/** * @file llvector4a.inl * @brief LLVector4a inline function implementations * * $LicenseInfo:firstyear=2010&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ //////////////////////////////////// // LOAD/STORE //////////////////////////////////// // Load from 16-byte aligned src array (preferred method of loading) inline void LLVector4a::load4a(const F32* src) { mQ = _mm_load_ps(src); } // Load from unaligned src array (NB: Significantly slower than load4a) inline void LLVector4a::loadua(const F32* src) { mQ = _mm_loadu_ps(src); } // Load only three floats beginning at address 'src'. Slowest method. inline void LLVector4a::load3(const F32* src) { // mQ = { 0.f, src[2], src[1], src[0] } = { W, Z, Y, X } // NB: This differs from the convention of { Z, Y, X, W } mQ = _mm_set_ps(0.f, src[2], src[1], src[0]); } // Store to a 16-byte aligned memory address inline void LLVector4a::store4a(F32* dst) const { _mm_store_ps(dst, mQ); } //////////////////////////////////// // BASIC GET/SET //////////////////////////////////// // Return a "this" as an F32 pointer. Do not use unless you have a very good reason. (Not sure? Ask Falcon) F32* LLVector4a::getF32ptr() { return (F32*) &mQ; } // Return a "this" as a const F32 pointer. Do not use unless you have a very good reason. (Not sure? Ask Falcon) const F32* const LLVector4a::getF32ptr() const { return (const F32* const) &mQ; } // Read-only access a single float in this vector. Do not use in proximity to any function call that manipulates // the data at the whole vector level or you will incur a substantial penalty. Consider using the splat functions instead inline F32 LLVector4a::operator[](const S32 idx) const { return ((F32*)&mQ)[idx]; } // Prefer this method for read-only access to a single element. Prefer the templated version if the elem is known at compile time. inline LLSimdScalar LLVector4a::getScalarAt(const S32 idx) const { // Return appropriate LLQuad. It will be cast to LLSimdScalar automatically (should be effectively a nop) switch (idx) { case 0: return mQ; case 1: return _mm_shuffle_ps(mQ, mQ, _MM_SHUFFLE(1, 1, 1, 1)); case 2: return _mm_shuffle_ps(mQ, mQ, _MM_SHUFFLE(2, 2, 2, 2)); case 3: default: return _mm_shuffle_ps(mQ, mQ, _MM_SHUFFLE(3, 3, 3, 3)); } } // Prefer this method for read-only access to a single element. Prefer the templated version if the elem is known at compile time. template <int N> LL_FORCE_INLINE LLSimdScalar LLVector4a::getScalarAt() const { return _mm_shuffle_ps(mQ, mQ, _MM_SHUFFLE(N, N, N, N)); } template<> LL_FORCE_INLINE LLSimdScalar LLVector4a::getScalarAt<0>() const { return mQ; } // Set to an x, y, z and optional w provided inline void LLVector4a::set(F32 x, F32 y, F32 z, F32 w) { mQ = _mm_set_ps(w, z, y, x); } // Set to all zeros inline void LLVector4a::clear() { mQ = LLVector4a::getZero().mQ; } inline void LLVector4a::splat(const F32 x) { mQ = _mm_set1_ps(x); } inline void LLVector4a::splat(const LLSimdScalar& x) { mQ = _mm_shuffle_ps( x.getQuad(), x.getQuad(), _MM_SHUFFLE(0,0,0,0) ); } // Set all 4 elements to element N of src, with N known at compile time template <int N> void LLVector4a::splat(const LLVector4a& src) { mQ = _mm_shuffle_ps(src.mQ, src.mQ, _MM_SHUFFLE(N, N, N, N) ); } // Set all 4 elements to element i of v, with i NOT known at compile time inline void LLVector4a::splat(const LLVector4a& v, U32 i) { switch (i) { case 0: mQ = _mm_shuffle_ps(v.mQ, v.mQ, _MM_SHUFFLE(0, 0, 0, 0)); break; case 1: mQ = _mm_shuffle_ps(v.mQ, v.mQ, _MM_SHUFFLE(1, 1, 1, 1)); break; case 2: mQ = _mm_shuffle_ps(v.mQ, v.mQ, _MM_SHUFFLE(2, 2, 2, 2)); break; case 3: mQ = _mm_shuffle_ps(v.mQ, v.mQ, _MM_SHUFFLE(3, 3, 3, 3)); break; } } // Select bits from sourceIfTrue and sourceIfFalse according to bits in mask inline void LLVector4a::setSelectWithMask( const LLVector4Logical& mask, const LLVector4a& sourceIfTrue, const LLVector4a& sourceIfFalse ) { // ((( sourceIfTrue ^ sourceIfFalse ) & mask) ^ sourceIfFalse ) // E.g., sourceIfFalse = 1010b, sourceIfTrue = 0101b, mask = 1100b // (sourceIfTrue ^ sourceIfFalse) = 1111b --> & mask = 1100b --> ^ sourceIfFalse = 0110b, // as expected (01 from sourceIfTrue, 10 from sourceIfFalse) // Courtesy of Mark++, http://markplusplus.wordpress.com/2007/03/14/fast-sse-select-operation/ mQ = _mm_xor_ps( sourceIfFalse, _mm_and_ps( mask, _mm_xor_ps( sourceIfTrue, sourceIfFalse ) ) ); } //////////////////////////////////// // ALGEBRAIC //////////////////////////////////// // Set this to the element-wise (a + b) inline void LLVector4a::setAdd(const LLVector4a& a, const LLVector4a& b) { mQ = _mm_add_ps(a.mQ, b.mQ); } // Set this to element-wise (a - b) inline void LLVector4a::setSub(const LLVector4a& a, const LLVector4a& b) { mQ = _mm_sub_ps(a.mQ, b.mQ); } // Set this to element-wise multiply (a * b) inline void LLVector4a::setMul(const LLVector4a& a, const LLVector4a& b) { mQ = _mm_mul_ps(a.mQ, b.mQ); } // Set this to element-wise quotient (a / b) inline void LLVector4a::setDiv(const LLVector4a& a, const LLVector4a& b) { mQ = _mm_div_ps( a.mQ, b.mQ ); } // Set this to the element-wise absolute value of src inline void LLVector4a::setAbs(const LLVector4a& src) { static const LL_ALIGN_16(U32 F_ABS_MASK_4A[4]) = { 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF, 0x7FFFFFFF }; mQ = _mm_and_ps(src.mQ, *reinterpret_cast<const LLQuad*>(F_ABS_MASK_4A)); } // Add to each component in this vector the corresponding component in rhs inline void LLVector4a::add(const LLVector4a& rhs) { mQ = _mm_add_ps(mQ, rhs.mQ); } // Subtract from each component in this vector the corresponding component in rhs inline void LLVector4a::sub(const LLVector4a& rhs) { mQ = _mm_sub_ps(mQ, rhs.mQ); } // Multiply each component in this vector by the corresponding component in rhs inline void LLVector4a::mul(const LLVector4a& rhs) { mQ = _mm_mul_ps(mQ, rhs.mQ); } // Divide each component in this vector by the corresponding component in rhs inline void LLVector4a::div(const LLVector4a& rhs) { // TODO: Check accuracy, maybe add divFast mQ = _mm_div_ps(mQ, rhs.mQ); } // Multiply this vector by x in a scalar fashion inline void LLVector4a::mul(const F32 x) { LLVector4a t; t.splat(x); mQ = _mm_mul_ps(mQ, t.mQ); } // Set this to (a x b) (geometric cross-product) inline void LLVector4a::setCross3(const LLVector4a& a, const LLVector4a& b) { // Vectors are stored in memory in w, z, y, x order from high to low // Set vector1 = { a[W], a[X], a[Z], a[Y] } const LLQuad vector1 = _mm_shuffle_ps( a.mQ, a.mQ, _MM_SHUFFLE( 3, 0, 2, 1 )); // Set vector2 = { b[W], b[Y], b[X], b[Z] } const LLQuad vector2 = _mm_shuffle_ps( b.mQ, b.mQ, _MM_SHUFFLE( 3, 1, 0, 2 )); // mQ = { a[W]*b[W], a[X]*b[Y], a[Z]*b[X], a[Y]*b[Z] } mQ = _mm_mul_ps( vector1, vector2 ); // vector3 = { a[W], a[Y], a[X], a[Z] } const LLQuad vector3 = _mm_shuffle_ps( a.mQ, a.mQ, _MM_SHUFFLE( 3, 1, 0, 2 )); // vector4 = { b[W], b[X], b[Z], b[Y] } const LLQuad vector4 = _mm_shuffle_ps( b.mQ, b.mQ, _MM_SHUFFLE( 3, 0, 2, 1 )); // mQ = { 0, a[X]*b[Y] - a[Y]*b[X], a[Z]*b[X] - a[X]*b[Z], a[Y]*b[Z] - a[Z]*b[Y] } mQ = _mm_sub_ps( mQ, _mm_mul_ps( vector3, vector4 )); } /* This function works, but may be slightly slower than the one below on older machines inline void LLVector4a::setAllDot3(const LLVector4a& a, const LLVector4a& b) { // ab = { a[W]*b[W], a[Z]*b[Z], a[Y]*b[Y], a[X]*b[X] } const LLQuad ab = _mm_mul_ps( a.mQ, b.mQ ); // yzxw = { a[W]*b[W], a[Z]*b[Z], a[X]*b[X], a[Y]*b[Y] } const LLQuad wzxy = _mm_shuffle_ps( ab, ab, _MM_SHUFFLE(3, 2, 0, 1 )); // xPlusY = { 2*a[W]*b[W], 2 * a[Z] * b[Z], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] } const LLQuad xPlusY = _mm_add_ps(ab, wzxy); // xPlusYSplat = { a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] } const LLQuad xPlusYSplat = _mm_movelh_ps(xPlusY, xPlusY); // zSplat = { a[Z]*b[Z], a[Z]*b[Z], a[Z]*b[Z], a[Z]*b[Z] } const LLQuad zSplat = _mm_shuffle_ps( ab, ab, _MM_SHUFFLE( 2, 2, 2, 2 )); // mQ = { a[Z] * b[Z] + a[Y] * b[Y] + a[X] * b[X], same, same, same } mQ = _mm_add_ps(zSplat, xPlusYSplat); }*/ // Set all elements to the dot product of the x, y, and z elements in a and b inline void LLVector4a::setAllDot3(const LLVector4a& a, const LLVector4a& b) { // ab = { a[W]*b[W], a[Z]*b[Z], a[Y]*b[Y], a[X]*b[X] } const LLQuad ab = _mm_mul_ps( a.mQ, b.mQ ); // yzxw = { a[W]*b[W], a[Z]*b[Z], a[X]*b[X], a[Y]*b[Y] } const __m128i wzxy = _mm_shuffle_epi32(_mm_castps_si128(ab), _MM_SHUFFLE(3, 2, 0, 1 )); // xPlusY = { 2*a[W]*b[W], 2 * a[Z] * b[Z], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] } const LLQuad xPlusY = _mm_add_ps(ab, _mm_castsi128_ps(wzxy)); // xPlusYSplat = { a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] } const LLQuad xPlusYSplat = _mm_movelh_ps(xPlusY, xPlusY); // zSplat = { a[Z]*b[Z], a[Z]*b[Z], a[Z]*b[Z], a[Z]*b[Z] } const __m128i zSplat = _mm_shuffle_epi32(_mm_castps_si128(ab), _MM_SHUFFLE( 2, 2, 2, 2 )); // mQ = { a[Z] * b[Z] + a[Y] * b[Y] + a[X] * b[X], same, same, same } mQ = _mm_add_ps(_mm_castsi128_ps(zSplat), xPlusYSplat); } // Set all elements to the dot product of the x, y, z, and w elements in a and b inline void LLVector4a::setAllDot4(const LLVector4a& a, const LLVector4a& b) { // ab = { a[W]*b[W], a[Z]*b[Z], a[Y]*b[Y], a[X]*b[X] } const LLQuad ab = _mm_mul_ps( a.mQ, b.mQ ); // yzxw = { a[W]*b[W], a[Z]*b[Z], a[X]*b[X], a[Y]*b[Y] } const __m128i zwxy = _mm_shuffle_epi32(_mm_castps_si128(ab), _MM_SHUFFLE(2, 3, 0, 1 )); // zPlusWandXplusY = { a[W]*b[W] + a[Z]*b[Z], a[Z] * b[Z] + a[W]*b[W], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] } const LLQuad zPlusWandXplusY = _mm_add_ps(ab, _mm_castsi128_ps(zwxy)); // xPlusYSplat = { a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y], a[Y]*b[Y] + a[X] * b[X], a[X] * b[X] + a[Y] * b[Y] } const LLQuad xPlusYSplat = _mm_movelh_ps(zPlusWandXplusY, zPlusWandXplusY); const LLQuad zPlusWSplat = _mm_movehl_ps(zPlusWandXplusY, zPlusWandXplusY); // mQ = { a[W]*b[W] + a[Z] * b[Z] + a[Y] * b[Y] + a[X] * b[X], same, same, same } mQ = _mm_add_ps(xPlusYSplat, zPlusWSplat); } // Return the 3D dot product of this vector and b inline LLSimdScalar LLVector4a::dot3(const LLVector4a& b) const { const LLQuad ab = _mm_mul_ps( mQ, b.mQ ); const LLQuad splatY = _mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128(ab), _MM_SHUFFLE(1, 1, 1, 1) ) ); const LLQuad splatZ = _mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128(ab), _MM_SHUFFLE(2, 2, 2, 2) ) ); const LLQuad xPlusY = _mm_add_ps( ab, splatY ); return _mm_add_ps( xPlusY, splatZ ); } // Return the 4D dot product of this vector and b inline LLSimdScalar LLVector4a::dot4(const LLVector4a& b) const { // ab = { w, z, y, x } const LLQuad ab = _mm_mul_ps( mQ, b.mQ ); // upperProdsInLowerElems = { y, x, y, x } const LLQuad upperProdsInLowerElems = _mm_movehl_ps( ab, ab ); // sumOfPairs = { w+y, z+x, 2y, 2x } const LLQuad sumOfPairs = _mm_add_ps( upperProdsInLowerElems, ab ); // shuffled = { z+x, z+x, z+x, z+x } const LLQuad shuffled = _mm_castsi128_ps( _mm_shuffle_epi32( _mm_castps_si128( sumOfPairs ), _MM_SHUFFLE(1, 1, 1, 1) ) ); return _mm_add_ss( sumOfPairs, shuffled ); } // Normalize this vector with respect to the x, y, and z components only. Accurate to 22 bites of precision. W component is destroyed // Note that this does not consider zero length vectors! inline void LLVector4a::normalize3() { // lenSqrd = a dot a LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this ); // rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 } const LLQuad rsqrt = _mm_rsqrt_ps(lenSqrd.mQ); static const LLQuad half = { 0.5f, 0.5f, 0.5f, 0.5f }; static const LLQuad three = {3.f, 3.f, 3.f, 3.f }; // Now we do one round of Newton-Raphson approximation to get full accuracy // According to the Newton-Raphson method, given a first 'w' for the root of f(x) = 1/x^2 - a (i.e., x = 1/sqrt(a)) // the next better approximation w[i+1] = w - f(w)/f'(w) = w - (1/w^2 - a)/(-2*w^(-3)) // w[i+1] = w + 0.5 * (1/w^2 - a) * w^3 = w + 0.5 * (w - a*w^3) = 1.5 * w - 0.5 * a * w^3 // = 0.5 * w * (3 - a*w^2) // Our first approx is w = rsqrt. We need out = a * w[i+1] (this is the input vector 'a', not the 'a' from the above formula // which is actually lenSqrd). So out = a * [0.5*rsqrt * (3 - lenSqrd*rsqrt*rsqrt)] const LLQuad AtimesRsqrt = _mm_mul_ps( lenSqrd.mQ, rsqrt ); const LLQuad AtimesRsqrtTimesRsqrt = _mm_mul_ps( AtimesRsqrt, rsqrt ); const LLQuad threeMinusAtimesRsqrtTimesRsqrt = _mm_sub_ps(three, AtimesRsqrtTimesRsqrt ); const LLQuad nrApprox = _mm_mul_ps(half, _mm_mul_ps(rsqrt, threeMinusAtimesRsqrtTimesRsqrt)); mQ = _mm_mul_ps( mQ, nrApprox ); } // Normalize this vector with respect to all components. Accurate to 22 bites of precision. // Note that this does not consider zero length vectors! inline void LLVector4a::normalize4() { // lenSqrd = a dot a LLVector4a lenSqrd; lenSqrd.setAllDot4( *this, *this ); // rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 } const LLQuad rsqrt = _mm_rsqrt_ps(lenSqrd.mQ); static const LLQuad half = { 0.5f, 0.5f, 0.5f, 0.5f }; static const LLQuad three = {3.f, 3.f, 3.f, 3.f }; // Now we do one round of Newton-Raphson approximation to get full accuracy // According to the Newton-Raphson method, given a first 'w' for the root of f(x) = 1/x^2 - a (i.e., x = 1/sqrt(a)) // the next better approximation w[i+1] = w - f(w)/f'(w) = w - (1/w^2 - a)/(-2*w^(-3)) // w[i+1] = w + 0.5 * (1/w^2 - a) * w^3 = w + 0.5 * (w - a*w^3) = 1.5 * w - 0.5 * a * w^3 // = 0.5 * w * (3 - a*w^2) // Our first approx is w = rsqrt. We need out = a * w[i+1] (this is the input vector 'a', not the 'a' from the above formula // which is actually lenSqrd). So out = a * [0.5*rsqrt * (3 - lenSqrd*rsqrt*rsqrt)] const LLQuad AtimesRsqrt = _mm_mul_ps( lenSqrd.mQ, rsqrt ); const LLQuad AtimesRsqrtTimesRsqrt = _mm_mul_ps( AtimesRsqrt, rsqrt ); const LLQuad threeMinusAtimesRsqrtTimesRsqrt = _mm_sub_ps(three, AtimesRsqrtTimesRsqrt ); const LLQuad nrApprox = _mm_mul_ps(half, _mm_mul_ps(rsqrt, threeMinusAtimesRsqrtTimesRsqrt)); mQ = _mm_mul_ps( mQ, nrApprox ); } // Normalize this vector with respect to the x, y, and z components only. Accurate to 22 bites of precision. W component is destroyed // Note that this does not consider zero length vectors! inline LLSimdScalar LLVector4a::normalize3withLength() { // lenSqrd = a dot a LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this ); // rsqrt = approximate reciprocal square (i.e., { ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2, ~1/len(a)^2 } const LLQuad rsqrt = _mm_rsqrt_ps(lenSqrd.mQ); static const LLQuad half = { 0.5f, 0.5f, 0.5f, 0.5f }; static const LLQuad three = {3.f, 3.f, 3.f, 3.f }; // Now we do one round of Newton-Raphson approximation to get full accuracy // According to the Newton-Raphson method, given a first 'w' for the root of f(x) = 1/x^2 - a (i.e., x = 1/sqrt(a)) // the next better approximation w[i+1] = w - f(w)/f'(w) = w - (1/w^2 - a)/(-2*w^(-3)) // w[i+1] = w + 0.5 * (1/w^2 - a) * w^3 = w + 0.5 * (w - a*w^3) = 1.5 * w - 0.5 * a * w^3 // = 0.5 * w * (3 - a*w^2) // Our first approx is w = rsqrt. We need out = a * w[i+1] (this is the input vector 'a', not the 'a' from the above formula // which is actually lenSqrd). So out = a * [0.5*rsqrt * (3 - lenSqrd*rsqrt*rsqrt)] const LLQuad AtimesRsqrt = _mm_mul_ps( lenSqrd.mQ, rsqrt ); const LLQuad AtimesRsqrtTimesRsqrt = _mm_mul_ps( AtimesRsqrt, rsqrt ); const LLQuad threeMinusAtimesRsqrtTimesRsqrt = _mm_sub_ps(three, AtimesRsqrtTimesRsqrt ); const LLQuad nrApprox = _mm_mul_ps(half, _mm_mul_ps(rsqrt, threeMinusAtimesRsqrtTimesRsqrt)); mQ = _mm_mul_ps( mQ, nrApprox ); return _mm_sqrt_ss(lenSqrd); } // Normalize this vector with respect to the x, y, and z components only. Accurate only to 10-12 bits of precision. W component is destroyed // Note that this does not consider zero length vectors! inline void LLVector4a::normalize3fast() { LLVector4a lenSqrd; lenSqrd.setAllDot3( *this, *this ); const LLQuad approxRsqrt = _mm_rsqrt_ps(lenSqrd.mQ); mQ = _mm_mul_ps( mQ, approxRsqrt ); } // Return true if this vector is normalized with respect to x,y,z up to tolerance inline LLBool32 LLVector4a::isNormalized3( F32 tolerance ) const { static LL_ALIGN_16(const U32 ones[4]) = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 }; LLSimdScalar tol = _mm_load_ss( &tolerance ); tol = _mm_mul_ss( tol, tol ); LLVector4a lenSquared; lenSquared.setAllDot3( *this, *this ); lenSquared.sub( *reinterpret_cast<const LLVector4a*>(ones) ); lenSquared.setAbs(lenSquared); return _mm_comile_ss( lenSquared, tol ); } // Return true if this vector is normalized with respect to all components up to tolerance inline LLBool32 LLVector4a::isNormalized4( F32 tolerance ) const { static LL_ALIGN_16(const U32 ones[4]) = { 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000 }; LLSimdScalar tol = _mm_load_ss( &tolerance ); tol = _mm_mul_ss( tol, tol ); LLVector4a lenSquared; lenSquared.setAllDot4( *this, *this ); lenSquared.sub( *reinterpret_cast<const LLVector4a*>(ones) ); lenSquared.setAbs(lenSquared); return _mm_comile_ss( lenSquared, tol ); } // Set all elements to the length of vector 'v' inline void LLVector4a::setAllLength3( const LLVector4a& v ) { LLVector4a lenSqrd; lenSqrd.setAllDot3(v, v); mQ = _mm_sqrt_ps(lenSqrd.mQ); } // Get this vector's length inline LLSimdScalar LLVector4a::getLength3() const { return _mm_sqrt_ss( dot3( (const LLVector4a)mQ ) ); } // Set the components of this vector to the minimum of the corresponding components of lhs and rhs inline void LLVector4a::setMin(const LLVector4a& lhs, const LLVector4a& rhs) { mQ = _mm_min_ps(lhs.mQ, rhs.mQ); } // Set the components of this vector to the maximum of the corresponding components of lhs and rhs inline void LLVector4a::setMax(const LLVector4a& lhs, const LLVector4a& rhs) { mQ = _mm_max_ps(lhs.mQ, rhs.mQ); } // Set this to (c * lhs) + rhs * ( 1 - c) inline void LLVector4a::setLerp(const LLVector4a& lhs, const LLVector4a& rhs, F32 c) { LLVector4a a = lhs; a.mul(c); LLVector4a b = rhs; b.mul(1.f-c); setAdd(a, b); } inline LLBool32 LLVector4a::isFinite3() const { static LL_ALIGN_16(const U32 nanOrInfMask[4]) = { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 }; ll_assert_aligned(nanOrInfMask,16); const __m128i nanOrInfMaskV = *reinterpret_cast<const __m128i*> (nanOrInfMask); const __m128i maskResult = _mm_and_si128( _mm_castps_si128(mQ), nanOrInfMaskV ); const LLVector4Logical equalityCheck = _mm_castsi128_ps(_mm_cmpeq_epi32( maskResult, nanOrInfMaskV )); return !equalityCheck.areAnySet( LLVector4Logical::MASK_XYZ ); } inline LLBool32 LLVector4a::isFinite4() const { static LL_ALIGN_16(const U32 nanOrInfMask[4]) = { 0x7f800000, 0x7f800000, 0x7f800000, 0x7f800000 }; const __m128i nanOrInfMaskV = *reinterpret_cast<const __m128i*> (nanOrInfMask); const __m128i maskResult = _mm_and_si128( _mm_castps_si128(mQ), nanOrInfMaskV ); const LLVector4Logical equalityCheck = _mm_castsi128_ps(_mm_cmpeq_epi32( maskResult, nanOrInfMaskV )); return !equalityCheck.areAnySet( LLVector4Logical::MASK_XYZW ); } inline void LLVector4a::setRotatedInv( const LLRotation& rot, const LLVector4a& vec ) { LLRotation inv; inv.setTranspose( rot ); setRotated( inv, vec ); } inline void LLVector4a::setRotatedInv( const LLQuaternion2& quat, const LLVector4a& vec ) { LLQuaternion2 invRot; invRot.setConjugate( quat ); setRotated(invRot, vec); } inline void LLVector4a::clamp( const LLVector4a& low, const LLVector4a& high ) { const LLVector4Logical highMask = greaterThan( high ); const LLVector4Logical lowMask = lessThan( low ); setSelectWithMask( highMask, high, *this ); setSelectWithMask( lowMask, low, *this ); } //////////////////////////////////// // LOGICAL //////////////////////////////////// // The functions in this section will compare the elements in this vector // to those in rhs and return an LLVector4Logical with all bits set in elements // where the comparison was true and all bits unset in elements where the comparison // was false. See llvector4logica.h //////////////////////////////////// // WARNING: Other than equals3 and equals4, these functions do NOT account // for floating point tolerance. You should include the appropriate tolerance // in the inputs. //////////////////////////////////// inline LLVector4Logical LLVector4a::greaterThan(const LLVector4a& rhs) const { return _mm_cmpgt_ps(mQ, rhs.mQ); } inline LLVector4Logical LLVector4a::lessThan(const LLVector4a& rhs) const { return _mm_cmplt_ps(mQ, rhs.mQ); } inline LLVector4Logical LLVector4a::greaterEqual(const LLVector4a& rhs) const { return _mm_cmpge_ps(mQ, rhs.mQ); } inline LLVector4Logical LLVector4a::lessEqual(const LLVector4a& rhs) const { return _mm_cmple_ps(mQ, rhs.mQ); } inline LLVector4Logical LLVector4a::equal(const LLVector4a& rhs) const { return _mm_cmpeq_ps(mQ, rhs.mQ); } // Returns true if this and rhs are componentwise equal up to the specified absolute tolerance inline bool LLVector4a::equals4(const LLVector4a& rhs, F32 tolerance ) const { LLVector4a diff; diff.setSub( *this, rhs ); diff.setAbs( diff ); const LLQuad tol = _mm_set1_ps( tolerance ); const LLQuad cmp = _mm_cmplt_ps( diff, tol ); return (_mm_movemask_ps( cmp ) & LLVector4Logical::MASK_XYZW) == LLVector4Logical::MASK_XYZW; } inline bool LLVector4a::equals3(const LLVector4a& rhs, F32 tolerance ) const { LLVector4a diff; diff.setSub( *this, rhs ); diff.setAbs( diff ); const LLQuad tol = _mm_set1_ps( tolerance ); const LLQuad t = _mm_cmplt_ps( diff, tol ); return (_mm_movemask_ps( t ) & LLVector4Logical::MASK_XYZ) == LLVector4Logical::MASK_XYZ; } //////////////////////////////////// // OPERATORS //////////////////////////////////// // Do NOT add aditional operators without consulting someone with SSE experience inline const LLVector4a& LLVector4a::operator= ( const LLVector4a& rhs ) { mQ = rhs.mQ; return *this; } inline const LLVector4a& LLVector4a::operator= ( const LLQuad& rhs ) { mQ = rhs; return *this; } inline LLVector4a::operator LLQuad() const { return mQ; }