setNormal(cv[0].getNormal());
	cv[2].setNormal(cv[1].getNormal());
}

BOOL LLVolume::isTetrahedron()
{
	return mIsTetrahedron;
}

void LLVolume::makeTetrahedron()
{
	mVolumeFaces.clear();

	LLVolumeFace face;

	F32 x = 0.25f;
	LLVector4a p[] = 
	{ //unit tetrahedron corners
		LLVector4a(x,x,x),
		LLVector4a(-x,-x,x),
		LLVector4a(-x,x,-x),
		LLVector4a(x,-x,-x)
	};

	face.mExtents[0].splat(-x);
	face.mExtents[1].splat(x);
	
	LLVolumeFace::VertexData cv[3];

	//set texture coordinates
	cv[0].mTexCoord = LLVector2(0,0);
	cv[1].mTexCoord = LLVector2(1,0);
	cv[2].mTexCoord = LLVector2(0.5f, 0.5f*F_SQRT3);


	//side 1
	cv[0].setPosition(p[1]);
	cv[1].setPosition(p[0]);
	cv[2].setPosition(p[2]);

	tetrahedron_set_normal(cv);

	face.resizeVertices(12);
	face.resizeIndices(12);

	LLVector4a* v = (LLVector4a*) face.mPositions;
	LLVector4a* n = (LLVector4a*) face.mNormals;
	LLVector2* tc = (LLVector2*) face.mTexCoords;

	v[0] = cv[0].getPosition();
	v[1] = cv[1].getPosition();
	v[2] = cv[2].getPosition();
	v += 3;

	n[0] = cv[0].getNormal();
	n[1] = cv[1].getNormal();
	n[2] = cv[2].getNormal();
	n += 3;

	if(tc)
	{
		tc[0] = cv[0].mTexCoord;
		tc[1] = cv[1].mTexCoord;
		tc[2] = cv[2].mTexCoord;
		tc += 3;
	}
	
	//side 2
	cv[0].setPosition(p[3]);
	cv[1].setPosition(p[0]);
	cv[2].setPosition(p[1]);

	tetrahedron_set_normal(cv);

	v[0] = cv[0].getPosition();
	v[1] = cv[1].getPosition();
	v[2] = cv[2].getPosition();
	v += 3;

	n[0] = cv[0].getNormal();
	n[1] = cv[1].getNormal();
	n[2] = cv[2].getNormal();
	n += 3;

	if(tc)
	{
		tc[0] = cv[0].mTexCoord;
		tc[1] = cv[1].mTexCoord;
		tc[2] = cv[2].mTexCoord;
		tc += 3;
	}

	//side 3
	cv[0].setPosition(p[3]);
	cv[1].setPosition(p[1]);
	cv[2].setPosition(p[2]);

	tetrahedron_set_normal(cv);

	v[0] = cv[0].getPosition();
	v[1] = cv[1].getPosition();
	v[2] = cv[2].getPosition();
	v += 3;

	n[0] = cv[0].getNormal();
	n[1] = cv[1].getNormal();
	n[2] = cv[2].getNormal();
	n += 3;

	if(tc)
	{
		tc[0] = cv[0].mTexCoord;
		tc[1] = cv[1].mTexCoord;
		tc[2] = cv[2].mTexCoord;
		tc += 3;
	}
	
	//side 4
	cv[0].setPosition(p[2]);
	cv[1].setPosition(p[0]);
	cv[2].setPosition(p[3]);

	tetrahedron_set_normal(cv);

	v[0] = cv[0].getPosition();
	v[1] = cv[1].getPosition();
	v[2] = cv[2].getPosition();
	v += 3;

	n[0] = cv[0].getNormal();
	n[1] = cv[1].getNormal();
	n[2] = cv[2].getNormal();
	n += 3;

	if(tc)
	{
		tc[0] = cv[0].mTexCoord;
		tc[1] = cv[1].mTexCoord;
		tc[2] = cv[2].mTexCoord;
		tc += 3;
	}
	
	//set index buffer
	for (U16 i = 0; i < 12; i++)
	{
		face.mIndices[i] = i;
	}
	
	mVolumeFaces.push_back(face);
	mSculptLevel = 0;
	mIsTetrahedron = TRUE;
}

void LLVolume::copyVolumeFaces(const LLVolume* volume)
{
	mVolumeFaces = volume->mVolumeFaces;
	mSculptLevel = 0;
	mIsTetrahedron = FALSE;
}

void LLVolume::cacheOptimize()
{
	for (S32 i = 0; i < mVolumeFaces.size(); ++i)
	{
		mVolumeFaces[i].cacheOptimize();
	}
}


S32	LLVolume::getNumFaces() const
{
	U8 sculpt_type = (mParams.getSculptType() & LL_SCULPT_TYPE_MASK);

	if (sculpt_type == LL_SCULPT_TYPE_MESH)
	{
		return LL_SCULPT_MESH_MAX_FACES;
	}

	return (S32)mProfilep->mFaces.size();
}


void LLVolume::createVolumeFaces()
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);

	if (mGenerateSingleFace)
	{
		// do nothing
	}
	else
	{
		S32 num_faces = getNumFaces();
		BOOL partial_build = TRUE;
		if (num_faces != mVolumeFaces.size())
		{
			partial_build = FALSE;
			mVolumeFaces.resize(num_faces);
		}
		// Initialize volume faces with parameter data
		for (S32 i = 0; i < (S32)mVolumeFaces.size(); i++)
		{
			LLVolumeFace& vf = mVolumeFaces[i];
			LLProfile::Face& face = mProfilep->mFaces[i];
			vf.mBeginS = face.mIndex;
			vf.mNumS = face.mCount;
			if (vf.mNumS < 0)
			{
				llerrs << "Volume face corruption detected." << llendl;
			}

			vf.mBeginT = 0;
			vf.mNumT= getPath().mPath.size();
			vf.mID = i;

			// Set the type mask bits correctly
			if (mParams.getProfileParams().getHollow() > 0)
			{
				vf.mTypeMask |= LLVolumeFace::HOLLOW_MASK;
			}
			if (mProfilep->isOpen())
			{
				vf.mTypeMask |= LLVolumeFace::OPEN_MASK;
			}
			if (face.mCap)
			{
				vf.mTypeMask |= LLVolumeFace::CAP_MASK;
				if (face.mFaceID == LL_FACE_PATH_BEGIN)
				{
					vf.mTypeMask |= LLVolumeFace::TOP_MASK;
				}
				else
				{
					llassert(face.mFaceID == LL_FACE_PATH_END);
					vf.mTypeMask |= LLVolumeFace::BOTTOM_MASK;
				}
			}
			else if (face.mFaceID & (LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END))
			{
				vf.mTypeMask |= LLVolumeFace::FLAT_MASK | LLVolumeFace::END_MASK;
			}
			else
			{
				vf.mTypeMask |= LLVolumeFace::SIDE_MASK;
				if (face.mFlat)
				{
					vf.mTypeMask |= LLVolumeFace::FLAT_MASK;
				}
				if (face.mFaceID & LL_FACE_INNER_SIDE)
				{
					vf.mTypeMask |= LLVolumeFace::INNER_MASK;
					if (face.mFlat && vf.mNumS > 2)
					{ //flat inner faces have to copy vert normals
						vf.mNumS = vf.mNumS*2;
						if (vf.mNumS < 0)
						{
							llerrs << "Volume face corruption detected." << llendl;
						}
					}
				}
				else
				{
					vf.mTypeMask |= LLVolumeFace::OUTER_MASK;
				}
			}
		}

		for (face_list_t::iterator iter = mVolumeFaces.begin();
			 iter != mVolumeFaces.end(); ++iter)
		{
			(*iter).create(this, partial_build);
		}
	}
}


inline LLVector3 sculpt_rgb_to_vector(U8 r, U8 g, U8 b)
{
	// maps RGB values to vector values [0..255] -> [-0.5..0.5]
	LLVector3 value;
	value.mV[VX] = r / 255.f - 0.5f;
	value.mV[VY] = g / 255.f - 0.5f;
	value.mV[VZ] = b / 255.f - 0.5f;

	return value;
}

inline U32 sculpt_xy_to_index(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components)
{
	U32 index = (x + y * sculpt_width) * sculpt_components;
	return index;
}


inline U32 sculpt_st_to_index(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components)
{
	U32 x = (U32) ((F32)s/(size_s) * (F32) sculpt_width);
	U32 y = (U32) ((F32)t/(size_t) * (F32) sculpt_height);

	return sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components);
}


inline LLVector3 sculpt_index_to_vector(U32 index, const U8* sculpt_data)
{
	LLVector3 v = sculpt_rgb_to_vector(sculpt_data[index], sculpt_data[index+1], sculpt_data[index+2]);

	return v;
}

inline LLVector3 sculpt_st_to_vector(S32 s, S32 t, S32 size_s, S32 size_t, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data)
{
	U32 index = sculpt_st_to_index(s, t, size_s, size_t, sculpt_width, sculpt_height, sculpt_components);

	return sculpt_index_to_vector(index, sculpt_data);
}

inline LLVector3 sculpt_xy_to_vector(U32 x, U32 y, U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data)
{
	U32 index = sculpt_xy_to_index(x, y, sculpt_width, sculpt_height, sculpt_components);

	return sculpt_index_to_vector(index, sculpt_data);
}


F32 LLVolume::sculptGetSurfaceArea()
{
	// test to see if image has enough variation to create non-degenerate geometry

	F32 area = 0;

	S32 sizeS = mPathp->mPath.size();
	S32 sizeT = mProfilep->mProfile.size();
			
	for (S32 s = 0; s < sizeS-1; s++)
	{
		for (S32 t = 0; t < sizeT-1; t++)
		{
			// get four corners of quad
			LLVector3 p1 = mMesh[(s  )*sizeT + (t  )].mPos;
			LLVector3 p2 = mMesh[(s+1)*sizeT + (t  )].mPos;
			LLVector3 p3 = mMesh[(s  )*sizeT + (t+1)].mPos;
			LLVector3 p4 = mMesh[(s+1)*sizeT + (t+1)].mPos;

			// compute the area of the quad by taking the length of the cross product of the two triangles
			LLVector3 cross1 = (p1 - p2) % (p1 - p3);
			LLVector3 cross2 = (p4 - p2) % (p4 - p3);
			area += (cross1.magVec() + cross2.magVec()) / 2.0;
		}
	}

	return area;
}

// create placeholder shape
void LLVolume::sculptGeneratePlaceholder()
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	S32 sizeS = mPathp->mPath.size();
	S32 sizeT = mProfilep->mProfile.size();
	
	S32 line = 0;

	// for now, this is a sphere.
	for (S32 s = 0; s < sizeS; s++)
	{
		for (S32 t = 0; t < sizeT; t++)
		{
			S32 i = t + line;
			Point& pt = mMesh[i];

			
			F32 u = (F32)s/(sizeS-1);
			F32 v = (F32)t/(sizeT-1);

			const F32 RADIUS = (F32) 0.3;
					
			pt.mPos.mV[0] = (F32)(sin(F_PI * v) * cos(2.0 * F_PI * u) * RADIUS);
			pt.mPos.mV[1] = (F32)(sin(F_PI * v) * sin(2.0 * F_PI * u) * RADIUS);
			pt.mPos.mV[2] = (F32)(cos(F_PI * v) * RADIUS);

		}
		line += sizeT;
	}
}

// create the vertices from the map
void LLVolume::sculptGenerateMapVertices(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, U8 sculpt_type)
{
	U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK;
	BOOL sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT;
	BOOL sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR;
	BOOL reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror);  // XOR
	
	
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	S32 sizeS = mPathp->mPath.size();
	S32 sizeT = mProfilep->mProfile.size();
	
	S32 line = 0;
	for (S32 s = 0; s < sizeS; s++)
	{
		// Run along the profile.
		for (S32 t = 0; t < sizeT; t++)
		{
			S32 i = t + line;
			Point& pt = mMesh[i];

			S32 reversed_t = t;

			if (reverse_horizontal)
			{
				reversed_t = sizeT - t - 1;
			}
			
			U32 x = (U32) ((F32)reversed_t/(sizeT-1) * (F32) sculpt_width);
			U32 y = (U32) ((F32)s/(sizeS-1) * (F32) sculpt_height);

			
			if (y == 0)  // top row stitching
			{
				// pinch?
				if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE)
				{
					x = sculpt_width / 2;
				}
			}

			if (y == sculpt_height)  // bottom row stitching
			{
				// wrap?
				if (sculpt_stitching == LL_SCULPT_TYPE_TORUS)
				{
					y = 0;
				}
				else
				{
					y = sculpt_height - 1;
				}

				// pinch?
				if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE)
				{
					x = sculpt_width / 2;
				}
			}

			if (x == sculpt_width)   // side stitching
			{
				// wrap?
				if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) ||
					(sculpt_stitching == LL_SCULPT_TYPE_TORUS) ||
					(sculpt_stitching == LL_SCULPT_TYPE_CYLINDER))
				{
					x = 0;
				}
					
				else
				{
					x = sculpt_width - 1;
				}
			}

			pt.mPos = sculpt_xy_to_vector(x, y, sculpt_width, sculpt_height, sculpt_components, sculpt_data);

			if (sculpt_mirror)
			{
				pt.mPos.mV[VX] *= -1.f;
			}
		}
		
		line += sizeT;
	}
}


const S32 SCULPT_REZ_1 = 6;  // changed from 4 to 6 - 6 looks round whereas 4 looks square
const S32 SCULPT_REZ_2 = 8;
const S32 SCULPT_REZ_3 = 16;
const S32 SCULPT_REZ_4 = 32;

S32 sculpt_sides(F32 detail)
{

	// detail is usually one of: 1, 1.5, 2.5, 4.0.
	
	if (detail <= 1.0)
	{
		return SCULPT_REZ_1;
	}
	if (detail <= 2.0)
	{
		return SCULPT_REZ_2;
	}
	if (detail <= 3.0)
	{
		return SCULPT_REZ_3;
	}
	else
	{
		return SCULPT_REZ_4;
	}
}



// determine the number of vertices in both s and t direction for this sculpt
void sculpt_calc_mesh_resolution(U16 width, U16 height, U8 type, F32 detail, S32& s, S32& t)
{
	// this code has the following properties:
	// 1) the aspect ratio of the mesh is as close as possible to the ratio of the map
	//    while still using all available verts
	// 2) the mesh cannot have more verts than is allowed by LOD
	// 3) the mesh cannot have more verts than is allowed by the map
	
	S32 max_vertices_lod = (S32)pow((double)sculpt_sides(detail), 2.0);
	S32 max_vertices_map = width * height / 4;
	
	S32 vertices;
	if (max_vertices_map > 0)
		vertices = llmin(max_vertices_lod, max_vertices_map);
	else
		vertices = max_vertices_lod;
	

	F32 ratio;
	if ((width == 0) || (height == 0))
		ratio = 1.f;
	else
		ratio = (F32) width / (F32) height;

	
	s = (S32)(F32) sqrt(((F32)vertices / ratio));

	s = llmax(s, 4);              // no degenerate sizes, please
	t = vertices / s;

	t = llmax(t, 4);              // no degenerate sizes, please
	s = vertices / t;
}

// sculpt replaces generate() for sculpted surfaces
void LLVolume::sculpt(U16 sculpt_width, U16 sculpt_height, S8 sculpt_components, const U8* sculpt_data, S32 sculpt_level)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
    U8 sculpt_type = mParams.getSculptType();

	BOOL data_is_empty = FALSE;

	if (sculpt_width == 0 || sculpt_height == 0 || sculpt_components < 3 || sculpt_data == NULL)
	{
		sculpt_level = -1;
		data_is_empty = TRUE;
	}

	S32 requested_sizeS = 0;
	S32 requested_sizeT = 0;

	sculpt_calc_mesh_resolution(sculpt_width, sculpt_height, sculpt_type, mDetail, requested_sizeS, requested_sizeT);

	mPathp->generate(mParams.getPathParams(), mDetail, 0, TRUE, requested_sizeS);
	mProfilep->generate(mParams.getProfileParams(), mPathp->isOpen(), mDetail, 0, TRUE, requested_sizeT);

	S32 sizeS = mPathp->mPath.size();         // we requested a specific size, now see what we really got
	S32 sizeT = mProfilep->mProfile.size();   // we requested a specific size, now see what we really got

	// weird crash bug - DEV-11158 - trying to collect more data:
	if ((sizeS == 0) || (sizeT == 0))
	{
		llwarns << "sculpt bad mesh size " << sizeS << " " << sizeT << llendl;
	}
	
	sNumMeshPoints -= mMesh.size();
	mMesh.resize(sizeS * sizeT);
	sNumMeshPoints += mMesh.size();

	//generate vertex positions
	if (!data_is_empty)
	{
		sculptGenerateMapVertices(sculpt_width, sculpt_height, sculpt_components, sculpt_data, sculpt_type);

		// don't test lowest LOD to support legacy content DEV-33670
		if (mDetail > SCULPT_MIN_AREA_DETAIL)
		{
			F32 area = sculptGetSurfaceArea();

			const F32 SCULPT_MAX_AREA = 384.f;

			if (area < SCULPT_MIN_AREA || area > SCULPT_MAX_AREA)
			{
				data_is_empty = TRUE;
			}
		}
	}

	if (data_is_empty)
	{
		sculptGeneratePlaceholder();
	}


	
	for (S32 i = 0; i < (S32)mProfilep->mFaces.size(); i++)
	{
		mFaceMask |= mProfilep->mFaces[i].mFaceID;
	}

	mSculptLevel = sculpt_level;

	// Delete any existing faces so that they get regenerated
	mVolumeFaces.clear();
	
	createVolumeFaces();
}




BOOL LLVolume::isCap(S32 face)
{
	return mProfilep->mFaces[face].mCap; 
}

BOOL LLVolume::isFlat(S32 face)
{
	return mProfilep->mFaces[face].mFlat;
}


bool LLVolumeParams::isSculpt() const
{
	return mSculptID.notNull();
}

bool LLVolumeParams::isMeshSculpt() const
{
	return isSculpt() && ((mSculptType & LL_SCULPT_TYPE_MASK) == LL_SCULPT_TYPE_MESH);
}

bool LLVolumeParams::operator==(const LLVolumeParams &params) const
{
	return ( (getPathParams() == params.getPathParams()) &&
			 (getProfileParams() == params.getProfileParams()) &&
			 (mSculptID == params.mSculptID) &&
			 (mSculptType == params.mSculptType) );
}

bool LLVolumeParams::operator!=(const LLVolumeParams &params) const
{
	return ( (getPathParams() != params.getPathParams()) ||
			 (getProfileParams() != params.getProfileParams()) ||
			 (mSculptID != params.mSculptID) ||
			 (mSculptType != params.mSculptType) );
}

bool LLVolumeParams::operator<(const LLVolumeParams &params) const
{
	if( getPathParams() != params.getPathParams() )
	{
		return getPathParams() < params.getPathParams();
	}
	
	if (getProfileParams() != params.getProfileParams())
	{
		return getProfileParams() < params.getProfileParams();
	}
	
	if (mSculptID != params.mSculptID)
	{
		return mSculptID < params.mSculptID;
	}

	return mSculptType < params.mSculptType;


}

void LLVolumeParams::copyParams(const LLVolumeParams &params)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	mProfileParams.copyParams(params.mProfileParams);
	mPathParams.copyParams(params.mPathParams);
	mSculptID = params.getSculptID();
	mSculptType = params.getSculptType();
}

// Less restricitve approx 0 for volumes
const F32 APPROXIMATELY_ZERO = 0.001f;
bool approx_zero( F32 f, F32 tolerance = APPROXIMATELY_ZERO)
{
	return (f >= -tolerance) && (f <= tolerance);
}

// return true if in range (or nearly so)
static bool limit_range(F32& v, F32 min, F32 max, F32 tolerance = APPROXIMATELY_ZERO)
{
	F32 min_delta = v - min;
	if (min_delta < 0.f)
	{
		v = min;
		if (!approx_zero(min_delta, tolerance))
			return false;
	}
	F32 max_delta = max - v;
	if (max_delta < 0.f)
	{
		v = max;
		if (!approx_zero(max_delta, tolerance))
			return false;
	}
	return true;
}

bool LLVolumeParams::setBeginAndEndS(const F32 b, const F32 e)
{
	bool valid = true;

	// First, clamp to valid ranges.
	F32 begin = b;
	valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA);

	F32 end = e;
	if (end >= .0149f && end < MIN_CUT_DELTA) end = MIN_CUT_DELTA; // eliminate warning for common rounding error
	valid &= limit_range(end, MIN_CUT_DELTA, 1.f);

	valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f);

	// Now set them.
	mProfileParams.setBegin(begin);
	mProfileParams.setEnd(end);

	return valid;
}

bool LLVolumeParams::setBeginAndEndT(const F32 b, const F32 e)
{
	bool valid = true;

	// First, clamp to valid ranges.
	F32 begin = b;
	valid &= limit_range(begin, 0.f, 1.f - MIN_CUT_DELTA);

	F32 end = e;
	valid &= limit_range(end, MIN_CUT_DELTA, 1.f);

	valid &= limit_range(begin, 0.f, end - MIN_CUT_DELTA, .01f);

	// Now set them.
	mPathParams.setBegin(begin);
	mPathParams.setEnd(end);

	return valid;
}			

bool LLVolumeParams::setHollow(const F32 h)
{
	// Validate the hollow based on path and profile.
	U8 profile 	= mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
	U8 hole_type 	= mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK;
	
	F32 max_hollow = HOLLOW_MAX;

	// Only square holes have trouble.
	if (LL_PCODE_HOLE_SQUARE == hole_type)
	{
		switch(profile)
		{
		case LL_PCODE_PROFILE_CIRCLE:
		case LL_PCODE_PROFILE_CIRCLE_HALF:
		case LL_PCODE_PROFILE_EQUALTRI:
			max_hollow = HOLLOW_MAX_SQUARE;
		}
	}

	F32 hollow = h;
	bool valid = limit_range(hollow, HOLLOW_MIN, max_hollow);
	mProfileParams.setHollow(hollow); 

	return valid;
}	

bool LLVolumeParams::setTwistBegin(const F32 b)
{
	F32 twist_begin = b;
	bool valid = limit_range(twist_begin, TWIST_MIN, TWIST_MAX);
	mPathParams.setTwistBegin(twist_begin);
	return valid;
}

bool LLVolumeParams::setTwistEnd(const F32 e)
{	
	F32 twist_end = e;
	bool valid = limit_range(twist_end, TWIST_MIN, TWIST_MAX);
	mPathParams.setTwistEnd(twist_end);
	return valid;
}

bool LLVolumeParams::setRatio(const F32 x, const F32 y)
{
	F32 min_x = RATIO_MIN;
	F32 max_x = RATIO_MAX;
	F32 min_y = RATIO_MIN;
	F32 max_y = RATIO_MAX;
	// If this is a circular path (and not a sphere) then 'ratio' is actually hole size.
	U8 path_type 	= mPathParams.getCurveType();
	U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
	if ( LL_PCODE_PATH_CIRCLE == path_type &&
		 LL_PCODE_PROFILE_CIRCLE_HALF != profile_type)
	{
		// Holes are more restricted...
		min_x = HOLE_X_MIN;
		max_x = HOLE_X_MAX;
		min_y = HOLE_Y_MIN;
		max_y = HOLE_Y_MAX;
	}

	F32 ratio_x = x;
	bool valid = limit_range(ratio_x, min_x, max_x);
	F32 ratio_y = y;
	valid &= limit_range(ratio_y, min_y, max_y);

	mPathParams.setScale(ratio_x, ratio_y);

	return valid;
}

bool LLVolumeParams::setShear(const F32 x, const F32 y)
{
	F32 shear_x = x;
	bool valid = limit_range(shear_x, SHEAR_MIN, SHEAR_MAX);
	F32 shear_y = y;
	valid &= limit_range(shear_y, SHEAR_MIN, SHEAR_MAX);
	mPathParams.setShear(shear_x, shear_y);
	return valid;
}

bool LLVolumeParams::setTaperX(const F32 v)
{
	F32 taper = v;
	bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX);
	mPathParams.setTaperX(taper);
	return valid;
}

bool LLVolumeParams::setTaperY(const F32 v)
{
	F32 taper = v;
	bool valid = limit_range(taper, TAPER_MIN, TAPER_MAX);
	mPathParams.setTaperY(taper);
	return valid;
}

bool LLVolumeParams::setRevolutions(const F32 r)
{
	F32 revolutions = r;
	bool valid = limit_range(revolutions, REV_MIN, REV_MAX);
	mPathParams.setRevolutions(revolutions);
	return valid;
}

bool LLVolumeParams::setRadiusOffset(const F32 offset)
{
	bool valid = true;

	// If this is a sphere, just set it to 0 and get out.
	U8 path_type 	= mPathParams.getCurveType();
	U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
	if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type ||
		LL_PCODE_PATH_CIRCLE != path_type )
	{
		mPathParams.setRadiusOffset(0.f);
		return true;
	}

	// Limit radius offset, based on taper and hole size y.
	F32 radius_offset	= offset;
	F32 taper_y    		= getTaperY();
	F32 radius_mag		= fabs(radius_offset);
	F32 hole_y_mag 		= fabs(getRatioY());
	F32 taper_y_mag		= fabs(taper_y);
	// Check to see if the taper effects us.
	if ( (radius_offset > 0.f && taper_y < 0.f) ||
			(radius_offset < 0.f && taper_y > 0.f) )
	{
		// The taper does not help increase the radius offset range.
		taper_y_mag = 0.f;
	}
	F32 max_radius_mag = 1.f - hole_y_mag * (1.f - taper_y_mag) / (1.f - hole_y_mag);

	// Enforce the maximum magnitude.
	F32 delta = max_radius_mag - radius_mag;
	if (delta < 0.f)
	{
		// Check radius offset sign.
		if (radius_offset < 0.f)
		{
			radius_offset = -max_radius_mag;
		}
		else
		{
			radius_offset = max_radius_mag;
		}
		valid = approx_zero(delta, .1f);
	}

	mPathParams.setRadiusOffset(radius_offset);
	return valid;
}

bool LLVolumeParams::setSkew(const F32 skew_value)
{
	bool valid = true;

	// Check the skew value against the revolutions.
	F32 skew		= llclamp(skew_value, SKEW_MIN, SKEW_MAX);
	F32 skew_mag	= fabs(skew);
	F32 revolutions = getRevolutions();
	F32 scale_x		= getRatioX();
	F32 min_skew_mag = 1.0f - 1.0f / (revolutions * scale_x + 1.0f);
	// Discontinuity; A revolution of 1 allows skews below 0.5.
	if ( fabs(revolutions - 1.0f) < 0.001)
		min_skew_mag = 0.0f;

	// Clip skew.
	F32 delta = skew_mag - min_skew_mag;
	if (delta < 0.f)
	{
		// Check skew sign.
		if (skew < 0.0f)
		{
			skew = -min_skew_mag;
		}
		else 
		{
			skew = min_skew_mag;
		}
		valid = approx_zero(delta, .01f);
	}

	mPathParams.setSkew(skew);
	return valid;
}

bool LLVolumeParams::setSculptID(const LLUUID sculpt_id, U8 sculpt_type)
{
	mSculptID = sculpt_id;
	mSculptType = sculpt_type;
	return true;
}

bool LLVolumeParams::setType(U8 profile, U8 path)
{
	bool result = true;
	// First, check profile and path for validity.
	U8 profile_type	= profile & LL_PCODE_PROFILE_MASK;
	U8 hole_type 	= (profile & LL_PCODE_HOLE_MASK) >> 4;
	U8 path_type	= path >> 4;

	if (profile_type > LL_PCODE_PROFILE_MAX)
	{
		// Bad profile.  Make it square.
		profile = LL_PCODE_PROFILE_SQUARE;
		result = false;
		llwarns << "LLVolumeParams::setType changing bad profile type (" << profile_type
			 	<< ") to be LL_PCODE_PROFILE_SQUARE" << llendl;
	}
	else if (hole_type > LL_PCODE_HOLE_MAX)
	{
		// Bad hole.  Make it the same.
		profile = profile_type;
		result = false;
		llwarns << "LLVolumeParams::setType changing bad hole type (" << hole_type
			 	<< ") to be LL_PCODE_HOLE_SAME" << llendl;
	}

	if (path_type < LL_PCODE_PATH_MIN ||
		path_type > LL_PCODE_PATH_MAX)
	{
		// Bad path.  Make it linear.
		result = false;
		llwarns << "LLVolumeParams::setType changing bad path (" << path
			 	<< ") to be LL_PCODE_PATH_LINE" << llendl;
		path = LL_PCODE_PATH_LINE;
	}

	mProfileParams.setCurveType(profile);
	mPathParams.setCurveType(path);
	return result;
}

// static 
bool LLVolumeParams::validate(U8 prof_curve, F32 prof_begin, F32 prof_end, F32 hollow,
		U8 path_curve, F32 path_begin, F32 path_end,
		F32 scx, F32 scy, F32 shx, F32 shy,
		F32 twistend, F32 twistbegin, F32 radiusoffset,
		F32 tx, F32 ty, F32 revolutions, F32 skew)
{
	LLVolumeParams test_params;
	if (!test_params.setType		(prof_curve, path_curve))
	{
	    	return false;
	}
	if (!test_params.setBeginAndEndS	(prof_begin, prof_end))
	{
	    	return false;
	}
	if (!test_params.setBeginAndEndT	(path_begin, path_end))
	{
	    	return false;
	}
	if (!test_params.setHollow		(hollow))
	{
	    	return false;
	}
	if (!test_params.setTwistBegin		(twistbegin))
	{
	    	return false;
	}
	if (!test_params.setTwistEnd		(twistend))
	{
	    	return false;
	}
	if (!test_params.setRatio		(scx, scy))
	{
	    	return false;
	}
	if (!test_params.setShear		(shx, shy))
	{
	    	return false;
	}
	if (!test_params.setTaper		(tx, ty))
	{
	    	return false;
	}
	if (!test_params.setRevolutions		(revolutions))
	{
	    	return false;
	}
	if (!test_params.setRadiusOffset	(radiusoffset))
	{
	    	return false;
	}
	if (!test_params.setSkew		(skew))
	{
	    	return false;
	}
	return true;
}

S32 *LLVolume::getTriangleIndices(U32 &num_indices) const
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	S32 expected_num_triangle_indices = getNumTriangleIndices();
	if (expected_num_triangle_indices > MAX_VOLUME_TRIANGLE_INDICES)
	{
		// we don't allow LLVolumes with this many vertices
		llwarns << "Couldn't allocate triangle indices" << llendl;
		num_indices = 0;
		return NULL;
	}

	S32* index = new S32[expected_num_triangle_indices];
	S32 count = 0;

	// Let's do this totally diffently, as we don't care about faces...
	// Counter-clockwise triangles are forward facing...

	BOOL open = getProfile().isOpen();
	BOOL hollow = (mParams.getProfileParams().getHollow() > 0);
	BOOL path_open = getPath().isOpen();
	S32 size_s, size_s_out, size_t;
	S32 s, t, i;
	size_s = getProfile().getTotal();
	size_s_out = getProfile().getTotalOut();
	size_t = getPath().mPath.size();

	// NOTE -- if the construction of the triangles below ever changes
	// then getNumTriangleIndices() method may also have to be updated.

	if (open)		/* Flawfinder: ignore */
	{
		if (hollow)
		{
			// Open hollow -- much like the closed solid, except we 
			// we need to stitch up the gap between s=0 and s=size_s-1

			for (t = 0; t < size_t - 1; t++)
			{
				// The outer face, first cut, and inner face
				for (s = 0; s < size_s - 1; s++)
				{
					i  = s + t*size_s;
					index[count++]  = i;				// x,y
					index[count++]  = i + 1;			// x+1,y
					index[count++]  = i + size_s;		// x,y+1
	
					index[count++]  = i + size_s;		// x,y+1
					index[count++]  = i + 1;			// x+1,y
					index[count++]  = i + size_s + 1;	// x+1,y+1
				}

				// The other cut face
				index[count++]  = s + t*size_s;		// x,y
				index[count++]  = 0 + t*size_s;		// x+1,y
				index[count++]  = s + (t+1)*size_s;	// x,y+1
	
				index[count++]  = s + (t+1)*size_s;	// x,y+1
				index[count++]  = 0 + t*size_s;		// x+1,y
				index[count++]  = 0 + (t+1)*size_s;	// x+1,y+1
			}

			// Do the top and bottom caps, if necessary
			if (path_open)
			{
				// Top cap
				S32 pt1 = 0;
				S32 pt2 = size_s-1;
				S32 i   = (size_t - 1)*size_s;

				while (pt2 - pt1 > 1)
				{
					// Use the profile points instead of the mesh, since you want
					// the un-transformed profile distances.
					LLVector3 p1 = getProfile().mProfile[pt1];
					LLVector3 p2 = getProfile().mProfile[pt2];
					LLVector3 pa = getProfile().mProfile[pt1+1];
					LLVector3 pb = getProfile().mProfile[pt2-1];

					p1.mV[VZ] = 0.f;
					p2.mV[VZ] = 0.f;
					pa.mV[VZ] = 0.f;
					pb.mV[VZ] = 0.f;

					// Use area of triangle to determine backfacing
					F32 area_1a2, area_1ba, area_21b, area_2ab;
					area_1a2 =  (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
								(pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
								(p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);

					area_1ba =  (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
								(pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
								(pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);

					area_21b =  (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
								(p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
								(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);

					area_2ab =  (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
								(pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
								(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);

					BOOL use_tri1a2 = TRUE;
					BOOL tri_1a2 = TRUE;
					BOOL tri_21b = TRUE;

					if (area_1a2 < 0)
					{
						tri_1a2 = FALSE;
					}
					if (area_2ab < 0)
					{
						// Can't use, because it contains point b
						tri_1a2 = FALSE;
					}
					if (area_21b < 0)
					{
						tri_21b = FALSE;
					}
					if (area_1ba < 0)
					{
						// Can't use, because it contains point b
						tri_21b = FALSE;
					}

					if (!tri_1a2)
					{
						use_tri1a2 = FALSE;
					}
					else if (!tri_21b)
					{
						use_tri1a2 = TRUE;
					}
					else
					{
						LLVector3 d1 = p1 - pa;
						LLVector3 d2 = p2 - pb;

						if (d1.magVecSquared() < d2.magVecSquared())
						{
							use_tri1a2 = TRUE;
						}
						else
						{
							use_tri1a2 = FALSE;
						}
					}

					if (use_tri1a2)
					{
						index[count++] = pt1 + i;
						index[count++] = pt1 + 1 + i;
						index[count++] = pt2 + i;
						pt1++;
					}
					else
					{
						index[count++] = pt1 + i;
						index[count++] = pt2 - 1 + i;
						index[count++] = pt2 + i;
						pt2--;
					}
				}

				// Bottom cap
				pt1          = 0;
				pt2          = size_s-1;
				while (pt2 - pt1 > 1)
				{
					// Use the profile points instead of the mesh, since you want
					// the un-transformed profile distances.
					LLVector3 p1 = getProfile().mProfile[pt1];
					LLVector3 p2 = getProfile().mProfile[pt2];
					LLVector3 pa = getProfile().mProfile[pt1+1];
					LLVector3 pb = getProfile().mProfile[pt2-1];

					p1.mV[VZ] = 0.f;
					p2.mV[VZ] = 0.f;
					pa.mV[VZ] = 0.f;
					pb.mV[VZ] = 0.f;

					// Use area of triangle to determine backfacing
					F32 area_1a2, area_1ba, area_21b, area_2ab;
					area_1a2 =  (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
								(pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
								(p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);

					area_1ba =  (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
								(pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
								(pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);

					area_21b =  (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
								(p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
								(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);

					area_2ab =  (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
								(pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
								(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);

					BOOL use_tri1a2 = TRUE;
					BOOL tri_1a2 = TRUE;
					BOOL tri_21b = TRUE;

					if (area_1a2 < 0)
					{
						tri_1a2 = FALSE;
					}
					if (area_2ab < 0)
					{
						// Can't use, because it contains point b
						tri_1a2 = FALSE;
					}
					if (area_21b < 0)
					{
						tri_21b = FALSE;
					}
					if (area_1ba < 0)
					{
						// Can't use, because it contains point b
						tri_21b = FALSE;
					}

					if (!tri_1a2)
					{
						use_tri1a2 = FALSE;
					}
					else if (!tri_21b)
					{
						use_tri1a2 = TRUE;
					}
					else
					{
						LLVector3 d1 = p1 - pa;
						LLVector3 d2 = p2 - pb;

						if (d1.magVecSquared() < d2.magVecSquared())
						{
							use_tri1a2 = TRUE;
						}
						else
						{
							use_tri1a2 = FALSE;
						}
					}

					if (use_tri1a2)
					{
						index[count++] = pt1;
						index[count++] = pt2;
						index[count++] = pt1 + 1;
						pt1++;
					}
					else
					{
						index[count++] = pt1;
						index[count++] = pt2;
						index[count++] = pt2 - 1;
						pt2--;
					}
				}
			}
		}
		else
		{
			// Open solid

			for (t = 0; t < size_t - 1; t++)
			{
				// Outer face + 1 cut face
				for (s = 0; s < size_s - 1; s++)
				{
					i  = s + t*size_s;

					index[count++]  = i;				// x,y
					index[count++]  = i + 1;			// x+1,y
					index[count++]  = i + size_s;		// x,y+1

					index[count++]  = i + size_s;		// x,y+1
					index[count++]  = i + 1;			// x+1,y
					index[count++]  = i + size_s + 1;	// x+1,y+1
				}

				// The other cut face
				index[count++] = (size_s - 1) + (t*size_s);		// x,y
				index[count++] = 0 + t*size_s;					// x+1,y
				index[count++] = (size_s - 1) + (t+1)*size_s;	// x,y+1

				index[count++] = (size_s - 1) + (t+1)*size_s;	// x,y+1
				index[count++] = 0 + (t*size_s);				// x+1,y
				index[count++] = 0 + (t+1)*size_s;				// x+1,y+1
			}

			// Do the top and bottom caps, if necessary
			if (path_open)
			{
				for (s = 0; s < size_s - 2; s++)
				{
					index[count++] = s+1;
					index[count++] = s;
					index[count++] = size_s - 1;
				}

				// We've got a top cap
				S32 offset = (size_t - 1)*size_s;
				for (s = 0; s < size_s - 2; s++)
				{
					// Inverted ordering from bottom cap.
					index[count++] = offset + size_s - 1;
					index[count++] = offset + s;
					index[count++] = offset + s + 1;
				}
			}
		}
	}
	else if (hollow)
	{
		// Closed hollow
		// Outer face
		
		for (t = 0; t < size_t - 1; t++)
		{
			for (s = 0; s < size_s_out - 1; s++)
			{
				i  = s + t*size_s;

				index[count++]  = i;				// x,y
				index[count++]  = i + 1;			// x+1,y
				index[count++]  = i + size_s;		// x,y+1

				index[count++]  = i + size_s;		// x,y+1
				index[count++]  = i + 1;			// x+1,y
				index[count++]  = i + 1 + size_s;	// x+1,y+1
			}
		}

		// Inner face
		// Invert facing from outer face
		for (t = 0; t < size_t - 1; t++)
		{
			for (s = size_s_out; s < size_s - 1; s++)
			{
				i  = s + t*size_s;

				index[count++]  = i;				// x,y
				index[count++]  = i + 1;			// x+1,y
				index[count++]  = i + size_s;		// x,y+1

				index[count++]  = i + size_s;		// x,y+1
				index[count++]  = i + 1;			// x+1,y
				index[count++]  = i + 1 + size_s;	// x+1,y+1
			}
		}

		// Do the top and bottom caps, if necessary
		if (path_open)
		{
			// Top cap
			S32 pt1 = 0;
			S32 pt2 = size_s-1;
			S32 i   = (size_t - 1)*size_s;

			while (pt2 - pt1 > 1)
			{
				// Use the profile points instead of the mesh, since you want
				// the un-transformed profile distances.
				LLVector3 p1 = getProfile().mProfile[pt1];
				LLVector3 p2 = getProfile().mProfile[pt2];
				LLVector3 pa = getProfile().mProfile[pt1+1];
				LLVector3 pb = getProfile().mProfile[pt2-1];

				p1.mV[VZ] = 0.f;
				p2.mV[VZ] = 0.f;
				pa.mV[VZ] = 0.f;
				pb.mV[VZ] = 0.f;

				// Use area of triangle to determine backfacing
				F32 area_1a2, area_1ba, area_21b, area_2ab;
				area_1a2 =  (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
							(pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
							(p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);

				area_1ba =  (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
							(pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
							(pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);

				area_21b =  (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
							(p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
							(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);

				area_2ab =  (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
							(pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
							(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);

				BOOL use_tri1a2 = TRUE;
				BOOL tri_1a2 = TRUE;
				BOOL tri_21b = TRUE;

				if (area_1a2 < 0)
				{
					tri_1a2 = FALSE;
				}
				if (area_2ab < 0)
				{
					// Can't use, because it contains point b
					tri_1a2 = FALSE;
				}
				if (area_21b < 0)
				{
					tri_21b = FALSE;
				}
				if (area_1ba < 0)
				{
					// Can't use, because it contains point b
					tri_21b = FALSE;
				}

				if (!tri_1a2)
				{
					use_tri1a2 = FALSE;
				}
				else if (!tri_21b)
				{
					use_tri1a2 = TRUE;
				}
				else
				{
					LLVector3 d1 = p1 - pa;
					LLVector3 d2 = p2 - pb;

					if (d1.magVecSquared() < d2.magVecSquared())
					{
						use_tri1a2 = TRUE;
					}
					else
					{
						use_tri1a2 = FALSE;
					}
				}

				if (use_tri1a2)
				{
					index[count++] = pt1 + i;
					index[count++] = pt1 + 1 + i;
					index[count++] = pt2 + i;
					pt1++;
				}
				else
				{
					index[count++] = pt1 + i;
					index[count++] = pt2 - 1 + i;
					index[count++] = pt2 + i;
					pt2--;
				}
			}

			// Bottom cap
			pt1          = 0;
			pt2          = size_s-1;
			while (pt2 - pt1 > 1)
			{
				// Use the profile points instead of the mesh, since you want
				// the un-transformed profile distances.
				LLVector3 p1 = getProfile().mProfile[pt1];
				LLVector3 p2 = getProfile().mProfile[pt2];
				LLVector3 pa = getProfile().mProfile[pt1+1];
				LLVector3 pb = getProfile().mProfile[pt2-1];

				p1.mV[VZ] = 0.f;
				p2.mV[VZ] = 0.f;
				pa.mV[VZ] = 0.f;
				pb.mV[VZ] = 0.f;

				// Use area of triangle to determine backfacing
				F32 area_1a2, area_1ba, area_21b, area_2ab;
				area_1a2 =  (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
							(pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
							(p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);

				area_1ba =  (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
							(pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
							(pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);

				area_21b =  (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
							(p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
							(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);

				area_2ab =  (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
							(pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
							(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);

				BOOL use_tri1a2 = TRUE;
				BOOL tri_1a2 = TRUE;
				BOOL tri_21b = TRUE;

				if (area_1a2 < 0)
				{
					tri_1a2 = FALSE;
				}
				if (area_2ab < 0)
				{
					// Can't use, because it contains point b
					tri_1a2 = FALSE;
				}
				if (area_21b < 0)
				{
					tri_21b = FALSE;
				}
				if (area_1ba < 0)
				{
					// Can't use, because it contains point b
					tri_21b = FALSE;
				}

				if (!tri_1a2)
				{
					use_tri1a2 = FALSE;
				}
				else if (!tri_21b)
				{
					use_tri1a2 = TRUE;
				}
				else
				{
					LLVector3 d1 = p1 - pa;
					LLVector3 d2 = p2 - pb;

					if (d1.magVecSquared() < d2.magVecSquared())
					{
						use_tri1a2 = TRUE;
					}
					else
					{
						use_tri1a2 = FALSE;
					}
				}

				if (use_tri1a2)
				{
					index[count++] = pt1;
					index[count++] = pt2;
					index[count++] = pt1 + 1;
					pt1++;
				}
				else
				{
					index[count++] = pt1;
					index[count++] = pt2;
					index[count++] = pt2 - 1;
					pt2--;
				}
			}
		}		
	}
	else
	{
		// Closed solid.  Easy case.
		for (t = 0; t < size_t - 1; t++)
		{
			for (s = 0; s < size_s - 1; s++)
			{
				// Should wrap properly, but for now...
				i  = s + t*size_s;

				index[count++]  = i;				// x,y
				index[count++]  = i + 1;			// x+1,y
				index[count++]  = i + size_s;		// x,y+1

				index[count++]  = i + size_s;		// x,y+1
				index[count++]  = i + 1;			// x+1,y
				index[count++]  = i + size_s + 1;	// x+1,y+1
			}
		}

		// Do the top and bottom caps, if necessary
		if (path_open)
		{
			// bottom cap
			for (s = 1; s < size_s - 2; s++)
			{
				index[count++] = s+1;
				index[count++] = s;
				index[count++] = 0;
			}

			// top cap
			S32 offset = (size_t - 1)*size_s;
			for (s = 1; s < size_s - 2; s++)
			{
				// Inverted ordering from bottom cap.
				index[count++] = offset;
				index[count++] = offset + s;
				index[count++] = offset + s + 1;
			}
		}
	}

#ifdef LL_DEBUG
	// assert that we computed the correct number of indices
	if (count != expected_num_triangle_indices )
	{
		llerrs << "bad index count prediciton:"
			<< "  expected=" << expected_num_triangle_indices 
			<< " actual=" << count << llendl;
	}
#endif

#if 0
	// verify that each index does not point beyond the size of the mesh
	S32 num_vertices = mMesh.size();
	for (i = 0; i < count; i+=3)
	{
		llinfos << index[i] << ":" << index[i+1] << ":" << index[i+2] << llendl;
		llassert(index[i] < num_vertices);
		llassert(index[i+1] < num_vertices);
		llassert(index[i+2] < num_vertices);
	}
#endif

	num_indices = count;
	return index;
}

void LLVolume::getLoDTriangleCounts(const LLVolumeParams& params, S32* counts)
{ //attempt to approximate the number of triangles that will result from generating a volume LoD set for the 
	//supplied LLVolumeParams -- inaccurate, but a close enough approximation for determining streaming cost
	F32 detail[] = {1.f, 1.5f, 2.5f, 4.f};	
	for (S32 i = 0; i < 4; i++)
	{
		S32 count = 0;
		S32 path_points = LLPath::getNumPoints(params.getPathParams(), detail[i]);
		S32 profile_points = LLProfile::getNumPoints(params.getProfileParams(), false, detail[i]);

		count = (profile_points-1)*2*(path_points-1);
		count += profile_points*2;

		counts[i] = count;
	}
}

S32 LLVolume::getNumTriangleIndices() const
{
	BOOL profile_open = getProfile().isOpen();
	BOOL hollow = (mParams.getProfileParams().getHollow() > 0);
	BOOL path_open = getPath().isOpen();

	S32 size_s, size_s_out, size_t;
	size_s = getProfile().getTotal();
	size_s_out = getProfile().getTotalOut();
	size_t = getPath().mPath.size();

	S32 count = 0;
	if (profile_open)		/* Flawfinder: ignore */
	{
		if (hollow)
		{
			// Open hollow -- much like the closed solid, except we 
			// we need to stitch up the gap between s=0 and s=size_s-1
			count = (size_t - 1) * (((size_s -1) * 6) + 6);
		}
		else
		{
			count = (size_t - 1) * (((size_s -1) * 6) + 6); 
		}
	}
	else if (hollow)
	{
		// Closed hollow
		// Outer face
		count = (size_t - 1) * (size_s_out - 1) * 6;

		// Inner face
		count += (size_t - 1) * ((size_s - 1) - size_s_out) * 6;
	}
	else
	{
		// Closed solid.  Easy case.
		count = (size_t - 1) * (size_s - 1) * 6;
	}

	if (path_open)
	{
		S32 cap_triangle_count = size_s - 3;
		if ( profile_open
			|| hollow )
		{
			cap_triangle_count = size_s - 2;
		}
		if ( cap_triangle_count > 0 )
		{
			// top and bottom caps
			count += cap_triangle_count * 2 * 3;
		}
	}
	return count;
}


S32 LLVolume::getNumTriangles() const
{
	U32 triangle_count = 0;

	for (S32 i = 0; i < getNumVolumeFaces(); ++i)
	{
		triangle_count += getVolumeFace(i).mNumIndices/3;
	}

	return triangle_count;
}


//-----------------------------------------------------------------------------
// generateSilhouetteVertices()
//-----------------------------------------------------------------------------
void LLVolume::generateSilhouetteVertices(std::vector<LLVector3> &vertices,
										  std::vector<LLVector3> &normals,
										  const LLVector3& obj_cam_vec_in,
										  const LLMatrix4& mat_in,
										  const LLMatrix3& norm_mat_in,
										  S32 face_mask)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);

	LLMatrix4a mat;
	mat.loadu(mat_in);

	LLMatrix4a norm_mat;
	norm_mat.loadu(norm_mat_in);
		
	LLVector4a obj_cam_vec;
	obj_cam_vec.load3(obj_cam_vec_in.mV);

	vertices.clear();
	normals.clear();

	if ((mParams.getSculptType() & LL_SCULPT_TYPE_MASK) == LL_SCULPT_TYPE_MESH)
	{
		return;
	}
	
	S32 cur_index = 0;
	//for each face
	for (face_list_t::iterator iter = mVolumeFaces.begin();
		 iter != mVolumeFaces.end(); ++iter)
	{
		LLVolumeFace& face = *iter;
	
		if (!(face_mask & (0x1 << cur_index++)) ||
		     face.mNumIndices == 0 || face.mEdge.empty())
		{
			continue;
		}

		if (face.mTypeMask & (LLVolumeFace::CAP_MASK)) {
	
		}
		else {

			//==============================================
			//DEBUG draw edge map instead of silhouette edge
			//==============================================

#if DEBUG_SILHOUETTE_EDGE_MAP

			//for each triangle
			U32 count = face.mNumIndices;
			for (U32 j = 0; j < count/3; j++) {
				//get vertices
				S32 v1 = face.mIndices[j*3+0];
				S32 v2 = face.mIndices[j*3+1];
				S32 v3 = face.mIndices[j*3+2];

				//get current face center
				LLVector3 cCenter = (face.mVertices[v1].getPosition() + 
									face.mVertices[v2].getPosition() + 
									face.mVertices[v3].getPosition()) / 3.0f;

				//for each edge
				for (S32 k = 0; k < 3; k++) {
                    S32 nIndex = face.mEdge[j*3+k];
					if (nIndex <= -1) {
						continue;
					}

					if (nIndex >= (S32) count/3) {
						continue;
					}
					//get neighbor vertices
					v1 = face.mIndices[nIndex*3+0];
					v2 = face.mIndices[nIndex*3+1];
					v3 = face.mIndices[nIndex*3+2];

					//get neighbor face center
					LLVector3 nCenter = (face.mVertices[v1].getPosition() + 
									face.mVertices[v2].getPosition() + 
									face.mVertices[v3].getPosition()) / 3.0f;

					//draw line
					vertices.push_back(cCenter);
					vertices.push_back(nCenter);
					normals.push_back(LLVector3(1,1,1));
					normals.push_back(LLVector3(1,1,1));
					segments.push_back(vertices.size());
				}
			}
		
			continue;

			//==============================================
			//DEBUG
			//==============================================

			//==============================================
			//DEBUG draw normals instead of silhouette edge
			//==============================================
#elif DEBUG_SILHOUETTE_NORMALS

			//for each vertex
			for (U32 j = 0; j < face.mNumVertices; j++) {
				vertices.push_back(face.mVertices[j].getPosition());
				vertices.push_back(face.mVertices[j].getPosition() + face.mVertices[j].getNormal()*0.1f);
				normals.push_back(LLVector3(0,0,1));
				normals.push_back(LLVector3(0,0,1));
				segments.push_back(vertices.size());
#if DEBUG_SILHOUETTE_BINORMALS
				vertices.push_back(face.mVertices[j].getPosition());
				vertices.push_back(face.mVertices[j].getPosition() + face.mVertices[j].mBinormal*0.1f);
				normals.push_back(LLVector3(0,0,1));
				normals.push_back(LLVector3(0,0,1));
				segments.push_back(vertices.size());
#endif
			}
						
			continue;
#else
			//==============================================
			//DEBUG
			//==============================================

			static const U8 AWAY = 0x01,
							TOWARDS = 0x02;

			//for each triangle
			std::vector<U8> fFacing;
			vector_append(fFacing, face.mNumIndices/3);

			LLVector4a* v = (LLVector4a*) face.mPositions;
			LLVector4a* n = (LLVector4a*) face.mNormals;

			for (U32 j = 0; j < face.mNumIndices/3; j++) 
			{
				//approximate normal
				S32 v1 = face.mIndices[j*3+0];
				S32 v2 = face.mIndices[j*3+1];
				S32 v3 = face.mIndices[j*3+2];

				LLVector4a c1,c2;
				c1.setSub(v[v1], v[v2]);
				c2.setSub(v[v2], v[v3]);

				LLVector4a norm;

				norm.setCross3(c1, c2);

				if (norm.dot3(norm) < 0.00000001f) 
				{
					fFacing[j] = AWAY | TOWARDS;
				}
				else 
				{
					//get view vector
					LLVector4a view;
					view.setSub(obj_cam_vec, v[v1]);
					bool away = view.dot3(norm) > 0.0f; 
					if (away) 
					{
						fFacing[j] = AWAY;
					}
					else 
					{
						fFacing[j] = TOWARDS;
					}
				}
			}
			
			//for each triangle
			for (U32 j = 0; j < face.mNumIndices/3; j++) 
			{
				if (fFacing[j] == (AWAY | TOWARDS)) 
				{ //this is a degenerate triangle
					//take neighbor facing (degenerate faces get facing of one of their neighbors)
					// *FIX IF NEEDED:  this does not deal with neighboring degenerate faces
					for (S32 k = 0; k < 3; k++) 
					{
						S32 index = face.mEdge[j*3+k];
						if (index != -1) 
						{
							fFacing[j] = fFacing[index];
							break;
						}
					}
					continue; //skip degenerate face
				}

				//for each edge
				for (S32 k = 0; k < 3; k++) {
					S32 index = face.mEdge[j*3+k];
					if (index != -1 && fFacing[index] == (AWAY | TOWARDS)) {
						//our neighbor is degenerate, make him face our direction
						fFacing[face.mEdge[j*3+k]] = fFacing[j];
						continue;
					}

					if (index == -1 ||		//edge has no neighbor, MUST be a silhouette edge
						(fFacing[index] & fFacing[j]) == 0) { 	//we found a silhouette edge

						S32 v1 = face.mIndices[j*3+k];
						S32 v2 = face.mIndices[j*3+((k+1)%3)];
						
						LLVector4a t;
						mat.affineTransform(v[v1], t);
						vertices.push_back(LLVector3(t[0], t[1], t[2]));

						norm_mat.rotate(n[v1], t);

						t.normalize3fast();
						normals.push_back(LLVector3(t[0], t[1], t[2]));

						mat.affineTransform(v[v2], t);
						vertices.push_back(LLVector3(t[0], t[1], t[2]));
						
						norm_mat.rotate(n[v2], t);
						t.normalize3fast();
						normals.push_back(LLVector3(t[0], t[1], t[2]));
					}
				}		
			}
#endif
		}
	}
}

S32 LLVolume::lineSegmentIntersect(const LLVector3& start, const LLVector3& end, 
								   S32 face,
								   LLVector3* intersection,LLVector2* tex_coord, LLVector3* normal, LLVector3* bi_normal)
{
	LLVector4a starta, enda;
	starta.load3(start.mV);
	enda.load3(end.mV);

	return lineSegmentIntersect(starta, enda, face, intersection, tex_coord, normal, bi_normal);

}


S32 LLVolume::lineSegmentIntersect(const LLVector4a& start, const LLVector4a& end, 
								   S32 face,
								   LLVector3* intersection,LLVector2* tex_coord, LLVector3* normal, LLVector3* bi_normal)
{
	S32 hit_face = -1;
	
	S32 start_face;
	S32 end_face;
	
	if (face == -1) // ALL_SIDES
	{
		start_face = 0;
		end_face = getNumVolumeFaces() - 1;
	}
	else
	{
		start_face = face;
		end_face = face;
	}

	LLVector4a dir;
	dir.setSub(end, start);

	F32 closest_t = 2.f; // must be larger than 1
	
	end_face = llmin(end_face, getNumVolumeFaces()-1);

	for (S32 i = start_face; i <= end_face; i++)
	{
		LLVolumeFace &face = mVolumeFaces[i];

		LLVector4a box_center;
		box_center.setAdd(face.mExtents[0], face.mExtents[1]);
		box_center.mul(0.5f);

		LLVector4a box_size;
		box_size.setSub(face.mExtents[1], face.mExtents[0]);

        if (LLLineSegmentBoxIntersect(start, end, box_center, box_size))
		{
			if (bi_normal != NULL) // if the caller wants binormals, we may need to generate them
			{
				genBinormals(i);
			}

			if (!face.mOctree)
			{
				face.createOctree();
			}
			
			//LLVector4a* p = (LLVector4a*) face.mPositions;

			LLOctreeTriangleRayIntersect intersect(start, dir, &face, &closest_t, intersection, tex_coord, normal, bi_normal);
			intersect.traverse(face.mOctree);
			if (intersect.mHitFace)
			{
				hit_face = i;
			}
		}		
	}
	
	
	return hit_face;
}

class LLVertexIndexPair
{
public:
	LLVertexIndexPair(const LLVector3 &vertex, const S32 index);

	LLVector3 mVertex;
	S32	mIndex;
};

LLVertexIndexPair::LLVertexIndexPair(const LLVector3 &vertex, const S32 index)
{
	mVertex = vertex;
	mIndex = index;
}

const F32 VERTEX_SLOP = 0.00001f;
const F32 VERTEX_SLOP_SQRD = VERTEX_SLOP * VERTEX_SLOP;

struct lessVertex
{
	bool operator()(const LLVertexIndexPair *a, const LLVertexIndexPair *b)
	{
		const F32 slop = VERTEX_SLOP;

		if (a->mVertex.mV[0] + slop < b->mVertex.mV[0])
		{
			return TRUE;
		}
		else if (a->mVertex.mV[0] - slop > b->mVertex.mV[0])
		{
			return FALSE;
		}
		
		if (a->mVertex.mV[1] + slop < b->mVertex.mV[1])
		{
			return TRUE;
		}
		else if (a->mVertex.mV[1] - slop > b->mVertex.mV[1])
		{
			return FALSE;
		}
		
		if (a->mVertex.mV[2] + slop < b->mVertex.mV[2])
		{
			return TRUE;
		}
		else if (a->mVertex.mV[2] - slop > b->mVertex.mV[2])
		{
			return FALSE;
		}
		
		return FALSE;
	}
};

struct lessTriangle
{
	bool operator()(const S32 *a, const S32 *b)
	{
		if (*a < *b)
		{
			return TRUE;
		}
		else if (*a > *b)
		{
			return FALSE;
		}

		if (*(a+1) < *(b+1))
		{
			return TRUE;
		}
		else if (*(a+1) > *(b+1))
		{
			return FALSE;
		}

		if (*(a+2) < *(b+2))
		{
			return TRUE;
		}
		else if (*(a+2) > *(b+2))
		{
			return FALSE;
		}

		return FALSE;
	}
};

BOOL equalTriangle(const S32 *a, const S32 *b)
{
	if ((*a == *b) && (*(a+1) == *(b+1)) && (*(a+2) == *(b+2)))
	{
		return TRUE;
	}
	return FALSE;
}

BOOL LLVolume::cleanupTriangleData( const S32 num_input_vertices,
									const std::vector<Point>& input_vertices,
									const S32 num_input_triangles,
									S32 *input_triangles,
									S32 &num_output_vertices,
									LLVector3 **output_vertices,
									S32 &num_output_triangles,
									S32 **output_triangles)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	/* Testing: avoid any cleanup
	static BOOL skip_cleanup = TRUE;
	if ( skip_cleanup )
	{
		num_output_vertices = num_input_vertices;
		num_output_triangles = num_input_triangles;

		*output_vertices = new LLVector3[num_input_vertices];
		for (S32 index = 0; index < num_input_vertices; index++)
		{
			(*output_vertices)[index] = input_vertices[index].mPos;
		}

		*output_triangles = new S32[num_input_triangles*3];
		memcpy(*output_triangles, input_triangles, 3*num_input_triangles*sizeof(S32));		// Flawfinder: ignore
		return TRUE;
	}
	*/

	// Here's how we do this:
	// Create a structure which contains the original vertex index and the
	// LLVector3 data.
	// "Sort" the data by the vectors
	// Create an array the size of the old vertex list, with a mapping of
	// old indices to new indices.
	// Go through triangles, shift so the lowest index is first
	// Sort triangles by first index
	// Remove duplicate triangles
	// Allocate and pack new triangle data.

	//LLTimer cleanupTimer;
	//llinfos << "In vertices: " << num_input_vertices << llendl;
	//llinfos << "In triangles: " << num_input_triangles << llendl;

	S32 i;
	typedef std::multiset<LLVertexIndexPair*, lessVertex> vertex_set_t;
	vertex_set_t vertex_list;

	LLVertexIndexPair *pairp = NULL;
	for (i = 0; i < num_input_vertices; i++)
	{
		LLVertexIndexPair *new_pairp = new LLVertexIndexPair(input_vertices[i].mPos, i);
		vertex_list.insert(new_pairp);
	}

	// Generate the vertex mapping and the list of vertices without
	// duplicates.  This will crash if there are no vertices.
	llassert(num_input_vertices > 0); // check for no vertices!
	S32 *vertex_mapping = new S32[num_input_vertices];
	LLVector3 *new_vertices = new LLVector3[num_input_vertices];
	LLVertexIndexPair *prev_pairp = NULL;

	S32 new_num_vertices;

	new_num_vertices = 0;
	for (vertex_set_t::iterator iter = vertex_list.begin(),
			 end = vertex_list.end();
		 iter != end; iter++)
	{
		pairp = *iter;
		if (!prev_pairp || ((pairp->mVertex - prev_pairp->mVertex).magVecSquared() >= VERTEX_SLOP_SQRD))	
		{
			new_vertices[new_num_vertices] = pairp->mVertex;
			//llinfos << "Added vertex " << new_num_vertices << " : " << pairp->mVertex << llendl;
			new_num_vertices++;
			// Update the previous
			prev_pairp = pairp;
		}
		else
		{
			//llinfos << "Removed duplicate vertex " << pairp->mVertex << ", distance magVecSquared() is " << (pairp->mVertex - prev_pairp->mVertex).magVecSquared() << llendl;
		}
		vertex_mapping[pairp->mIndex] = new_num_vertices - 1;
	}

	// Iterate through triangles and remove degenerates, re-ordering vertices
	// along the way.
	S32 *new_triangles = new S32[num_input_triangles * 3];
	S32 new_num_triangles = 0;

	for (i = 0; i < num_input_triangles; i++)
	{
		S32 v1 = i*3;
		S32 v2 = v1 + 1;
		S32 v3 = v1 + 2;

		//llinfos << "Checking triangle " << input_triangles[v1] << ":" << input_triangles[v2] << ":" << input_triangles[v3] << llendl;
		input_triangles[v1] = vertex_mapping[input_triangles[v1]];
		input_triangles[v2] = vertex_mapping[input_triangles[v2]];
		input_triangles[v3] = vertex_mapping[input_triangles[v3]];

		if ((input_triangles[v1] == input_triangles[v2])
			|| (input_triangles[v1] == input_triangles[v3])
			|| (input_triangles[v2] == input_triangles[v3]))
		{
			//llinfos << "Removing degenerate triangle " << input_triangles[v1] << ":" << input_triangles[v2] << ":" << input_triangles[v3] << llendl;
			// Degenerate triangle, skip
			continue;
		}

		if (input_triangles[v1] < input_triangles[v2])
		{
			if (input_triangles[v1] < input_triangles[v3])
			{
				// (0 < 1) && (0 < 2)
				new_triangles[new_num_triangles*3] = input_triangles[v1];
				new_triangles[new_num_triangles*3+1] = input_triangles[v2];
				new_triangles[new_num_triangles*3+2] = input_triangles[v3];
			}
			else
			{
				// (0 < 1) && (2 < 0)
				new_triangles[new_num_triangles*3] = input_triangles[v3];
				new_triangles[new_num_triangles*3+1] = input_triangles[v1];
				new_triangles[new_num_triangles*3+2] = input_triangles[v2];
			}
		}
		else if (input_triangles[v2] < input_triangles[v3])
		{
			// (1 < 0) && (1 < 2)
			new_triangles[new_num_triangles*3] = input_triangles[v2];
			new_triangles[new_num_triangles*3+1] = input_triangles[v3];
			new_triangles[new_num_triangles*3+2] = input_triangles[v1];
		}
		else
		{
			// (1 < 0) && (2 < 1)
			new_triangles[new_num_triangles*3] = input_triangles[v3];
			new_triangles[new_num_triangles*3+1] = input_triangles[v1];
			new_triangles[new_num_triangles*3+2] = input_triangles[v2];
		}
		new_num_triangles++;
	}

	if (new_num_triangles == 0)
	{
		llwarns << "Created volume object with 0 faces." << llendl;
		delete[] new_triangles;
		delete[] vertex_mapping;
		delete[] new_vertices;
		return FALSE;
	}

	typedef std::set<S32*, lessTriangle> triangle_set_t;
	triangle_set_t triangle_list;

	for (i = 0; i < new_num_triangles; i++)
	{
		triangle_list.insert(&new_triangles[i*3]);
	}

	// Sort through the triangle list, and delete duplicates

	S32 *prevp = NULL;
	S32 *curp = NULL;

	S32 *sorted_tris = new S32[new_num_triangles*3];
	S32 cur_tri = 0;
	for (triangle_set_t::iterator iter = triangle_list.begin(),
			 end = triangle_list.end();
		 iter != end; iter++)
	{
		curp = *iter;
		if (!prevp || !equalTriangle(prevp, curp))
		{
			//llinfos << "Added triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl;
			sorted_tris[cur_tri*3] = *curp;
			sorted_tris[cur_tri*3+1] = *(curp+1);
			sorted_tris[cur_tri*3+2] = *(curp+2);
			cur_tri++;
			prevp = curp;
		}
		else
		{
			//llinfos << "Skipped triangle " << *curp << ":" << *(curp+1) << ":" << *(curp+2) << llendl;
		}
	}

	*output_vertices = new LLVector3[new_num_vertices];
	num_output_vertices = new_num_vertices;
	for (i = 0; i < new_num_vertices; i++)
	{
		(*output_vertices)[i] = new_vertices[i];
	}

	*output_triangles = new S32[cur_tri*3];
	num_output_triangles = cur_tri;
	memcpy(*output_triangles, sorted_tris, 3*cur_tri*sizeof(S32));		/* Flawfinder: ignore */

	/*
	llinfos << "Out vertices: " << num_output_vertices << llendl;
	llinfos << "Out triangles: " << num_output_triangles << llendl;
	for (i = 0; i < num_output_vertices; i++)
	{
		llinfos << i << ":" << (*output_vertices)[i] << llendl;
	}
	for (i = 0; i < num_output_triangles; i++)
	{
		llinfos << i << ":" << (*output_triangles)[i*3] << ":" << (*output_triangles)[i*3+1] << ":" << (*output_triangles)[i*3+2] << llendl;
	}
	*/

	//llinfos << "Out vertices: " << num_output_vertices << llendl;
	//llinfos << "Out triangles: " << num_output_triangles << llendl;
	delete[] vertex_mapping;
	vertex_mapping = NULL;
	delete[] new_vertices;
	new_vertices = NULL;
	delete[] new_triangles;
	new_triangles = NULL;
	delete[] sorted_tris;
	sorted_tris = NULL;
	triangle_list.clear();
	std::for_each(vertex_list.begin(), vertex_list.end(), DeletePointer());
	vertex_list.clear();
	
	return TRUE;
}


BOOL LLVolumeParams::importFile(LLFILE *fp)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	//llinfos << "importing volume" << llendl;
	const S32 BUFSIZE = 16384;
	char buffer[BUFSIZE];	/* Flawfinder: ignore */
	// *NOTE: changing the size or type of this buffer will require
	// changing the sscanf below.
	char keyword[256];	/* Flawfinder: ignore */
	keyword[0] = 0;

	while (!feof(fp))
	{
		if (fgets(buffer, BUFSIZE, fp) == NULL)
		{
			buffer[0] = '\0';
		}
		
		sscanf(buffer, " %255s", keyword);	/* Flawfinder: ignore */
		if (!strcmp("{", keyword))
		{
			continue;
		}
		if (!strcmp("}",keyword))
		{
			break;
		}
		else if (!strcmp("profile", keyword))
		{
			mProfileParams.importFile(fp);
		}
		else if (!strcmp("path",keyword))
		{
			mPathParams.importFile(fp);
		}
		else
		{
			llwarns << "unknown keyword " << keyword << " in volume import" << llendl;
		}
	}

	return TRUE;
}

BOOL LLVolumeParams::exportFile(LLFILE *fp) const
{
	fprintf(fp,"\tshape 0\n");
	fprintf(fp,"\t{\n");
	mPathParams.exportFile(fp);
	mProfileParams.exportFile(fp);
	fprintf(fp, "\t}\n");
	return TRUE;
}


BOOL LLVolumeParams::importLegacyStream(std::istream& input_stream)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	//llinfos << "importing volume" << llendl;
	const S32 BUFSIZE = 16384;
	// *NOTE: changing the size or type of this buffer will require
	// changing the sscanf below.
	char buffer[BUFSIZE];		/* Flawfinder: ignore */
	char keyword[256];		/* Flawfinder: ignore */
	keyword[0] = 0;

	while (input_stream.good())
	{
		input_stream.getline(buffer, BUFSIZE);
		sscanf(buffer, " %255s", keyword);
		if (!strcmp("{", keyword))
		{
			continue;
		}
		if (!strcmp("}",keyword))
		{
			break;
		}
		else if (!strcmp("profile", keyword))
		{
			mProfileParams.importLegacyStream(input_stream);
		}
		else if (!strcmp("path",keyword))
		{
			mPathParams.importLegacyStream(input_stream);
		}
		else
		{
			llwarns << "unknown keyword " << keyword << " in volume import" << llendl;
		}
	}

	return TRUE;
}

BOOL LLVolumeParams::exportLegacyStream(std::ostream& output_stream) const
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	output_stream <<"\tshape 0\n";
	output_stream <<"\t{\n";
	mPathParams.exportLegacyStream(output_stream);
	mProfileParams.exportLegacyStream(output_stream);
	output_stream << "\t}\n";
	return TRUE;
}

LLSD LLVolumeParams::sculptAsLLSD() const
{
	LLSD sd = LLSD();
	sd["id"] = getSculptID();
	sd["type"] = getSculptType();

	return sd;
}

bool LLVolumeParams::sculptFromLLSD(LLSD& sd)
{
	setSculptID(sd["id"].asUUID(), (U8)sd["type"].asInteger());
	return true;
}

LLSD LLVolumeParams::asLLSD() const
{
	LLSD sd = LLSD();
	sd["path"] = mPathParams;
	sd["profile"] = mProfileParams;
	sd["sculpt"] = sculptAsLLSD();
	
	return sd;
}

bool LLVolumeParams::fromLLSD(LLSD& sd)
{
	mPathParams.fromLLSD(sd["path"]);
	mProfileParams.fromLLSD(sd["profile"]);
	sculptFromLLSD(sd["sculpt"]);
		
	return true;
}

void LLVolumeParams::reduceS(F32 begin, F32 end)
{
	begin = llclampf(begin);
	end = llclampf(end);
	if (begin > end)
	{
		F32 temp = begin;
		begin = end;
		end = temp;
	}
	F32 a = mProfileParams.getBegin();
	F32 b = mProfileParams.getEnd();
	mProfileParams.setBegin(a + begin * (b - a));
	mProfileParams.setEnd(a + end * (b - a));
}

void LLVolumeParams::reduceT(F32 begin, F32 end)
{
	begin = llclampf(begin);
	end = llclampf(end);
	if (begin > end)
	{
		F32 temp = begin;
		begin = end;
		end = temp;
	}
	F32 a = mPathParams.getBegin();
	F32 b = mPathParams.getEnd();
	mPathParams.setBegin(a + begin * (b - a));
	mPathParams.setEnd(a + end * (b - a));
}

const F32 MIN_CONCAVE_PROFILE_WEDGE = 0.125f;	// 1/8 unity
const F32 MIN_CONCAVE_PATH_WEDGE = 0.111111f;	// 1/9 unity

// returns TRUE if the shape can be approximated with a convex shape 
// for collison purposes
BOOL LLVolumeParams::isConvex() const
{
	if (!getSculptID().isNull())
	{
		// can't determine, be safe and say no:
		return FALSE;
	}
	
	F32 path_length = mPathParams.getEnd() - mPathParams.getBegin();
	F32 hollow = mProfileParams.getHollow();
	 
	U8 path_type = mPathParams.getCurveType();
	if ( path_length > MIN_CONCAVE_PATH_WEDGE
		&& ( mPathParams.getTwist() != mPathParams.getTwistBegin()
		     || (hollow > 0.f 
				 && LL_PCODE_PATH_LINE != path_type) ) )
	{
		// twist along a "not too short" path is concave
		return FALSE;
	}

	F32 profile_length = mProfileParams.getEnd() - mProfileParams.getBegin();
	BOOL same_hole = hollow == 0.f 
					 || (mProfileParams.getCurveType() & LL_PCODE_HOLE_MASK) == LL_PCODE_HOLE_SAME;

	F32 min_profile_wedge = MIN_CONCAVE_PROFILE_WEDGE;
	U8 profile_type = mProfileParams.getCurveType() & LL_PCODE_PROFILE_MASK;
	if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type )
	{
		// it is a sphere and spheres get twice the minimum profile wedge
		min_profile_wedge = 2.f * MIN_CONCAVE_PROFILE_WEDGE;
	}

	BOOL convex_profile = ( ( profile_length == 1.f
						     || profile_length <= 0.5f )
						   && hollow == 0.f )						// trivially convex
						  || ( profile_length <= min_profile_wedge
							  && same_hole );						// effectvely convex (even when hollow)

	if (!convex_profile)
	{
		// profile is concave
		return FALSE;
	}

	if ( LL_PCODE_PATH_LINE == path_type )
	{
		// straight paths with convex profile
		return TRUE;
	}

	BOOL concave_path = (path_length < 1.0f) && (path_length > 0.5f);
	if (concave_path)
	{
		return FALSE;
	}

	// we're left with spheres, toroids and tubes
	if ( LL_PCODE_PROFILE_CIRCLE_HALF == profile_type )
	{
		// at this stage all spheres must be convex
		return TRUE;
	}

	// it's a toroid or tube		
	if ( path_length <= MIN_CONCAVE_PATH_WEDGE )
	{
		// effectively convex
		return TRUE;
	}

	return FALSE;
}

// debug
void LLVolumeParams::setCube()
{
	mProfileParams.setCurveType(LL_PCODE_PROFILE_SQUARE);
	mProfileParams.setBegin(0.f);
	mProfileParams.setEnd(1.f);
	mProfileParams.setHollow(0.f);

	mPathParams.setBegin(0.f);
	mPathParams.setEnd(1.f);
	mPathParams.setScale(1.f, 1.f);
	mPathParams.setShear(0.f, 0.f);
	mPathParams.setCurveType(LL_PCODE_PATH_LINE);
	mPathParams.setTwistBegin(0.f);
	mPathParams.setTwistEnd(0.f);
	mPathParams.setRadiusOffset(0.f);
	mPathParams.setTaper(0.f, 0.f);
	mPathParams.setRevolutions(0.f);
	mPathParams.setSkew(0.f);
}

LLFaceID LLVolume::generateFaceMask()
{
	LLFaceID new_mask = 0x0000;

	switch(mParams.getProfileParams().getCurveType() & LL_PCODE_PROFILE_MASK)
	{
	case LL_PCODE_PROFILE_CIRCLE:
	case LL_PCODE_PROFILE_CIRCLE_HALF:
		new_mask |= LL_FACE_OUTER_SIDE_0;
		break;
	case LL_PCODE_PROFILE_SQUARE:
		{
			for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 4.f); side < llceil(mParams.getProfileParams().getEnd() * 4.f); side++)
			{
				new_mask |= LL_FACE_OUTER_SIDE_0 << side;
			}
		}
		break;
	case LL_PCODE_PROFILE_ISOTRI:
	case LL_PCODE_PROFILE_EQUALTRI:
	case LL_PCODE_PROFILE_RIGHTTRI:
		{
			for(S32 side = (S32)(mParams.getProfileParams().getBegin() * 3.f); side < llceil(mParams.getProfileParams().getEnd() * 3.f); side++)
			{
				new_mask |= LL_FACE_OUTER_SIDE_0 << side;
			}
		}
		break;
	default:
		llerrs << "Unknown profile!" << llendl;
		break;
	}

	// handle hollow objects
	if (mParams.getProfileParams().getHollow() > 0)
	{
		new_mask |= LL_FACE_INNER_SIDE;
	}

	// handle open profile curves
	if (mProfilep->isOpen())
	{
		new_mask |= LL_FACE_PROFILE_BEGIN | LL_FACE_PROFILE_END;
	}

	// handle open path curves
	if (mPathp->isOpen())
	{
		new_mask |= LL_FACE_PATH_BEGIN | LL_FACE_PATH_END;
	}

	return new_mask;
}

BOOL LLVolume::isFaceMaskValid(LLFaceID face_mask)
{
	LLFaceID test_mask = 0;
	for(S32 i = 0; i < getNumFaces(); i++)
	{
		test_mask |= mProfilep->mFaces[i].mFaceID;
	}

	return test_mask == face_mask;
}

BOOL LLVolume::isConvex() const
{
	// mParams.isConvex() may return FALSE even though the final
	// geometry is actually convex due to LOD approximations.
	// TODO -- provide LLPath and LLProfile with isConvex() methods
	// that correctly determine convexity. -- Leviathan
	return mParams.isConvex();
}


std::ostream& operator<<(std::ostream &s, const LLProfileParams &profile_params)
{
	s << "{type=" << (U32) profile_params.mCurveType;
	s << ", begin=" << profile_params.mBegin;
	s << ", end=" << profile_params.mEnd;
	s << ", hollow=" << profile_params.mHollow;
	s << "}";
	return s;
}


std::ostream& operator<<(std::ostream &s, const LLPathParams &path_params)
{
	s << "{type=" << (U32) path_params.mCurveType;
	s << ", begin=" << path_params.mBegin;
	s << ", end=" << path_params.mEnd;
	s << ", twist=" << path_params.mTwistEnd;
	s << ", scale=" << path_params.mScale;
	s << ", shear=" << path_params.mShear;
	s << ", twist_begin=" << path_params.mTwistBegin;
	s << ", radius_offset=" << path_params.mRadiusOffset;
	s << ", taper=" << path_params.mTaper;
	s << ", revolutions=" << path_params.mRevolutions;
	s << ", skew=" << path_params.mSkew;
	s << "}";
	return s;
}


std::ostream& operator<<(std::ostream &s, const LLVolumeParams &volume_params)
{
	s << "{profileparams = " << volume_params.mProfileParams;
	s << ", pathparams = " << volume_params.mPathParams;
	s << "}";
	return s;
}


std::ostream& operator<<(std::ostream &s, const LLProfile &profile)
{
	s << " {open=" << (U32) profile.mOpen;
	s << ", dirty=" << profile.mDirty;
	s << ", totalout=" << profile.mTotalOut;
	s << ", total=" << profile.mTotal;
	s << "}";
	return s;
}


std::ostream& operator<<(std::ostream &s, const LLPath &path)
{
	s << "{open=" << (U32) path.mOpen;
	s << ", dirty=" << path.mDirty;
	s << ", step=" << path.mStep;
	s << ", total=" << path.mTotal;
	s << "}";
	return s;
}

std::ostream& operator<<(std::ostream &s, const LLVolume &volume)
{
	s << "{params = " << volume.getParams();
	s << ", path = " << *volume.mPathp;
	s << ", profile = " << *volume.mProfilep;
	s << "}";
	return s;
}


std::ostream& operator<<(std::ostream &s, const LLVolume *volumep)
{
	s << "{params = " << volumep->getParams();
	s << ", path = " << *(volumep->mPathp);
	s << ", profile = " << *(volumep->mProfilep);
	s << "}";
	return s;
}

LLVolumeFace::LLVolumeFace() : 
	mID(0),
	mTypeMask(0),
	mBeginS(0),
	mBeginT(0),
	mNumS(0),
	mNumT(0),
	mNumVertices(0),
	mNumIndices(0),
	mPositions(NULL),
	mNormals(NULL),
	mBinormals(NULL),
	mTexCoords(NULL),
	mIndices(NULL),
	mWeights(NULL),
	mOctree(NULL)
{
	mExtents = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*3);
	mExtents[0].splat(-0.5f);
	mExtents[1].splat(0.5f);
	mCenter = mExtents+2;
}

LLVolumeFace::LLVolumeFace(const LLVolumeFace& src)
:	mID(0),
	mTypeMask(0),
	mBeginS(0),
	mBeginT(0),
	mNumS(0),
	mNumT(0),
	mNumVertices(0),
	mNumIndices(0),
	mPositions(NULL),
	mNormals(NULL),
	mBinormals(NULL),
	mTexCoords(NULL),
	mIndices(NULL),
	mWeights(NULL),
	mOctree(NULL)
{ 
	mExtents = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*3);
	mCenter = mExtents+2;
	*this = src;
}

LLVolumeFace& LLVolumeFace::operator=(const LLVolumeFace& src)
{
	if (&src == this)
	{ //self assignment, do nothing
		return *this;
	}

	mID = src.mID;
	mTypeMask = src.mTypeMask;
	mBeginS = src.mBeginS;
	mBeginT = src.mBeginT;
	mNumS = src.mNumS;
	mNumT = src.mNumT;

	mExtents[0] = src.mExtents[0];
	mExtents[1] = src.mExtents[1];
	*mCenter = *src.mCenter;

	mNumVertices = 0;
	mNumIndices = 0;

	freeData();
	
	LLVector4a::memcpyNonAliased16((F32*) mExtents, (F32*) src.mExtents, 3*sizeof(LLVector4a));

	resizeVertices(src.mNumVertices);
	resizeIndices(src.mNumIndices);

	if (mNumVertices)
	{
		S32 vert_size = mNumVertices*sizeof(LLVector4a);
		S32 tc_size = (mNumVertices*sizeof(LLVector2)+0xF) & ~0xF;
			
		LLVector4a::memcpyNonAliased16((F32*) mPositions, (F32*) src.mPositions, vert_size);
		LLVector4a::memcpyNonAliased16((F32*) mNormals, (F32*) src.mNormals, vert_size);

		if(src.mTexCoords)
		{
			LLVector4a::memcpyNonAliased16((F32*) mTexCoords, (F32*) src.mTexCoords, tc_size);
		}
		else
		{
			ll_aligned_free_16(mTexCoords) ;
			mTexCoords = NULL ;
		}


		if (src.mBinormals)
		{
			allocateBinormals(src.mNumVertices);
			LLVector4a::memcpyNonAliased16((F32*) mBinormals, (F32*) src.mBinormals, vert_size);
		}
		else
		{
			ll_aligned_free_16(mBinormals);
			mBinormals = NULL;
		}

		if (src.mWeights)
		{
			allocateWeights(src.mNumVertices);
			LLVector4a::memcpyNonAliased16((F32*) mWeights, (F32*) src.mWeights, vert_size);
		}
		else
		{
			ll_aligned_free_16(mWeights);
			mWeights = NULL;
		}
	}

	if (mNumIndices)
	{
		S32 idx_size = (mNumIndices*sizeof(U16)+0xF) & ~0xF;
		
		LLVector4a::memcpyNonAliased16((F32*) mIndices, (F32*) src.mIndices, idx_size);
	}
	
	//delete 
	return *this;
}

LLVolumeFace::~LLVolumeFace()
{
	ll_aligned_free_16(mExtents);
	mExtents = NULL;

	freeData();
}

void LLVolumeFace::freeData()
{
	ll_aligned_free_16(mPositions);
	mPositions = NULL;
	ll_aligned_free_16( mNormals);
	mNormals = NULL;
	ll_aligned_free_16(mTexCoords);
	mTexCoords = NULL;
	ll_aligned_free_16(mIndices);
	mIndices = NULL;
	ll_aligned_free_16(mBinormals);
	mBinormals = NULL;
	ll_aligned_free_16(mWeights);
	mWeights = NULL;

	delete mOctree;
	mOctree = NULL;
}

BOOL LLVolumeFace::create(LLVolume* volume, BOOL partial_build)
{
	//tree for this face is no longer valid
	delete mOctree;
	mOctree = NULL;

	BOOL ret = FALSE ;
	if (mTypeMask & CAP_MASK)
	{
		ret = createCap(volume, partial_build);
	}
	else if ((mTypeMask & END_MASK) || (mTypeMask & SIDE_MASK))
	{
		ret = createSide(volume, partial_build);
	}
	else
	{
		llerrs << "Unknown/uninitialized face type!" << llendl;
	}

	//update the range of the texture coordinates
	if(ret)
	{
		mTexCoordExtents[0].setVec(1.f, 1.f) ;
		mTexCoordExtents[1].setVec(0.f, 0.f) ;

		for(U32 i = 0 ; i < mNumVertices ; i++)
		{
			if(mTexCoordExtents[0].mV[0] > mTexCoords[i].mV[0])
			{
				mTexCoordExtents[0].mV[0] = mTexCoords[i].mV[0] ;
			}
			if(mTexCoordExtents[1].mV[0] < mTexCoords[i].mV[0])
			{
				mTexCoordExtents[1].mV[0] = mTexCoords[i].mV[0] ;
			}

			if(mTexCoordExtents[0].mV[1] > mTexCoords[i].mV[1])
			{
				mTexCoordExtents[0].mV[1] = mTexCoords[i].mV[1] ;
			}
			if(mTexCoordExtents[1].mV[1] < mTexCoords[i].mV[1])
			{
				mTexCoordExtents[1].mV[1] = mTexCoords[i].mV[1] ;
			}			
		}
		mTexCoordExtents[0].mV[0] = llmax(0.f, mTexCoordExtents[0].mV[0]) ;
		mTexCoordExtents[0].mV[1] = llmax(0.f, mTexCoordExtents[0].mV[1]) ;
		mTexCoordExtents[1].mV[0] = llmin(1.f, mTexCoordExtents[1].mV[0]) ;
		mTexCoordExtents[1].mV[1] = llmin(1.f, mTexCoordExtents[1].mV[1]) ;
	}

	return ret ;
}

void LLVolumeFace::getVertexData(U16 index, LLVolumeFace::VertexData& cv)
{
	cv.setPosition(mPositions[index]);
	if (mNormals)
	{
		cv.setNormal(mNormals[index]);
	}
	else
	{
		cv.getNormal().clear();
	}

	if (mTexCoords)
	{
		cv.mTexCoord = mTexCoords[index];
	}
	else
	{
		cv.mTexCoord.clear();
	}
}

bool LLVolumeFace::VertexMapData::operator==(const LLVolumeFace::VertexData& rhs) const
{
	return getPosition().equals3(rhs.getPosition()) &&
		mTexCoord == rhs.mTexCoord &&
		getNormal().equals3(rhs.getNormal());
}

bool LLVolumeFace::VertexMapData::ComparePosition::operator()(const LLVector3& a, const LLVector3& b) const
{
	if (a.mV[0] != b.mV[0])
	{
		return a.mV[0] < b.mV[0];
	}
	
	if (a.mV[1] != b.mV[1])
	{
		return a.mV[1] < b.mV[1];
	}
	
	return a.mV[2] < b.mV[2];
}

void LLVolumeFace::optimize(F32 angle_cutoff)
{
	LLVolumeFace new_face;

	//map of points to vector of vertices at that point
	std::map<U64, std::vector<VertexMapData> > point_map;

	LLVector4a range;
	range.setSub(mExtents[1],mExtents[0]);

	//remove redundant vertices
	for (U32 i = 0; i < mNumIndices; ++i)
	{
		U16 index = mIndices[i];

		LLVolumeFace::VertexData cv;
		getVertexData(index, cv);
		
		BOOL found = FALSE;

		LLVector4a pos;
		pos.setSub(mPositions[index], mExtents[0]);
		pos.div(range);

		U64 pos64 = 0;

		pos64 = (U16) (pos[0]*65535);
		pos64 = pos64 | (((U64) (pos[1]*65535)) << 16);
		pos64 = pos64 | (((U64) (pos[2]*65535)) << 32);

		std::map<U64, std::vector<VertexMapData> >::iterator point_iter = point_map.find(pos64);
		
		if (point_iter != point_map.end())
		{ //duplicate point might exist
			for (U32 j = 0; j < point_iter->second.size(); ++j)
			{
				LLVolumeFace::VertexData& tv = (point_iter->second)[j];
				if (tv.compareNormal(cv, angle_cutoff))
				{
					found = TRUE;
					new_face.pushIndex((point_iter->second)[j].mIndex);
					break;
				}
			}
		}

		if (!found)
		{
			new_face.pushVertex(cv);
			U16 index = (U16) new_face.mNumVertices-1;
			new_face.pushIndex(index);

			VertexMapData d;
			d.setPosition(cv.getPosition());
			d.mTexCoord = cv.mTexCoord;
			d.setNormal(cv.getNormal());
			d.mIndex = index;
			if (point_iter != point_map.end())
			{
				point_iter->second.push_back(d);
			}
			else
			{
				point_map[pos64].push_back(d);
			}
		}
	}

	llassert(new_face.mNumIndices == mNumIndices);
	llassert(new_face.mNumVertices <= mNumVertices);

	if (angle_cutoff > 1.f && !mNormals)
	{
		ll_aligned_free_16(new_face.mNormals);
		new_face.mNormals = NULL;
	}

	if (!mTexCoords)
	{
		ll_aligned_free_16(new_face.mTexCoords);
		new_face.mTexCoords = NULL;
	}

	swapData(new_face);
}

class LLVCacheTriangleData;

class LLVCacheVertexData
{
public:
	S32 mIdx;
	S32 mCacheTag;
	F32 mScore;
	U32 mActiveTriangles;
	std::vector<LLVCacheTriangleData*> mTriangles;

	LLVCacheVertexData()
	{
		mCacheTag = -1;
		mScore = 0.f;
		mActiveTriangles = 0;
		mIdx = -1;
	}
};

class LLVCacheTriangleData
{
public:
	bool mActive;
	F32 mScore;
	LLVCacheVertexData* mVertex[3];

	LLVCacheTriangleData()
	{
		mActive = true;
		mScore = 0.f;
		mVertex[0] = mVertex[1] = mVertex[2] = NULL;
	}

	void complete()
	{
		mActive = false;
		for (S32 i = 0; i < 3; ++i)
		{
			if (mVertex[i])
			{
				llassert_always(mVertex[i]->mActiveTriangles > 0);
				mVertex[i]->mActiveTriangles--;
			}
		}
	}

	bool operator<(const LLVCacheTriangleData& rhs) const
	{ //highest score first
		return rhs.mScore < mScore;
	}
};

const F32 FindVertexScore_CacheDecayPower = 1.5f;
const F32 FindVertexScore_LastTriScore = 0.75f;
const F32 FindVertexScore_ValenceBoostScale = 2.0f;
const F32 FindVertexScore_ValenceBoostPower = 0.5f;
const U32 MaxSizeVertexCache = 32;

F32 find_vertex_score(LLVCacheVertexData& data)
{
	if (data.mActiveTriangles == 0)
	{ //no triangle references this vertex
		return -1.f;
	}

	F32 score = 0.f;

	S32 cache_idx = data.mCacheTag;

	if (cache_idx < 0)
	{
		//not in cache
	}
	else
	{
		if (cache_idx < 3)
		{ //vertex was in the last triangle
			score = FindVertexScore_LastTriScore;
		}
		else
		{ //more points for being higher in the cache
			F32 scaler = 1.f/(MaxSizeVertexCache-3);
			score = 1.f-((cache_idx-3)*scaler);
			score = powf(score, FindVertexScore_CacheDecayPower);
		}
	}

	//bonus points for having low valence
	F32 valence_boost = powf(data.mActiveTriangles, -FindVertexScore_ValenceBoostPower);
	score += FindVertexScore_ValenceBoostScale * valence_boost;

	return score;
}

class LLVCacheFIFO
{
public:
	LLVCacheVertexData* mCache[MaxSizeVertexCache];
	U32 mMisses;

	LLVCacheFIFO()
	{
		mMisses = 0;
		for (U32 i = 0; i < MaxSizeVertexCache; ++i)
		{
			mCache[i] = NULL;
		}
	}

	void addVertex(LLVCacheVertexData* data)
	{
		if (data->mCacheTag == -1)
		{
			mMisses++;

			S32 end = MaxSizeVertexCache-1;

			if (mCache[end])
			{
				mCache[end]->mCacheTag = -1;
			}

			for (S32 i = end; i > 0; --i)
			{
				mCache[i] = mCache[i-1];
				if (mCache[i])
				{
					mCache[i]->mCacheTag = i;
				}
			}

			mCache[0] = data;
			data->mCacheTag = 0;
		}
	}
};

class LLVCacheLRU
{
public:
	LLVCacheVertexData* mCache[MaxSizeVertexCache+3];

	LLVCacheTriangleData* mBestTriangle;
	
	U32 mMisses;

	LLVCacheLRU()
	{
		for (U32 i = 0; i < MaxSizeVertexCache+3; ++i)
		{
			mCache[i] = NULL;
		}

		mBestTriangle = NULL;
		mMisses = 0;
	}

	void addVertex(LLVCacheVertexData* data)
	{
		S32 end = MaxSizeVertexCache+2;
		if (data->mCacheTag != -1)
		{ //just moving a vertex to the front of the cache
			end = data->mCacheTag;
		}
		else
		{
			mMisses++;
			if (mCache[end])
			{ //adding a new vertex, vertex at end of cache falls off
				mCache[end]->mCacheTag = -1;
			}
		}

		for (S32 i = end; i > 0; --i)
		{ //adjust cache pointers and tags
			mCache[i] = mCache[i-1];

			if (mCache[i])
			{
				mCache[i]->mCacheTag = i;			
			}
		}

		mCache[0] = data;
		mCache[0]->mCacheTag = 0;
	}

	void addTriangle(LLVCacheTriangleData* data)
	{
		addVertex(data->mVertex[0]);
		addVertex(data->mVertex[1]);
		addVertex(data->mVertex[2]);
	}

	void updateScores()
	{
		for (U32 i = MaxSizeVertexCache; i < MaxSizeVertexCache+3; ++i)
		{ //trailing 3 vertices aren't actually in the cache for scoring purposes
			if (mCache[i])
			{
				mCache[i]->mCacheTag = -1;
			}
		}

		for (U32 i = 0; i < MaxSizeVertexCache; ++i)
		{ //update scores of vertices in cache
			if (mCache[i])
			{
				mCache[i]->mScore = find_vertex_score(*(mCache[i]));
				llassert_always(mCache[i]->mCacheTag == i);
			}
		}

		mBestTriangle = NULL;
		//update triangle scores
		for (U32 i = 0; i < MaxSizeVertexCache+3; ++i)
		{
			if (mCache[i])
			{
				for (U32 j = 0; j < mCache[i]->mTriangles.size(); ++j)
				{
					LLVCacheTriangleData* tri = mCache[i]->mTriangles[j];
					if (tri->mActive)
					{
						tri->mScore = tri->mVertex[0]->mScore;
						tri->mScore += tri->mVertex[1]->mScore;
						tri->mScore += tri->mVertex[2]->mScore;

						if (!mBestTriangle || mBestTriangle->mScore < tri->mScore)
						{
							mBestTriangle = tri;
						}
					}
				}
			}
		}

		//knock trailing 3 vertices off the cache
		for (U32 i = MaxSizeVertexCache; i < MaxSizeVertexCache+3; ++i)
		{
			if (mCache[i])
			{
				llassert_always(mCache[i]->mCacheTag == -1);
				mCache[i] = NULL;
			}
		}
	}
};


void LLVolumeFace::cacheOptimize()
{ //optimize for vertex cache according to Forsyth method: 
  // http://home.comcast.net/~tom_forsyth/papers/fast_vert_cache_opt.html
	
	LLVCacheLRU cache;
	
	if (mNumVertices < 3)
	{ //nothing to do
		return;
	}

	//mapping of vertices to triangles and indices
	std::vector<LLVCacheVertexData> vertex_data;

	//mapping of triangles do vertices
	std::vector<LLVCacheTriangleData> triangle_data;

	triangle_data.resize(mNumIndices/3);
	vertex_data.resize(mNumVertices);

	for (U32 i = 0; i < mNumIndices; i++)
	{ //populate vertex data and triangle data arrays
		U16 idx = mIndices[i];
		U32 tri_idx = i/3;

		vertex_data[idx].mTriangles.push_back(&(triangle_data[tri_idx]));
		vertex_data[idx].mIdx = idx;
		triangle_data[tri_idx].mVertex[i%3] = &(vertex_data[idx]);
	}

	/*F32 pre_acmr = 1.f;
	//measure cache misses from before rebuild
	{
		LLVCacheFIFO test_cache;
		for (U32 i = 0; i < mNumIndices; ++i)
		{
			test_cache.addVertex(&vertex_data[mIndices[i]]);
		}

		for (U32 i = 0; i < mNumVertices; i++)
		{
			vertex_data[i].mCacheTag = -1;
		}

		pre_acmr = (F32) test_cache.mMisses/(mNumIndices/3);
	}*/

	for (U32 i = 0; i < mNumVertices; i++)
	{ //initialize score values (no cache -- might try a fifo cache here)
		vertex_data[i].mScore = find_vertex_score(vertex_data[i]);
		vertex_data[i].mActiveTriangles = vertex_data[i].mTriangles.size();

		for (U32 j = 0; j < vertex_data[i].mTriangles.size(); ++j)
		{
			vertex_data[i].mTriangles[j]->mScore += vertex_data[i].mScore;
		}
	}

	//sort triangle data by score
	std::sort(triangle_data.begin(), triangle_data.end());

	std::vector<U16> new_indices;

	LLVCacheTriangleData* tri;

	//prime pump by adding first triangle to cache;
	tri = &(triangle_data[0]);
	cache.addTriangle(tri);
	new_indices.push_back(tri->mVertex[0]->mIdx);
	new_indices.push_back(tri->mVertex[1]->mIdx);
	new_indices.push_back(tri->mVertex[2]->mIdx);
	tri->complete();

	U32 breaks = 0;
	for (U32 i = 1; i < mNumIndices/3; ++i)
	{
		cache.updateScores();
		tri = cache.mBestTriangle;
		if (!tri)
		{
			breaks++;
			for (U32 j = 0; j < triangle_data.size(); ++j)
			{
				if (triangle_data[j].mActive)
				{
					tri = &(triangle_data[j]);
					break;
				}
			}
		}	
		
		cache.addTriangle(tri);
		new_indices.push_back(tri->mVertex[0]->mIdx);
		new_indices.push_back(tri->mVertex[1]->mIdx);
		new_indices.push_back(tri->mVertex[2]->mIdx);
		tri->complete();
	}

	for (U32 i = 0; i < mNumIndices; ++i)
	{
		mIndices[i] = new_indices[i];
	}

	/*F32 post_acmr = 1.f;
	//measure cache misses from after rebuild
	{
		LLVCacheFIFO test_cache;
		for (U32 i = 0; i < mNumVertices; i++)
		{
			vertex_data[i].mCacheTag = -1;
		}

		for (U32 i = 0; i < mNumIndices; ++i)
		{
			test_cache.addVertex(&vertex_data[mIndices[i]]);
		}
		
		post_acmr = (F32) test_cache.mMisses/(mNumIndices/3);
	}*/

	//optimize for pre-TnL cache
	
	//allocate space for new buffer
	S32 num_verts = mNumVertices;
	LLVector4a* pos = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
	LLVector4a* norm = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
	S32 size = ((num_verts*sizeof(LLVector2)) + 0xF) & ~0xF;
	LLVector2* tc = (LLVector2*) ll_aligned_malloc_16(size);

	LLVector4a* wght = NULL;
	if (mWeights)
	{
		wght = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
	}

	LLVector4a* binorm = NULL;
	if (mBinormals)
	{
		binorm = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
	}

	//allocate mapping of old indices to new indices
	std::vector<S32> new_idx;
	new_idx.resize(mNumVertices, -1);

	S32 cur_idx = 0;
	for (U32 i = 0; i < mNumIndices; ++i)
	{
		U16 idx = mIndices[i];
		if (new_idx[idx] == -1)
		{ //this vertex hasn't been added yet
			new_idx[idx] = cur_idx;

			//copy vertex data
			pos[cur_idx] = mPositions[idx];
			norm[cur_idx] = mNormals[idx];
			tc[cur_idx] = mTexCoords[idx];
			if (mWeights)
			{
				wght[cur_idx] = mWeights[idx];
			}
			if (mBinormals)
			{
				binorm[cur_idx] = mBinormals[idx];
			}

			cur_idx++;
		}
	}

	for (U32 i = 0; i < mNumIndices; ++i)
	{
		mIndices[i] = new_idx[mIndices[i]];
	}
	
	ll_aligned_free_16(mPositions);
	ll_aligned_free_16(mNormals);
	ll_aligned_free_16(mTexCoords);
	ll_aligned_free_16(mWeights);
	ll_aligned_free_16(mBinormals);

	mPositions = pos;
	mNormals = norm;
	mTexCoords = tc;
	mWeights = wght;
	mBinormals = binorm;

	//std::string result = llformat("ACMR pre/post: %.3f/%.3f  --  %d triangles %d breaks", pre_acmr, post_acmr, mNumIndices/3, breaks);
	//llinfos << result << llendl;

}

void LLVolumeFace::createOctree(F32 scaler, const LLVector4a& center, const LLVector4a& size)
{
	if (mOctree)
	{
		return;
	}

	mOctree = new LLOctreeRoot<LLVolumeTriangle>(center, size, NULL);
	new LLVolumeOctreeListener(mOctree);

	for (U32 i = 0; i < mNumIndices; i+= 3)
	{ //for each triangle
		LLPointer<LLVolumeTriangle> tri = new LLVolumeTriangle();
				
		const LLVector4a& v0 = mPositions[mIndices[i]];
		const LLVector4a& v1 = mPositions[mIndices[i+1]];
		const LLVector4a& v2 = mPositions[mIndices[i+2]];

		//store pointers to vertex data
		tri->mV[0] = &v0;
		tri->mV[1] = &v1;
		tri->mV[2] = &v2;

		//store indices
		tri->mIndex[0] = mIndices[i];
		tri->mIndex[1] = mIndices[i+1];
		tri->mIndex[2] = mIndices[i+2];

		//get minimum point
		LLVector4a min = v0;
		min.setMin(min, v1);
		min.setMin(min, v2);

		//get maximum point
		LLVector4a max = v0;
		max.setMax(max, v1);
		max.setMax(max, v2);

		//compute center
		LLVector4a center;
		center.setAdd(min, max);
		center.mul(0.5f);

		tri->mPositionGroup = center;

		//compute "radius"
		LLVector4a size;
		size.setSub(max,min);
		
		tri->mRadius = size.getLength3().getF32() * scaler;
		
		//insert
		mOctree->insert(tri);
	}

	//remove unneeded octree layers
	while (!mOctree->balance())	{ }

	//calculate AABB for each node
	LLVolumeOctreeRebound rebound(this);
	rebound.traverse(mOctree);

	if (gDebugGL)
	{
		LLVolumeOctreeValidate validate;
		validate.traverse(mOctree);
	}
}


void LLVolumeFace::swapData(LLVolumeFace& rhs)
{
	llswap(rhs.mPositions, mPositions);
	llswap(rhs.mNormals, mNormals);
	llswap(rhs.mBinormals, mBinormals);
	llswap(rhs.mTexCoords, mTexCoords);
	llswap(rhs.mIndices,mIndices);
	llswap(rhs.mNumVertices, mNumVertices);
	llswap(rhs.mNumIndices, mNumIndices);
}

void	LerpPlanarVertex(LLVolumeFace::VertexData& v0,
				   LLVolumeFace::VertexData& v1,
				   LLVolumeFace::VertexData& v2,
				   LLVolumeFace::VertexData& vout,
				   F32	coef01,
				   F32	coef02)
{

	LLVector4a lhs;
	lhs.setSub(v1.getPosition(), v0.getPosition());
	lhs.mul(coef01);
	LLVector4a rhs;
	rhs.setSub(v2.getPosition(), v0.getPosition());
	rhs.mul(coef02);

	rhs.add(lhs);
	rhs.add(v0.getPosition());

	vout.setPosition(rhs);
		
	vout.mTexCoord = v0.mTexCoord + ((v1.mTexCoord-v0.mTexCoord)*coef01)+((v2.mTexCoord-v0.mTexCoord)*coef02);
	vout.setNormal(v0.getNormal());
}

BOOL LLVolumeFace::createUnCutCubeCap(LLVolume* volume, BOOL partial_build)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	const std::vector<LLVolume::Point>& mesh = volume->getMesh();
	const std::vector<LLVector3>& profile = volume->getProfile().mProfile;
	S32 max_s = volume->getProfile().getTotal();
	S32 max_t = volume->getPath().mPath.size();

	// S32 i;
	S32 num_vertices = 0, num_indices = 0;
	S32	grid_size = (profile.size()-1)/4;
	S32	quad_count = (grid_size * grid_size);

	num_vertices = (grid_size+1)*(grid_size+1);
	num_indices = quad_count * 4;

	LLVector4a& min = mExtents[0];
	LLVector4a& max = mExtents[1];

	S32 offset = 0;
	if (mTypeMask & TOP_MASK)
	{
		offset = (max_t-1) * max_s;
	}
	else
	{
		offset = mBeginS;
	}

	{
		VertexData	corners[4];
		VertexData baseVert;
		for(S32 t = 0; t < 4; t++)
		{
			corners[t].getPosition().load3( mesh[offset + (grid_size*t)].mPos.mV);
			corners[t].mTexCoord.mV[0] = profile[grid_size*t].mV[0]+0.5f;
			corners[t].mTexCoord.mV[1] = 0.5f - profile[grid_size*t].mV[1];
		}

		{
			LLVector4a lhs;
			lhs.setSub(corners[1].getPosition(), corners[0].getPosition());
			LLVector4a rhs;
			rhs.setSub(corners[2].getPosition(), corners[1].getPosition());
			baseVert.getNormal().setCross3(lhs, rhs); 
			baseVert.getNormal().normalize3fast();
		}

		if(!(mTypeMask & TOP_MASK))
		{
			baseVert.getNormal().mul(-1.0f);
		}
		else
		{
			//Swap the UVs on the U(X) axis for top face
			LLVector2 swap;
			swap = corners[0].mTexCoord;
			corners[0].mTexCoord=corners[3].mTexCoord;
			corners[3].mTexCoord=swap;
			swap = corners[1].mTexCoord;
			corners[1].mTexCoord=corners[2].mTexCoord;
			corners[2].mTexCoord=swap;
		}

		LLVector4a binormal;
		
		calc_binormal_from_triangle( binormal,
			corners[0].getPosition(), corners[0].mTexCoord,
			corners[1].getPosition(), corners[1].mTexCoord,
			corners[2].getPosition(), corners[2].mTexCoord);
		
		binormal.normalize3fast();

		S32 size = (grid_size+1)*(grid_size+1);
		resizeVertices(size);
		allocateBinormals(size);

		LLVector4a* pos = (LLVector4a*) mPositions;
		LLVector4a* norm = (LLVector4a*) mNormals;
		LLVector4a* binorm = (LLVector4a*) mBinormals;
		LLVector2* tc = (LLVector2*) mTexCoords;

		for(int gx = 0;gx<grid_size+1;gx++)
		{
			for(int gy = 0;gy<grid_size+1;gy++)
			{
				VertexData newVert;
				LerpPlanarVertex(
					corners[0],
					corners[1],
					corners[3],
					newVert,
					(F32)gx/(F32)grid_size,
					(F32)gy/(F32)grid_size);

				*pos++ = newVert.getPosition();
				*norm++ = baseVert.getNormal();
				*tc++ = newVert.mTexCoord;
				*binorm++ = binormal;

				if (gx == 0 && gy == 0)
				{
					min = newVert.getPosition();
					max = min;
				}
				else
				{
					min.setMin(min, newVert.getPosition());
					max.setMax(max, newVert.getPosition());
				}
			}
		}
	
		mCenter->setAdd(min, max);
		mCenter->mul(0.5f); 
	}

	if (!partial_build)
	{
		resizeIndices(grid_size*grid_size*6);

		U16* out = mIndices;

		S32 idxs[] = {0,1,(grid_size+1)+1,(grid_size+1)+1,(grid_size+1),0};
		for(S32 gx = 0;gx<grid_size;gx++)
		{
			
			for(S32 gy = 0;gy<grid_size;gy++)
			{
				if (mTypeMask & TOP_MASK)
				{
					for(S32 i=5;i>=0;i--)
					{
						*out++ = ((gy*(grid_size+1))+gx+idxs[i]);
					}		
				}
				else
				{
					for(S32 i=0;i<6;i++)
					{
						*out++ = ((gy*(grid_size+1))+gx+idxs[i]);
					}
				}
			}	
		}
	}
		
	return TRUE;
}


BOOL LLVolumeFace::createCap(LLVolume* volume, BOOL partial_build)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	if (!(mTypeMask & HOLLOW_MASK) && 
		!(mTypeMask & OPEN_MASK) && 
		((volume->getParams().getPathParams().getBegin()==0.0f)&&
		(volume->getParams().getPathParams().getEnd()==1.0f))&&
		(volume->getParams().getProfileParams().getCurveType()==LL_PCODE_PROFILE_SQUARE &&
		 volume->getParams().getPathParams().getCurveType()==LL_PCODE_PATH_LINE)	
		){
		return createUnCutCubeCap(volume, partial_build);
	}

	S32 num_vertices = 0, num_indices = 0;

	const std::vector<LLVolume::Point>& mesh = volume->getMesh();
	const std::vector<LLVector3>& profile = volume->getProfile().mProfile;

	// All types of caps have the same number of vertices and indices
	num_vertices = profile.size();
	num_indices = (profile.size() - 2)*3;

	if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK))
	{
		resizeVertices(num_vertices+1);
		allocateBinormals(num_vertices+1);	

		if (!partial_build)
		{
			resizeIndices(num_indices+3);
		}
	}
	else
	{
		resizeVertices(num_vertices);
		allocateBinormals(num_vertices);

		if (!partial_build)
		{
			resizeIndices(num_indices);
		}
	}

	S32 max_s = volume->getProfile().getTotal();
	S32 max_t = volume->getPath().mPath.size();

	mCenter->clear();

	S32 offset = 0;
	if (mTypeMask & TOP_MASK)
	{
		offset = (max_t-1) * max_s;
	}
	else
	{
		offset = mBeginS;
	}

	// Figure out the normal, assume all caps are flat faces.
	// Cross product to get normals.
	
	LLVector2 cuv;
	LLVector2 min_uv, max_uv;

	LLVector4a& min = mExtents[0];
	LLVector4a& max = mExtents[1];

	LLVector2* tc = (LLVector2*) mTexCoords;
	LLVector4a* pos = (LLVector4a*) mPositions;
	LLVector4a* norm = (LLVector4a*) mNormals;
	LLVector4a* binorm = (LLVector4a*) mBinormals;

	// Copy the vertices into the array
	for (S32 i = 0; i < num_vertices; i++)
	{
		if (mTypeMask & TOP_MASK)
		{
			tc[i].mV[0] = profile[i].mV[0]+0.5f;
			tc[i].mV[1] = profile[i].mV[1]+0.5f;
		}
		else
		{
			// Mirror for underside.
			tc[i].mV[0] = profile[i].mV[0]+0.5f;
			tc[i].mV[1] = 0.5f - profile[i].mV[1];
		}

		pos[i].load3(mesh[i + offset].mPos.mV);
		
		if (i == 0)
		{
			max = pos[i];
			min = max;
			min_uv = max_uv = tc[i];
		}
		else
		{
			update_min_max(min,max,pos[i]);
			update_min_max(min_uv, max_uv, tc[i]);
		}
	}

	mCenter->setAdd(min, max);
	mCenter->mul(0.5f); 

	cuv = (min_uv + max_uv)*0.5f;

	LLVector4a binormal;
	calc_binormal_from_triangle(binormal,
		*mCenter, cuv,
		pos[0], tc[0],
		pos[1], tc[1]);
	binormal.normalize3fast();

	LLVector4a normal;
	LLVector4a d0, d1;
	

	d0.setSub(*mCenter, pos[0]);
	d1.setSub(*mCenter, pos[1]);

	if (mTypeMask & TOP_MASK)
	{
		normal.setCross3(d0, d1);
	}
	else
	{
		normal.setCross3(d1, d0);
	}

	normal.normalize3fast();

	VertexData vd;
	vd.setPosition(*mCenter);
	vd.mTexCoord = cuv;
	
	if (!(mTypeMask & HOLLOW_MASK) && !(mTypeMask & OPEN_MASK))
	{
		pos[num_vertices] = *mCenter;
		tc[num_vertices] = cuv;
		num_vertices++;
	}
		
	for (S32 i = 0; i < num_vertices; i++)
	{
		binorm[i].load4a(binormal.getF32ptr());
		norm[i].load4a(normal.getF32ptr());
	}

	if (partial_build)
	{
		return TRUE;
	}

	if (mTypeMask & HOLLOW_MASK)
	{
		if (mTypeMask & TOP_MASK)
		{
			// HOLLOW TOP
			// Does it matter if it's open or closed? - djs

			S32 pt1 = 0, pt2 = num_vertices - 1;
			S32 i = 0;
			while (pt2 - pt1 > 1)
			{
				// Use the profile points instead of the mesh, since you want
				// the un-transformed profile distances.
				LLVector3 p1 = profile[pt1];
				LLVector3 p2 = profile[pt2];
				LLVector3 pa = profile[pt1+1];
				LLVector3 pb = profile[pt2-1];

				p1.mV[VZ] = 0.f;
				p2.mV[VZ] = 0.f;
				pa.mV[VZ] = 0.f;
				pb.mV[VZ] = 0.f;

				// Use area of triangle to determine backfacing
				F32 area_1a2, area_1ba, area_21b, area_2ab;
				area_1a2 =  (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
							(pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
							(p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);

				area_1ba =  (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
							(pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
							(pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);

				area_21b =  (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
							(p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
							(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);

				area_2ab =  (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
							(pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
							(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);

				BOOL use_tri1a2 = TRUE;
				BOOL tri_1a2 = TRUE;
				BOOL tri_21b = TRUE;

				if (area_1a2 < 0)
				{
					tri_1a2 = FALSE;
				}
				if (area_2ab < 0)
				{
					// Can't use, because it contains point b
					tri_1a2 = FALSE;
				}
				if (area_21b < 0)
				{
					tri_21b = FALSE;
				}
				if (area_1ba < 0)
				{
					// Can't use, because it contains point b
					tri_21b = FALSE;
				}

				if (!tri_1a2)
				{
					use_tri1a2 = FALSE;
				}
				else if (!tri_21b)
				{
					use_tri1a2 = TRUE;
				}
				else
				{
					LLVector3 d1 = p1 - pa;
					LLVector3 d2 = p2 - pb;

					if (d1.magVecSquared() < d2.magVecSquared())
					{
						use_tri1a2 = TRUE;
					}
					else
					{
						use_tri1a2 = FALSE;
					}
				}

				if (use_tri1a2)
				{
					mIndices[i++] = pt1;
					mIndices[i++] = pt1 + 1;
					mIndices[i++] = pt2;
					pt1++;
				}
				else
				{
					mIndices[i++] = pt1;
					mIndices[i++] = pt2 - 1;
					mIndices[i++] = pt2;
					pt2--;
				}
			}
		}
		else
		{
			// HOLLOW BOTTOM
			// Does it matter if it's open or closed? - djs

			llassert(mTypeMask & BOTTOM_MASK);
			S32 pt1 = 0, pt2 = num_vertices - 1;

			S32 i = 0;
			while (pt2 - pt1 > 1)
			{
				// Use the profile points instead of the mesh, since you want
				// the un-transformed profile distances.
				LLVector3 p1 = profile[pt1];
				LLVector3 p2 = profile[pt2];
				LLVector3 pa = profile[pt1+1];
				LLVector3 pb = profile[pt2-1];

				p1.mV[VZ] = 0.f;
				p2.mV[VZ] = 0.f;
				pa.mV[VZ] = 0.f;
				pb.mV[VZ] = 0.f;

				// Use area of triangle to determine backfacing
				F32 area_1a2, area_1ba, area_21b, area_2ab;
				area_1a2 =  (p1.mV[0]*pa.mV[1] - pa.mV[0]*p1.mV[1]) +
							(pa.mV[0]*p2.mV[1] - p2.mV[0]*pa.mV[1]) +
							(p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]);

				area_1ba =  (p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
							(pb.mV[0]*pa.mV[1] - pa.mV[0]*pb.mV[1]) +
							(pa.mV[0]*p1.mV[1] - p1.mV[0]*pa.mV[1]);

				area_21b =  (p2.mV[0]*p1.mV[1] - p1.mV[0]*p2.mV[1]) +
							(p1.mV[0]*pb.mV[1] - pb.mV[0]*p1.mV[1]) +
							(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);

				area_2ab =  (p2.mV[0]*pa.mV[1] - pa.mV[0]*p2.mV[1]) +
							(pa.mV[0]*pb.mV[1] - pb.mV[0]*pa.mV[1]) +
							(pb.mV[0]*p2.mV[1] - p2.mV[0]*pb.mV[1]);

				BOOL use_tri1a2 = TRUE;
				BOOL tri_1a2 = TRUE;
				BOOL tri_21b = TRUE;

				if (area_1a2 < 0)
				{
					tri_1a2 = FALSE;
				}
				if (area_2ab < 0)
				{
					// Can't use, because it contains point b
					tri_1a2 = FALSE;
				}
				if (area_21b < 0)
				{
					tri_21b = FALSE;
				}
				if (area_1ba < 0)
				{
					// Can't use, because it contains point b
					tri_21b = FALSE;
				}

				if (!tri_1a2)
				{
					use_tri1a2 = FALSE;
				}
				else if (!tri_21b)
				{
					use_tri1a2 = TRUE;
				}
				else
				{
					LLVector3 d1 = p1 - pa;
					LLVector3 d2 = p2 - pb;

					if (d1.magVecSquared() < d2.magVecSquared())
					{
						use_tri1a2 = TRUE;
					}
					else
					{
						use_tri1a2 = FALSE;
					}
				}

				// Flipped backfacing from top
				if (use_tri1a2)
				{
					mIndices[i++] = pt1;
					mIndices[i++] = pt2;
					mIndices[i++] = pt1 + 1;
					pt1++;
				}
				else
				{
					mIndices[i++] = pt1;
					mIndices[i++] = pt2;
					mIndices[i++] = pt2 - 1;
					pt2--;
				}
			}
		}
	}
	else
	{
		// Not hollow, generate the triangle fan.
		U16 v1 = 2;
		U16 v2 = 1;

		if (mTypeMask & TOP_MASK)
		{
			v1 = 1;
			v2 = 2;
		}

		for (S32 i = 0; i < (num_vertices - 2); i++)
		{
			mIndices[3*i] = num_vertices - 1;
			mIndices[3*i+v1] = i;
			mIndices[3*i+v2] = i + 1;
		}


	}
		
	return TRUE;
}

void LLVolumeFace::createBinormals()
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	if (!mBinormals)
	{
		allocateBinormals(mNumVertices);

		//generate binormals
		LLVector4a* pos = mPositions;
		LLVector2* tc = (LLVector2*) mTexCoords;
		LLVector4a* binorm = (LLVector4a*) mBinormals;

		LLVector4a* end = mBinormals+mNumVertices;
		while (binorm < end)
		{
			(*binorm++).clear();
		}

		binorm = mBinormals;

		for (U32 i = 0; i < mNumIndices/3; i++) 
		{	//for each triangle
			const U16& i0 = mIndices[i*3+0];
			const U16& i1 = mIndices[i*3+1];
			const U16& i2 = mIndices[i*3+2];
						
			//calculate binormal
			LLVector4a binormal;
			calc_binormal_from_triangle(binormal,
										pos[i0], tc[i0],
										pos[i1], tc[i1],
										pos[i2], tc[i2]);


			//add triangle normal to vertices
			binorm[i0].add(binormal);
			binorm[i1].add(binormal);
			binorm[i2].add(binormal);

			//even out quad contributions
			if (i % 2 == 0) 
			{
				binorm[i2].add(binormal);
			}
			else 
			{
				binorm[i1].add(binormal);
			}
		}

		//normalize binormals
		for (U32 i = 0; i < mNumVertices; i++) 
		{
			binorm[i].normalize3fast();
			//bump map/planar projection code requires normals to be normalized
			mNormals[i].normalize3fast();
		}
	}
}

void LLVolumeFace::resizeVertices(S32 num_verts)
{
	ll_aligned_free_16(mPositions);
	ll_aligned_free_16(mNormals);
	ll_aligned_free_16(mBinormals);
	ll_aligned_free_16(mTexCoords);

	mBinormals = NULL;

	if (num_verts)
	{
		mPositions = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
		assert_aligned(mPositions, 16);
		mNormals = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
		assert_aligned(mNormals, 16);

		//pad texture coordinate block end to allow for QWORD reads
		S32 size = ((num_verts*sizeof(LLVector2)) + 0xF) & ~0xF;
		mTexCoords = (LLVector2*) ll_aligned_malloc_16(size);
		assert_aligned(mTexCoords, 16);
	}
	else
	{
		mPositions = NULL;
		mNormals = NULL;
		mTexCoords = NULL;
	}

	mNumVertices = num_verts;
}

void LLVolumeFace::pushVertex(const LLVolumeFace::VertexData& cv)
{
	pushVertex(cv.getPosition(), cv.getNormal(), cv.mTexCoord);
}

void LLVolumeFace::pushVertex(const LLVector4a& pos, const LLVector4a& norm, const LLVector2& tc)
{
	S32 new_verts = mNumVertices+1;
	S32 new_size = new_verts*16;
//	S32 old_size = mNumVertices*16;

	//positions
	mPositions = (LLVector4a*) realloc(mPositions, new_size);
	
	//normals
	mNormals = (LLVector4a*) realloc(mNormals, new_size);
	
	//tex coords
	new_size = ((new_verts*8)+0xF) & ~0xF;
	mTexCoords = (LLVector2*) realloc(mTexCoords, new_size);
	

	//just clear binormals
	ll_aligned_free_16(mBinormals);
	mBinormals = NULL;

	mPositions[mNumVertices] = pos;
	mNormals[mNumVertices] = norm;
	mTexCoords[mNumVertices] = tc;

	mNumVertices++;	
}

void LLVolumeFace::allocateBinormals(S32 num_verts)
{
	ll_aligned_free_16(mBinormals);
	mBinormals = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
}

void LLVolumeFace::allocateWeights(S32 num_verts)
{
	ll_aligned_free_16(mWeights);
	mWeights = (LLVector4a*) ll_aligned_malloc_16(sizeof(LLVector4a)*num_verts);
}

void LLVolumeFace::resizeIndices(S32 num_indices)
{
	ll_aligned_free_16(mIndices);
	
	if (num_indices)
	{
		//pad index block end to allow for QWORD reads
		S32 size = ((num_indices*sizeof(U16)) + 0xF) & ~0xF;
		
		mIndices = (U16*) ll_aligned_malloc_16(size);
	}
	else
	{
		mIndices = NULL;
	}

	mNumIndices = num_indices;
}

void LLVolumeFace::pushIndex(const U16& idx)
{
	S32 new_count = mNumIndices + 1;
	S32 new_size = ((new_count*2)+0xF) & ~0xF;

	S32 old_size = ((mNumIndices*2)+0xF) & ~0xF;
	if (new_size != old_size)
	{
		mIndices = (U16*) realloc(mIndices, new_size);
	}
	
	mIndices[mNumIndices++] = idx;
}

void LLVolumeFace::fillFromLegacyData(std::vector<LLVolumeFace::VertexData>& v, std::vector<U16>& idx)
{
	resizeVertices(v.size());
	resizeIndices(idx.size());

	for (U32 i = 0; i < v.size(); ++i)
	{
		mPositions[i] = v[i].getPosition();
		mNormals[i] = v[i].getNormal();
		mTexCoords[i] = v[i].mTexCoord;
	}

	for (U32 i = 0; i < idx.size(); ++i)
	{
		mIndices[i] = idx[i];
	}
}

void LLVolumeFace::appendFace(const LLVolumeFace& face, LLMatrix4& mat_in, LLMatrix4& norm_mat_in)
{
	U16 offset = mNumVertices;

	S32 new_count = face.mNumVertices + mNumVertices;

	if (new_count > 65536)
	{
		llerrs << "Cannot append face -- 16-bit overflow will occur." << llendl;
	}
	
	if (face.mNumVertices == 0)
	{
		llerrs << "Cannot append empty face." << llendl;
	}

	//allocate new buffer space
	mPositions = (LLVector4a*) realloc(mPositions, new_count*sizeof(LLVector4a));
	assert_aligned(mPositions, 16);
	mNormals = (LLVector4a*) realloc(mNormals, new_count*sizeof(LLVector4a));
	assert_aligned(mNormals, 16);
	mTexCoords = (LLVector2*) realloc(mTexCoords, (new_count*sizeof(LLVector2)+0xF) & ~0xF);
	assert_aligned(mTexCoords, 16);
	
	mNumVertices = new_count;

	//get destination address of appended face
	LLVector4a* dst_pos = mPositions+offset;
	LLVector2* dst_tc = mTexCoords+offset;
	LLVector4a* dst_norm = mNormals+offset;

	//get source addresses of appended face
	const LLVector4a* src_pos = face.mPositions;
	const LLVector2* src_tc = face.mTexCoords;
	const LLVector4a* src_norm = face.mNormals;

	//load aligned matrices
	LLMatrix4a mat, norm_mat;
	mat.loadu(mat_in);
	norm_mat.loadu(norm_mat_in);

	for (U32 i = 0; i < face.mNumVertices; ++i)
	{
		//transform appended face position and store
		mat.affineTransform(src_pos[i], dst_pos[i]);

		//transform appended face normal and store
		norm_mat.rotate(src_norm[i], dst_norm[i]);
		dst_norm[i].normalize3fast();

		//copy appended face texture coordinate
		dst_tc[i] = src_tc[i];

		if (offset == 0 && i == 0)
		{ //initialize bounding box
			mExtents[0] = mExtents[1] = dst_pos[i];
		}
		else
		{
			//stretch bounding box
			update_min_max(mExtents[0], mExtents[1], dst_pos[i]);
		}
	}


	new_count = mNumIndices + face.mNumIndices;

	//allocate new index buffer
	mIndices = (U16*) realloc(mIndices, (new_count*sizeof(U16)+0xF) & ~0xF);
	
	//get destination address into new index buffer
	U16* dst_idx = mIndices+mNumIndices;
	mNumIndices = new_count;

	for (U32 i = 0; i < face.mNumIndices; ++i)
	{ //copy indices, offsetting by old vertex count
		dst_idx[i] = face.mIndices[i]+offset;
	}
}

BOOL LLVolumeFace::createSide(LLVolume* volume, BOOL partial_build)
{
	LLMemType m1(LLMemType::MTYPE_VOLUME);
	
	BOOL flat = mTypeMask & FLAT_MASK;

	U8 sculpt_type = volume->getParams().getSculptType();
	U8 sculpt_stitching = sculpt_type & LL_SCULPT_TYPE_MASK;
	BOOL sculpt_invert = sculpt_type & LL_SCULPT_FLAG_INVERT;
	BOOL sculpt_mirror = sculpt_type & LL_SCULPT_FLAG_MIRROR;
	BOOL sculpt_reverse_horizontal = (sculpt_invert ? !sculpt_mirror : sculpt_mirror);  // XOR
	
	S32 num_vertices, num_indices;

	const std::vector<LLVolume::Point>& mesh = volume->getMesh();
	const std::vector<LLVector3>& profile = volume->getProfile().mProfile;
	const std::vector<LLPath::PathPt>& path_data = volume->getPath().mPath;

	S32 max_s = volume->getProfile().getTotal();

	S32 s, t, i;
	F32 ss, tt;

	num_vertices = mNumS*mNumT;
	num_indices = (mNumS-1)*(mNumT-1)*6;

	if (!partial_build)
	{
		resizeVertices(num_vertices);
		resizeIndices(num_indices);

		if ((volume->getParams().getSculptType() & LL_SCULPT_TYPE_MASK) != LL_SCULPT_TYPE_MESH)
		{
			mEdge.resize(num_indices);
		}
	}

	LLVector4a* pos = (LLVector4a*) mPositions;
	LLVector4a* norm = (LLVector4a*) mNormals;
	LLVector2* tc = (LLVector2*) mTexCoords;
	S32 begin_stex = llfloor( profile[mBeginS].mV[2] );
	S32 num_s = ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2) ? mNumS/2 : mNumS;

	S32 cur_vertex = 0;
	// Copy the vertices into the array
	for (t = mBeginT; t < mBeginT + mNumT; t++)
	{
		tt = path_data[t].mTexT;
		for (s = 0; s < num_s; s++)
		{
			if (mTypeMask & END_MASK)
			{
				if (s)
				{
					ss = 1.f;
				}
				else
				{
					ss = 0.f;
				}
			}
			else
			{
				// Get s value for tex-coord.
				if (!flat)
				{
					ss = profile[mBeginS + s].mV[2];
				}
				else
				{
					ss = profile[mBeginS + s].mV[2] - begin_stex;
				}
			}

			if (sculpt_reverse_horizontal)
			{
				ss = 1.f - ss;
			}
			
			// Check to see if this triangle wraps around the array.
			if (mBeginS + s >= max_s)
			{
				// We're wrapping
				i = mBeginS + s + max_s*(t-1);
			}
			else
			{
				i = mBeginS + s + max_s*t;
			}

			pos[cur_vertex].load3(mesh[i].mPos.mV);
			tc[cur_vertex] = LLVector2(ss,tt);
		
			norm[cur_vertex].clear();
			cur_vertex++;

			if ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2 && s > 0)
			{

				pos[cur_vertex].load3(mesh[i].mPos.mV);
				tc[cur_vertex] = LLVector2(ss,tt);
			
				norm[cur_vertex].clear();
				
				cur_vertex++;
			}
		}
		
		if ((mTypeMask & INNER_MASK) && (mTypeMask & FLAT_MASK) && mNumS > 2)
		{
			if (mTypeMask & OPEN_MASK)
			{
				s = num_s-1;
			}
			else
			{
				s = 0;
			}

			i = mBeginS + s + max_s*t;
			ss = profile[mBeginS + s].mV[2] - begin_stex;
			pos[cur_vertex].load3(mesh[i].mPos.mV);
			tc[cur_vertex] = LLVector2(ss,tt);
			norm[cur_vertex].clear(); 
			
			cur_vertex++;
		}
	}
	

	//get bounding box for this side
	LLVector4a& face_min = mExtents[0];
	LLVector4a& face_max = mExtents[1];
	mCenter->clear();

	face_min = face_max = pos[0];

	for (U32 i = 1; i < mNumVertices; ++i)
	{
		update_min_max(face_min, face_max, pos[i]);
	}

	mCenter->setAdd(face_min, face_max);
	mCenter->mul(0.5f);

	S32 cur_index = 0;
	S32 cur_edge = 0;
	BOOL flat_face = mTypeMask & FLAT_MASK;

	if (!partial_build)
	{
		// Now we generate the indices.
		for (t = 0; t < (mNumT-1); t++)
		{
			for (s = 0; s < (mNumS-1); s++)
			{	
				mIndices[cur_index++] = s   + mNumS*t;			//bottom left
				mIndices[cur_index++] = s+1 + mNumS*(t+1);		//top right
				mIndices[cur_index++] = s   + mNumS*(t+1);		//top left
				mIndices[cur_index++] = s   + mNumS*t;			//bottom left
				mIndices[cur_index++] = s+1 + mNumS*t;			//bottom right
				mIndices[cur_index++] = s+1 + mNumS*(t+1);		//top right

				mEdge[cur_edge++] = (mNumS-1)*2*t+s*2+1;						//bottom left/top right neighbor face 
				if (t < mNumT-2) {												//top right/top left neighbor face 
					mEdge[cur_edge++] = (mNumS-1)*2*(t+1)+s*2+1;
				}
				else if (mNumT <= 3 || volume->getPath().isOpen() == TRUE) { //no neighbor
					mEdge[cur_edge++] = -1;
				}
				else { //wrap on T
					mEdge[cur_edge++] = s*2+1;
				}
				if (s > 0) {													//top left/bottom left neighbor face
					mEdge[cur_edge++] = (mNumS-1)*2*t+s*2-1;
				}
				else if (flat_face ||  volume->getProfile().isOpen() == TRUE) { //no neighbor
					mEdge[cur_edge++] = -1;
				}
				else {	//wrap on S
					mEdge[cur_edge++] = (mNumS-1)*2*t+(mNumS-2)*2+1;
				}
				
				if (t > 0) {													//bottom left/bottom right neighbor face
					mEdge[cur_edge++] = (mNumS-1)*2*(t-1)+s*2;
				}
				else if (mNumT <= 3 || volume->getPath().isOpen() == TRUE) { //no neighbor
					mEdge[cur_edge++] = -1;
				}
				else { //wrap on T
					mEdge[cur_edge++] = (mNumS-1)*2*(mNumT-2)+s*2;
				}
				if (s < mNumS-2) {												//bottom right/top right neighbor face
					mEdge[cur_edge++] = (mNumS-1)*2*t+(s+1)*2;
				}
				else if (flat_face || volume->getProfile().isOpen() == TRUE) { //no neighbor
					mEdge[cur_edge++] = -1;
				}
				else { //wrap on S
					mEdge[cur_edge++] = (mNumS-1)*2*t;
				}
				mEdge[cur_edge++] = (mNumS-1)*2*t+s*2;							//top right/bottom left neighbor face	
			}
		}
	}

	//clear normals
	for (U32 i = 0; i < mNumVertices; i++)
	{
		mNormals[i].clear();
	}

	//generate normals 
	for (U32 i = 0; i < mNumIndices/3; i++) //for each triangle
	{
		const U16* idx = &(mIndices[i*3]);
		

		LLVector4a* v[] = 
		{	pos+idx[0], pos+idx[1], pos+idx[2] };
		
		LLVector4a* n[] = 
		{	norm+idx[0], norm+idx[1], norm+idx[2] };
		
		//calculate triangle normal
		LLVector4a a, b, c;
		
		a.setSub(*v[0], *v[1]);
		b.setSub(*v[0], *v[2]);
		c.setCross3(a,b);

		n[0]->add(c);
		n[1]->add(c);
		n[2]->add(c);
		
		//even out quad contributions
		n[i%2+1]->add(c);
	}
	
	// adjust normals based on wrapping and stitching
	
	LLVector4a top;
	top.setSub(pos[0], pos[mNumS*(mNumT-2)]);
	BOOL s_bottom_converges = (top.dot3(top) < 0.000001f);

	top.setSub(pos[mNumS-1], pos[mNumS*(mNumT-2)+mNumS-1]);
	BOOL s_top_converges = (top.dot3(top) < 0.000001f);

	if (sculpt_stitching == LL_SCULPT_TYPE_NONE)  // logic for non-sculpt volumes
	{
		if (volume->getPath().isOpen() == FALSE)
		{ //wrap normals on T
			for (S32 i = 0; i < mNumS; i++)
			{
				LLVector4a n;
				n.setAdd(norm[i], norm[mNumS*(mNumT-1)+i]);
				norm[i] = n;
				norm[mNumS*(mNumT-1)+i] = n;
			}
		}

		if ((volume->getProfile().isOpen() == FALSE) && !(s_bottom_converges))
		{ //wrap normals on S
			for (S32 i = 0; i < mNumT; i++)
			{
				LLVector4a n;
				n.setAdd(norm[mNumS*i], norm[mNumS*i+mNumS-1]);
				norm[mNumS * i] = n;
				norm[mNumS * i+mNumS-1] = n;
			}
		}
	
		if (volume->getPathType() == LL_PCODE_PATH_CIRCLE &&
			((volume->getProfileType() & LL_PCODE_PROFILE_MASK) == LL_PCODE_PROFILE_CIRCLE_HALF))
		{
			if (s_bottom_converges)
			{ //all lower S have same normal
				for (S32 i = 0; i < mNumT; i++)
				{
					norm[mNumS*i].set(1,0,0);
				}
			}

			if (s_top_converges)
			{ //all upper S have same normal
				for (S32 i = 0; i < mNumT; i++)
				{
					norm[mNumS*i+mNumS-1].set(-1,0,0);
				}
			}
		}
	}
	else  // logic for sculpt volumes
	{
		BOOL average_poles = FALSE;
		BOOL wrap_s = FALSE;
		BOOL wrap_t = FALSE;

		if (sculpt_stitching == LL_SCULPT_TYPE_SPHERE)
			average_poles = TRUE;

		if ((sculpt_stitching == LL_SCULPT_TYPE_SPHERE) ||
			(sculpt_stitching == LL_SCULPT_TYPE_TORUS) ||
			(sculpt_stitching == LL_SCULPT_TYPE_CYLINDER))
			wrap_s = TRUE;

		if (sculpt_stitching == LL_SCULPT_TYPE_TORUS)
			wrap_t = TRUE;
			
		
		if (average_poles)
		{
			// average normals for north pole
		
			LLVector4a average;
			average.clear();

			for (S32 i = 0; i < mNumS; i++)
			{
				average.add(norm[i]);
			}

			// set average
			for (S32 i = 0; i < mNumS; i++)
			{
				norm[i] = average;
			}

			// average normals for south pole
		
			average.clear();

			for (S32 i = 0; i < mNumS; i++)
			{
				average.add(norm[i + mNumS * (mNumT - 1)]);
			}

			// set average
			for (S32 i = 0; i < mNumS; i++)
			{
				norm[i + mNumS * (mNumT - 1)] = average;
			}

		}

		
		if (wrap_s)
		{
			for (S32 i = 0; i < mNumT; i++)
			{
				LLVector4a n;
				n.setAdd(norm[mNumS*i], norm[mNumS*i+mNumS-1]);
				norm[mNumS * i] = n;
				norm[mNumS * i+mNumS-1] = n;
			}
		}

		if (wrap_t)
		{
			for (S32 i = 0; i < mNumS; i++)
			{
				LLVector4a n;
				n.setAdd(norm[i], norm[mNumS*(mNumT-1)+i]);
				norm[i] = n;
				norm[mNumS*(mNumT-1)+i] = n;
			}
		}

	}

	return TRUE;
}

// Finds binormal based on three vertices with texture coordinates.
// Fills in dummy values if the triangle has degenerate texture coordinates.
void calc_binormal_from_triangle(LLVector4a& binormal,

	const LLVector4a& pos0,
	const LLVector2& tex0,
	const LLVector4a& pos1,
	const LLVector2& tex1,
	const LLVector4a& pos2,
	const LLVector2& tex2)
{
	LLVector4a rx0( pos0[VX], tex0.mV[VX], tex0.mV[VY] );
	LLVector4a rx1( pos1[VX], tex1.mV[VX], tex1.mV[VY] );
	LLVector4a rx2( pos2[VX], tex2.mV[VX], tex2.mV[VY] );
	
	LLVector4a ry0( pos0[VY], tex0.mV[VX], tex0.mV[VY] );
	LLVector4a ry1( pos1[VY], tex1.mV[VX], tex1.mV[VY] );
	LLVector4a ry2( pos2[VY], tex2.mV[VX], tex2.mV[VY] );

	LLVector4a rz0( pos0[VZ], tex0.mV[VX], tex0.mV[VY] );
	LLVector4a rz1( pos1[VZ], tex1.mV[VX], tex1.mV[VY] );
	LLVector4a rz2( pos2[VZ], tex2.mV[VX], tex2.mV[VY] );
	
	LLVector4a lhs, rhs;

	LLVector4a r0; 
	lhs.setSub(rx0, rx1); rhs.setSub(rx0, rx2);
	r0.setCross3(lhs, rhs);
		
	LLVector4a r1;
	lhs.setSub(ry0, ry1); rhs.setSub(ry0, ry2);
	r1.setCross3(lhs, rhs);

	LLVector4a r2;
	lhs.setSub(rz0, rz1); rhs.setSub(rz0, rz2);
	r2.setCross3(lhs, rhs);

	if( r0[VX] && r1[VX] && r2[VX] )
	{
		binormal.set(
				-r0[VZ] / r0[VX],
				-r1[VZ] / r1[VX],
				-r2[VZ] / r2[VX]);
		// binormal.normVec();
	}
	else
	{
		binormal.set( 0, 1 , 0 );
	}
}