/** * @file llsphere.cpp * @author Andrew Meadows * @brief Simple line class that can compute nearest approach between two lines * * Copyright (c) 2006-$CurrentYear$, Linden Research, Inc. * $License$ */ #include "linden_common.h" #include "llsphere.h" LLSphere::LLSphere() : mCenter(0.f, 0.f, 0.f), mRadius(0.f) { } LLSphere::LLSphere( const LLVector3& center, F32 radius) { set(center, radius); } void LLSphere::set( const LLVector3& center, F32 radius ) { mCenter = center; setRadius(radius); } void LLSphere::setCenter( const LLVector3& center) { mCenter = center; } void LLSphere::setRadius( F32 radius) { if (radius < 0.f) { radius = -radius; } mRadius = radius; } const LLVector3& LLSphere::getCenter() const { return mCenter; } F32 LLSphere::getRadius() const { return mRadius; } // returns 'TRUE' if this sphere completely contains other_sphere BOOL LLSphere::contains(const LLSphere& other_sphere) const { F32 separation = (mCenter - other_sphere.mCenter).length(); return (mRadius >= separation + other_sphere.mRadius) ? TRUE : FALSE; } // returns 'TRUE' if this sphere completely contains other_sphere BOOL LLSphere::overlaps(const LLSphere& other_sphere) const { F32 separation = (mCenter - other_sphere.mCenter).length(); return (separation <= mRadius + other_sphere.mRadius) ? TRUE : FALSE; } // returns overlap // negative overlap is closest approach F32 LLSphere::getOverlap(const LLSphere& other_sphere) const { // separation is distance from other_sphere's edge and this center return (mCenter - other_sphere.mCenter).length() - mRadius - other_sphere.mRadius; } bool LLSphere::operator==(const LLSphere& rhs) const { // TODO? -- use approximate equality for centers? return (mRadius == rhs.mRadius && mCenter == rhs.mCenter); } std::ostream& operator<<( std::ostream& output_stream, const LLSphere& sphere) { output_stream << "{center=" << sphere.mCenter << "," << "radius=" << sphere.mRadius << "}"; return output_stream; } // static // removes any spheres that are contained in others void LLSphere::collapse(std::vector& sphere_list) { std::vector::iterator first_itr = sphere_list.begin(); while (first_itr != sphere_list.end()) { bool delete_from_front = false; std::vector::iterator second_itr = first_itr; ++second_itr; while (second_itr != sphere_list.end()) { if (second_itr->contains(*first_itr)) { delete_from_front = true; break; } else if (first_itr->contains(*second_itr)) { sphere_list.erase(second_itr++); } else { ++second_itr; } } if (delete_from_front) { sphere_list.erase(first_itr++); } else { ++first_itr; } } } // static // returns the bounding sphere that contains both spheres LLSphere LLSphere::getBoundingSphere(const LLSphere& first_sphere, const LLSphere& second_sphere) { LLVector3 direction = second_sphere.mCenter - first_sphere.mCenter; // HACK -- it is possible to get enough floating point error in the // other getBoundingSphere() method that we have to add some slop // at the end. Unfortunately, this breaks the link-order invarience // for the linkability tests... unless we also apply the same slop // here. F32 half_milimeter = 0.0005f; F32 distance = direction.length(); if (0.f == distance) { direction.setVec(1.f, 0.f, 0.f); } else { direction.normVec(); } // the 'edge' is measured from the first_sphere's center F32 max_edge = 0.f; F32 min_edge = 0.f; max_edge = llmax(max_edge + first_sphere.getRadius(), max_edge + distance + second_sphere.getRadius() + half_milimeter); min_edge = llmin(min_edge - first_sphere.getRadius(), min_edge + distance - second_sphere.getRadius() - half_milimeter); F32 radius = 0.5f * (max_edge - min_edge); LLVector3 center = first_sphere.mCenter + (0.5f * (max_edge + min_edge)) * direction; return LLSphere(center, radius); } // static // returns the bounding sphere that contains an arbitrary set of spheres LLSphere LLSphere::getBoundingSphere(const std::vector& sphere_list) { // this algorithm can get relatively inaccurate when the sphere // collection is 'small' (contained within a bounding sphere of about // 2 meters or less) // TODO -- improve the accuracy for small collections of spheres LLSphere bounding_sphere( LLVector3(0.f, 0.f, 0.f), 0.f ); S32 sphere_count = sphere_list.size(); if (1 == sphere_count) { // trivial case -- single sphere std::vector::const_iterator sphere_itr = sphere_list.begin(); bounding_sphere = *sphere_itr; } else if (2 == sphere_count) { // trivial case -- two spheres std::vector::const_iterator first_sphere = sphere_list.begin(); std::vector::const_iterator second_sphere = first_sphere; ++second_sphere; bounding_sphere = LLSphere::getBoundingSphere(*first_sphere, *second_sphere); } else if (sphere_count > 0) { // non-trivial case -- we will approximate the solution // // NOTE -- there is a fancy/fast way to do this for large // numbers of arbirary N-dimensional spheres -- you can look it // up on the net. We're dealing with 3D spheres at collection // sizes of 256 spheres or smaller, so we just use this // brute force method. // TODO -- perhaps would be worthwile to test for the solution where // the largest spanning radius just happens to work. That is, where // there are really two spheres that determine the bounding sphere, // and all others are contained therein. // compute the AABB std::vector::const_iterator first_itr = sphere_list.begin(); LLVector3 max_corner = first_itr->getCenter() + first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f); LLVector3 min_corner = first_itr->getCenter() - first_itr->getRadius() * LLVector3(1.f, 1.f, 1.f); { std::vector::const_iterator sphere_itr = sphere_list.begin(); for (++sphere_itr; sphere_itr != sphere_list.end(); ++sphere_itr) { LLVector3 center = sphere_itr->getCenter(); F32 radius = sphere_itr->getRadius(); for (S32 i=0; i<3; ++i) { if (center.mV[i] + radius > max_corner.mV[i]) { max_corner.mV[i] = center.mV[i] + radius; } if (center.mV[i] - radius < min_corner.mV[i]) { min_corner.mV[i] = center.mV[i] - radius; } } } } // get the starting center and radius from the AABB LLVector3 diagonal = max_corner - min_corner; F32 bounding_radius = 0.5f * diagonal.length(); LLVector3 bounding_center = 0.5f * (max_corner + min_corner); // compute the starting step-size F32 minimum_radius = 0.5f * llmin(diagonal.mV[VX], llmin(diagonal.mV[VY], diagonal.mV[VZ])); F32 step_length = bounding_radius - minimum_radius; S32 step_count = 0; S32 max_step_count = 12; F32 half_milimeter = 0.0005f; // wander the center around in search of tighter solutions S32 last_dx = 2; // 2 is out of bounds --> no match S32 last_dy = 2; S32 last_dz = 2; while (step_length > half_milimeter && step_count < max_step_count) { // the algorithm for testing the maximum radius could be expensive enough // that it makes sense to NOT duplicate testing when possible, so we keep // track of where we last tested, and only test the new points S32 best_dx = 0; S32 best_dy = 0; S32 best_dz = 0; // sample near the center of the box bool found_better_center = false; for (S32 dx = -1; dx < 2; ++dx) { for (S32 dy = -1; dy < 2; ++dy) { for (S32 dz = -1; dz < 2; ++dz) { if (dx == 0 && dy == 0 && dz == 0) { continue; } // count the number of indecies that match the last_*'s S32 match_count = 0; if (last_dx == dx) ++match_count; if (last_dy == dy) ++match_count; if (last_dz == dz) ++match_count; if (match_count == 2) { // we've already tested this point continue; } LLVector3 center = bounding_center; center.mV[VX] += (F32) dx * step_length; center.mV[VY] += (F32) dy * step_length; center.mV[VZ] += (F32) dz * step_length; // compute the radius of the bounding sphere F32 max_radius = 0.f; std::vector::const_iterator sphere_itr; for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr) { F32 radius = (sphere_itr->getCenter() - center).length() + sphere_itr->getRadius(); if (radius > max_radius) { max_radius = radius; } } if (max_radius < bounding_radius) { best_dx = dx; best_dy = dy; best_dz = dz; bounding_center = center; bounding_radius = max_radius; found_better_center = true; } } } } if (found_better_center) { // remember where we came from so we can avoid retesting last_dx = -best_dx; last_dy = -best_dy; last_dz = -best_dz; } else { // reduce the step size step_length *= 0.5f; //++step_count; // reset the last_*'s last_dx = 2; // 2 is out of bounds --> no match last_dy = 2; last_dz = 2; } } // HACK -- it is possible to get enough floating point error for the // bounding sphere to too small on the order of 10e-6, but we only need // it to be accurate to within about half a millimeter bounding_radius += half_milimeter; // this algorithm can get relatively inaccurate when the sphere // collection is 'small' (contained within a bounding sphere of about // 2 meters or less) // TODO -- fix this /* debug code { std::vector::const_iterator sphere_itr; for (sphere_itr = sphere_list.begin(); sphere_itr != sphere_list.end(); ++sphere_itr) { F32 radius = (sphere_itr->getCenter() - bounding_center).length() + sphere_itr->getRadius(); if (radius + 0.1f > bounding_radius) { std::cout << " rad = " << radius << " bounding - rad = " << (bounding_radius - radius) << std::endl; } } std::cout << "\n" << std::endl; } */ bounding_sphere.set(bounding_center, bounding_radius); } return bounding_sphere; }