/** * @file llquaternion.h * @brief LLQuaternion class header file. * * $LicenseInfo:firstyear=2000&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LLQUATERNION_H #define LLQUATERNION_H #include #include "llsd.h" #ifndef LLMATH_H //enforce specific include order to avoid tangling inline dependencies #error "Please include llmath.h first." #endif class LLVector4; class LLVector3; class LLVector3d; class LLMatrix4; class LLMatrix3; // NOTA BENE: Quaternion code is written assuming Unit Quaternions!!!! // Moreover, it is written assuming that all vectors and matricies // passed as arguments are normalized and unitary respectively. // VERY VERY VERY VERY BAD THINGS will happen if these assumptions fail. static const U32 LENGTHOFQUAT = 4; class LLQuaternion { public: F32 mQ[LENGTHOFQUAT]; static const LLQuaternion DEFAULT; LLQuaternion(); // Initializes Quaternion to (0,0,0,1) explicit LLQuaternion(const LLMatrix4 &mat); // Initializes Quaternion from Matrix4 explicit LLQuaternion(const LLMatrix3 &mat); // Initializes Quaternion from Matrix3 LLQuaternion(F32 x, F32 y, F32 z, F32 w); // Initializes Quaternion to normalize(x, y, z, w) LLQuaternion(F32 angle, const LLVector4 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) LLQuaternion(F32 angle, const LLVector3 &vec); // Initializes Quaternion to axis_angle2quat(angle, vec) LLQuaternion(const F32 *q); // Initializes Quaternion to normalize(x, y, z, w) LLQuaternion(const LLVector3 &x_axis, const LLVector3 &y_axis, const LLVector3 &z_axis); // Initializes Quaternion from Matrix3 = [x_axis ; y_axis ; z_axis] explicit LLQuaternion(const LLSD &sd); // Initializes Quaternion from LLSD array. LLSD getValue() const; void setValue(const LLSD& sd); bool isIdentity() const; bool isNotIdentity() const; bool isFinite() const; // checks to see if all values of LLQuaternion are finite void quantize16(F32 lower, F32 upper); // changes the vector to reflect quatization void quantize8(F32 lower, F32 upper); // changes the vector to reflect quatization void loadIdentity(); // Loads the quaternion that represents the identity rotation bool isEqualEps(const LLQuaternion &quat, F32 epsilon) const; bool isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const; const LLQuaternion& set(F32 x, F32 y, F32 z, F32 w); // Sets Quaternion to normalize(x, y, z, w) const LLQuaternion& set(const LLQuaternion &quat); // Copies Quaternion const LLQuaternion& set(const F32 *q); // Sets Quaternion to normalize(quat[VX], quat[VY], quat[VZ], quat[VW]) const LLQuaternion& set(const LLMatrix3 &mat); // Sets Quaternion to mat2quat(mat) const LLQuaternion& set(const LLMatrix4 &mat); // Sets Quaternion to mat2quat(mat) const LLQuaternion& setFromAzimuthAndAltitude(F32 azimuth, F32 altitude); const LLQuaternion& setAngleAxis(F32 angle, F32 x, F32 y, F32 z); // Sets Quaternion to axis_angle2quat(angle, x, y, z) const LLQuaternion& setAngleAxis(F32 angle, const LLVector3 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) const LLQuaternion& setAngleAxis(F32 angle, const LLVector4 &vec); // Sets Quaternion to axis_angle2quat(angle, vec) const LLQuaternion& setEulerAngles(F32 roll, F32 pitch, F32 yaw); // Sets Quaternion to euler2quat(pitch, yaw, roll) const LLQuaternion& setQuatInit(F32 x, F32 y, F32 z, F32 w); // deprecated const LLQuaternion& setQuat(const LLQuaternion &quat); // deprecated const LLQuaternion& setQuat(const F32 *q); // deprecated const LLQuaternion& setQuat(const LLMatrix3 &mat); // deprecated const LLQuaternion& setQuat(const LLMatrix4 &mat); // deprecated const LLQuaternion& setQuat(F32 angle, F32 x, F32 y, F32 z); // deprecated const LLQuaternion& setQuat(F32 angle, const LLVector3 &vec); // deprecated const LLQuaternion& setQuat(F32 angle, const LLVector4 &vec); // deprecated const LLQuaternion& setQuat(F32 roll, F32 pitch, F32 yaw); // deprecated LLMatrix4 getMatrix4(void) const; // Returns the Matrix4 equivalent of Quaternion LLMatrix3 getMatrix3(void) const; // Returns the Matrix3 equivalent of Quaternion void getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const; // returns rotation in radians about axis x,y,z void getAngleAxis(F32* angle, LLVector3 &vec) const; void getEulerAngles(F32 *roll, F32* pitch, F32 *yaw) const; void getAzimuthAndAltitude(F32 &azimuth, F32 &altitude); F32 normalize(); // Normalizes Quaternion and returns magnitude F32 normQuat(); // deprecated const LLQuaternion& conjugate(void); // Conjugates Quaternion and returns result const LLQuaternion& conjQuat(void); // deprecated // Other useful methods const LLQuaternion& transpose(); // transpose (same as conjugate) const LLQuaternion& transQuat(); // deprecated void shortestArc(const LLVector3 &a, const LLVector3 &b); // shortest rotation from a to b const LLQuaternion& constrain(F32 radians); // constrains rotation to a cone angle specified in radians // Standard operators friend std::ostream& operator<<(std::ostream &s, const LLQuaternion &a); // Prints a friend LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b); // Addition friend LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b); // Subtraction friend LLQuaternion operator-(const LLQuaternion &a); // Negation friend LLQuaternion operator*(F32 a, const LLQuaternion &q); // Scale friend LLQuaternion operator*(const LLQuaternion &q, F32 b); // Scale friend LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b); // Returns a * b friend LLQuaternion operator~(const LLQuaternion &a); // Returns a* (Conjugate of a) bool operator==(const LLQuaternion &b) const; // Returns a == b bool operator!=(const LLQuaternion &b) const; // Returns a != b F64 operator[](int idx) const { return mQ[idx]; } friend const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b); // Returns a * b friend LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot); // Rotates a by rot friend LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot); // Rotates a by rot friend LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot); // Rotates a by rot // Non-standard operators friend F32 dot(const LLQuaternion &a, const LLQuaternion &b); friend LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from p to q friend LLQuaternion lerp(F32 t, const LLQuaternion &q); // linear interpolation (t = 0 to 1) from identity to q friend LLQuaternion slerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // spherical linear interpolation from p to q friend LLQuaternion slerp(F32 t, const LLQuaternion &q); // spherical linear interpolation from identity to q friend LLQuaternion nlerp(F32 t, const LLQuaternion &p, const LLQuaternion &q); // normalized linear interpolation from p to q friend LLQuaternion nlerp(F32 t, const LLQuaternion &q); // normalized linear interpolation from p to q LLVector3 packToVector3() const; // Saves space by using the fact that our quaternions are normalized void unpackFromVector3(const LLVector3& vec); // Saves space by using the fact that our quaternions are normalized enum Order { XYZ = 0, YZX = 1, ZXY = 2, XZY = 3, YXZ = 4, ZYX = 5 }; // Creates a quaternions from maya's rotation representation, // which is 3 rotations (in DEGREES) in the specified order friend LLQuaternion mayaQ(F32 x, F32 y, F32 z, Order order); // Conversions between Order and strings like "xyz" or "ZYX" friend const char *OrderToString( const Order order ); friend Order StringToOrder( const char *str ); static bool parseQuat(const std::string& buf, LLQuaternion* value); // For debugging, only //static U32 mMultCount; }; inline LLSD LLQuaternion::getValue() const { LLSD ret; ret[0] = mQ[0]; ret[1] = mQ[1]; ret[2] = mQ[2]; ret[3] = mQ[3]; return ret; } inline void LLQuaternion::setValue(const LLSD& sd) { mQ[0] = (F32)sd[0].asReal(); mQ[1] = (F32)sd[1].asReal(); mQ[2] = (F32)sd[2].asReal(); mQ[3] = (F32)sd[3].asReal(); } // checker inline bool LLQuaternion::isFinite() const { return (llfinite(mQ[VX]) && llfinite(mQ[VY]) && llfinite(mQ[VZ]) && llfinite(mQ[VS])); } inline bool LLQuaternion::isIdentity() const { return ( mQ[VX] == 0.f ) && ( mQ[VY] == 0.f ) && ( mQ[VZ] == 0.f ) && ( mQ[VS] == 1.f ); } inline bool LLQuaternion::isNotIdentity() const { return ( mQ[VX] != 0.f ) || ( mQ[VY] != 0.f ) || ( mQ[VZ] != 0.f ) || ( mQ[VS] != 1.f ); } inline LLQuaternion::LLQuaternion(void) { mQ[VX] = 0.f; mQ[VY] = 0.f; mQ[VZ] = 0.f; mQ[VS] = 1.f; } inline LLQuaternion::LLQuaternion(F32 x, F32 y, F32 z, F32 w) { mQ[VX] = x; mQ[VY] = y; mQ[VZ] = z; mQ[VS] = w; //RN: don't normalize this case as its used mainly for temporaries during calculations //normalize(); /* F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); mag -= 1.f; mag = fabs(mag); llassert(mag < 10.f*FP_MAG_THRESHOLD); */ } inline LLQuaternion::LLQuaternion(const F32 *q) { mQ[VX] = q[VX]; mQ[VY] = q[VY]; mQ[VZ] = q[VZ]; mQ[VS] = q[VW]; normalize(); /* F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); mag -= 1.f; mag = fabs(mag); llassert(mag < FP_MAG_THRESHOLD); */ } inline void LLQuaternion::loadIdentity() { mQ[VX] = 0.0f; mQ[VY] = 0.0f; mQ[VZ] = 0.0f; mQ[VW] = 1.0f; } inline bool LLQuaternion::isEqualEps(const LLQuaternion &quat, F32 epsilon) const { return ( fabs(mQ[VX] - quat.mQ[VX]) < epsilon && fabs(mQ[VY] - quat.mQ[VY]) < epsilon && fabs(mQ[VZ] - quat.mQ[VZ]) < epsilon && fabs(mQ[VS] - quat.mQ[VS]) < epsilon ); } inline bool LLQuaternion::isNotEqualEps(const LLQuaternion &quat, F32 epsilon) const { return ( fabs(mQ[VX] - quat.mQ[VX]) > epsilon || fabs(mQ[VY] - quat.mQ[VY]) > epsilon || fabs(mQ[VZ] - quat.mQ[VZ]) > epsilon || fabs(mQ[VS] - quat.mQ[VS]) > epsilon ); } inline const LLQuaternion& LLQuaternion::set(F32 x, F32 y, F32 z, F32 w) { mQ[VX] = x; mQ[VY] = y; mQ[VZ] = z; mQ[VS] = w; normalize(); return (*this); } inline const LLQuaternion& LLQuaternion::set(const LLQuaternion &quat) { mQ[VX] = quat.mQ[VX]; mQ[VY] = quat.mQ[VY]; mQ[VZ] = quat.mQ[VZ]; mQ[VW] = quat.mQ[VW]; normalize(); return (*this); } inline const LLQuaternion& LLQuaternion::set(const F32 *q) { mQ[VX] = q[VX]; mQ[VY] = q[VY]; mQ[VZ] = q[VZ]; mQ[VS] = q[VW]; normalize(); return (*this); } // deprecated inline const LLQuaternion& LLQuaternion::setQuatInit(F32 x, F32 y, F32 z, F32 w) { mQ[VX] = x; mQ[VY] = y; mQ[VZ] = z; mQ[VS] = w; normalize(); return (*this); } // deprecated inline const LLQuaternion& LLQuaternion::setQuat(const LLQuaternion &quat) { mQ[VX] = quat.mQ[VX]; mQ[VY] = quat.mQ[VY]; mQ[VZ] = quat.mQ[VZ]; mQ[VW] = quat.mQ[VW]; normalize(); return (*this); } // deprecated inline const LLQuaternion& LLQuaternion::setQuat(const F32 *q) { mQ[VX] = q[VX]; mQ[VY] = q[VY]; mQ[VZ] = q[VZ]; mQ[VS] = q[VW]; normalize(); return (*this); } inline void LLQuaternion::getAngleAxis(F32* angle, F32* x, F32* y, F32* z) const { F32 v = sqrtf(mQ[VX] * mQ[VX] + mQ[VY] * mQ[VY] + mQ[VZ] * mQ[VZ]); // length of the vector-component if (v > FP_MAG_THRESHOLD) { F32 oomag = 1.0f / v; F32 w = mQ[VW]; if (w < 0.0f) { w = -w; // make VW positive oomag = -oomag; // invert the axis } *x = mQ[VX] * oomag; // normalize the axis *y = mQ[VY] * oomag; *z = mQ[VZ] * oomag; *angle = 2.0f * atan2f(v, w); // get the angle } else { *angle = 0.0f; // no rotation *x = 0.0f; // around some dummy axis *y = 0.0f; *z = 1.0f; } } inline const LLQuaternion& LLQuaternion::conjugate() { mQ[VX] *= -1.f; mQ[VY] *= -1.f; mQ[VZ] *= -1.f; return (*this); } inline const LLQuaternion& LLQuaternion::conjQuat() { mQ[VX] *= -1.f; mQ[VY] *= -1.f; mQ[VZ] *= -1.f; return (*this); } // Transpose inline const LLQuaternion& LLQuaternion::transpose() { mQ[VX] *= -1.f; mQ[VY] *= -1.f; mQ[VZ] *= -1.f; return (*this); } // deprecated inline const LLQuaternion& LLQuaternion::transQuat() { mQ[VX] *= -1.f; mQ[VY] *= -1.f; mQ[VZ] *= -1.f; return (*this); } inline LLQuaternion operator+(const LLQuaternion &a, const LLQuaternion &b) { return LLQuaternion( a.mQ[VX] + b.mQ[VX], a.mQ[VY] + b.mQ[VY], a.mQ[VZ] + b.mQ[VZ], a.mQ[VW] + b.mQ[VW] ); } inline LLQuaternion operator-(const LLQuaternion &a, const LLQuaternion &b) { return LLQuaternion( a.mQ[VX] - b.mQ[VX], a.mQ[VY] - b.mQ[VY], a.mQ[VZ] - b.mQ[VZ], a.mQ[VW] - b.mQ[VW] ); } inline LLQuaternion operator-(const LLQuaternion &a) { return LLQuaternion( -a.mQ[VX], -a.mQ[VY], -a.mQ[VZ], -a.mQ[VW] ); } inline LLQuaternion operator*(F32 a, const LLQuaternion &q) { return LLQuaternion( a * q.mQ[VX], a * q.mQ[VY], a * q.mQ[VZ], a * q.mQ[VW] ); } inline LLQuaternion operator*(const LLQuaternion &q, F32 a) { return LLQuaternion( a * q.mQ[VX], a * q.mQ[VY], a * q.mQ[VZ], a * q.mQ[VW] ); } inline LLQuaternion operator~(const LLQuaternion &a) { LLQuaternion q(a); q.conjQuat(); return q; } inline bool LLQuaternion::operator==(const LLQuaternion &b) const { return ( (mQ[VX] == b.mQ[VX]) &&(mQ[VY] == b.mQ[VY]) &&(mQ[VZ] == b.mQ[VZ]) &&(mQ[VS] == b.mQ[VS])); } inline bool LLQuaternion::operator!=(const LLQuaternion &b) const { return ( (mQ[VX] != b.mQ[VX]) ||(mQ[VY] != b.mQ[VY]) ||(mQ[VZ] != b.mQ[VZ]) ||(mQ[VS] != b.mQ[VS])); } inline const LLQuaternion& operator*=(LLQuaternion &a, const LLQuaternion &b) { #if 1 LLQuaternion q( b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1], b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2], b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0], b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2] ); a = q; #else a = a * b; #endif return a; } const F32 ONE_PART_IN_A_MILLION = 0.000001f; inline F32 LLQuaternion::normalize() { F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); if (mag > FP_MAG_THRESHOLD) { // Floating point error can prevent some quaternions from achieving // exact unity length. When trying to renormalize such quaternions we // can oscillate between multiple quantized states. To prevent such // drifts we only renomalize if the length is far enough from unity. if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION) { F32 oomag = 1.f/mag; mQ[VX] *= oomag; mQ[VY] *= oomag; mQ[VZ] *= oomag; mQ[VS] *= oomag; } } else { // we were given a very bad quaternion so we set it to identity mQ[VX] = 0.f; mQ[VY] = 0.f; mQ[VZ] = 0.f; mQ[VS] = 1.f; } return mag; } // deprecated inline F32 LLQuaternion::normQuat() { F32 mag = sqrtf(mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] + mQ[VS]*mQ[VS]); if (mag > FP_MAG_THRESHOLD) { if (fabs(1.f - mag) > ONE_PART_IN_A_MILLION) { // only renormalize if length not close enough to 1.0 already F32 oomag = 1.f/mag; mQ[VX] *= oomag; mQ[VY] *= oomag; mQ[VZ] *= oomag; mQ[VS] *= oomag; } } else { mQ[VX] = 0.f; mQ[VY] = 0.f; mQ[VZ] = 0.f; mQ[VS] = 1.f; } return mag; } LLQuaternion::Order StringToOrder( const char *str ); // Some notes about Quaternions // What is a Quaternion? // --------------------- // A quaternion is a point in 4-dimensional complex space. // Q = { Qx, Qy, Qz, Qw } // // // Why Quaternions? // ---------------- // The set of quaternions that make up the the 4-D unit sphere // can be mapped to the set of all rotations in 3-D space. Sometimes // it is easier to describe/manipulate rotations in quaternion space // than rotation-matrix space. // // // How Quaternions? // ---------------- // In order to take advantage of quaternions we need to know how to // go from rotation-matricies to quaternions and back. We also have // to agree what variety of rotations we're generating. // // Consider the equation... v' = v * R // // There are two ways to think about rotations of vectors. // 1) v' is the same vector in a different reference frame // 2) v' is a new vector in the same reference frame // // bookmark -- which way are we using? // // // Quaternion from Angle-Axis: // --------------------------- // Suppose we wanted to represent a rotation of some angle (theta) // about some axis ({Ax, Ay, Az})... // // axis of rotation = {Ax, Ay, Az} // angle_of_rotation = theta // // s = sin(0.5 * theta) // c = cos(0.5 * theta) // Q = { s * Ax, s * Ay, s * Az, c } // // // 3x3 Matrix from Quaternion // -------------------------- // // | | // | 1 - 2 * (y^2 + z^2) 2 * (x * y + z * w) 2 * (y * w - x * z) | // | | // M = | 2 * (x * y - z * w) 1 - 2 * (x^2 + z^2) 2 * (y * z + x * w) | // | | // | 2 * (x * z + y * w) 2 * (y * z - x * w) 1 - 2 * (x^2 + y^2) | // | | #endif