/** * @file llquaternion.cpp * @brief LLQuaternion class implementation. * * Copyright (c) 2000-$CurrentYear$, Linden Research, Inc. * $License$ */ #include "linden_common.h" #include "llquaternion.h" #include "llmath.h" // for F_PI //#include "vmath.h" #include "v3math.h" #include "v3dmath.h" #include "v4math.h" #include "m4math.h" #include "m3math.h" #include "llquantize.h" // WARNING: Don't use this for global const definitions! using this // at the top of a *.cpp file might not give you what you think. const LLQuaternion LLQuaternion::DEFAULT; // Constructors LLQuaternion::LLQuaternion(const LLMatrix4 &mat) { *this = mat.quaternion(); normQuat(); } LLQuaternion::LLQuaternion(const LLMatrix3 &mat) { *this = mat.quaternion(); normQuat(); } LLQuaternion::LLQuaternion(F32 angle, const LLVector4 &vec) { LLVector3 v(vec.mV[VX], vec.mV[VY], vec.mV[VZ]); v.normVec(); F32 c, s; c = cosf(angle*0.5f); s = sinf(angle*0.5f); mQ[VX] = v.mV[VX] * s; mQ[VY] = v.mV[VY] * s; mQ[VZ] = v.mV[VZ] * s; mQ[VW] = c; normQuat(); } LLQuaternion::LLQuaternion(F32 angle, const LLVector3 &vec) { LLVector3 v(vec); v.normVec(); F32 c, s; c = cosf(angle*0.5f); s = sinf(angle*0.5f); mQ[VX] = v.mV[VX] * s; mQ[VY] = v.mV[VY] * s; mQ[VZ] = v.mV[VZ] * s; mQ[VW] = c; normQuat(); } LLQuaternion::LLQuaternion(const LLVector3 &x_axis, const LLVector3 &y_axis, const LLVector3 &z_axis) { LLMatrix3 mat; mat.setRows(x_axis, y_axis, z_axis); *this = mat.quaternion(); normQuat(); } // Quatizations void LLQuaternion::quantize16(F32 lower, F32 upper) { F32 x = mQ[VX]; F32 y = mQ[VY]; F32 z = mQ[VZ]; F32 s = mQ[VS]; x = U16_to_F32(F32_to_U16(x, lower, upper), lower, upper); y = U16_to_F32(F32_to_U16(y, lower, upper), lower, upper); z = U16_to_F32(F32_to_U16(z, lower, upper), lower, upper); s = U16_to_F32(F32_to_U16(s, lower, upper), lower, upper); mQ[VX] = x; mQ[VY] = y; mQ[VZ] = z; mQ[VS] = s; } void LLQuaternion::quantize8(F32 lower, F32 upper) { mQ[VX] = U8_to_F32(F32_to_U8(mQ[VX], lower, upper), lower, upper); mQ[VY] = U8_to_F32(F32_to_U8(mQ[VY], lower, upper), lower, upper); mQ[VZ] = U8_to_F32(F32_to_U8(mQ[VZ], lower, upper), lower, upper); mQ[VS] = U8_to_F32(F32_to_U8(mQ[VS], lower, upper), lower, upper); } // LLVector3 Magnitude and Normalization Functions // Set LLQuaternion routines const LLQuaternion& LLQuaternion::setQuat(F32 angle, F32 x, F32 y, F32 z) { LLVector3 vec(x, y, z); vec.normVec(); angle *= 0.5f; F32 c, s; c = cosf(angle); s = sinf(angle); mQ[VX] = vec.mV[VX]*s; mQ[VY] = vec.mV[VY]*s; mQ[VZ] = vec.mV[VZ]*s; mQ[VW] = c; normQuat(); return (*this); } const LLQuaternion& LLQuaternion::setQuat(F32 angle, const LLVector3 &vec) { LLVector3 v(vec); v.normVec(); angle *= 0.5f; F32 c, s; c = cosf(angle); s = sinf(angle); mQ[VX] = v.mV[VX]*s; mQ[VY] = v.mV[VY]*s; mQ[VZ] = v.mV[VZ]*s; mQ[VW] = c; normQuat(); return (*this); } const LLQuaternion& LLQuaternion::setQuat(F32 angle, const LLVector4 &vec) { LLVector3 v(vec.mV[VX], vec.mV[VY], vec.mV[VZ]); v.normVec(); F32 c, s; c = cosf(angle*0.5f); s = sinf(angle*0.5f); mQ[VX] = v.mV[VX]*s; mQ[VY] = v.mV[VY]*s; mQ[VZ] = v.mV[VZ]*s; mQ[VW] = c; normQuat(); return (*this); } const LLQuaternion& LLQuaternion::setQuat(F32 roll, F32 pitch, F32 yaw) { LLMatrix3 rot_mat(roll, pitch, yaw); rot_mat.orthogonalize(); *this = rot_mat.quaternion(); normQuat(); return (*this); //#if 1 // // NOTE: LLQuaternion's are actually inverted with respect to // // the matrices, so this code also assumes inverted quaternions // // (-x, -y, -z, w). The result is that roll,pitch,yaw are applied // // in reverse order (yaw,pitch,roll). // F64 cosX = cos(roll); // F64 cosY = cos(pitch); // F64 cosZ = cos(yaw); // // F64 sinX = sin(roll); // F64 sinY = sin(pitch); // F64 sinZ = sin(yaw); // // mQ[VW] = (F32)sqrt(cosY*cosZ - sinX*sinY*sinZ + cosX*cosZ + cosX*cosY + 1.0)*.5; // if (fabs(mQ[VW]) < F_APPROXIMATELY_ZERO) // { // // null rotation, any axis will do // mQ[VX] = 0.0f; // mQ[VY] = 1.0f; // mQ[VZ] = 0.0f; // } // else // { // F32 inv_s = 1.0f / (4.0f * mQ[VW]); // mQ[VX] = (F32)-(-sinX*cosY - cosX*sinY*sinZ - sinX*cosZ) * inv_s; // mQ[VY] = (F32)-(-cosX*sinY*cosZ + sinX*sinZ - sinY) * inv_s; // mQ[VZ] = (F32)-(-cosY*sinZ - sinX*sinY*cosZ - cosX*sinZ) * inv_s; // } // //#else // This only works on a certain subset of roll/pitch/yaw // // F64 cosX = cosf(roll/2.0); // F64 cosY = cosf(pitch/2.0); // F64 cosZ = cosf(yaw/2.0); // // F64 sinX = sinf(roll/2.0); // F64 sinY = sinf(pitch/2.0); // F64 sinZ = sinf(yaw/2.0); // // mQ[VW] = (F32)(cosX*cosY*cosZ + sinX*sinY*sinZ); // mQ[VX] = (F32)(sinX*cosY*cosZ - cosX*sinY*sinZ); // mQ[VY] = (F32)(cosX*sinY*cosZ + sinX*cosY*sinZ); // mQ[VZ] = (F32)(cosX*cosY*sinZ - sinX*sinY*cosZ); //#endif // // normQuat(); // return (*this); } // SJB: This code is correct for a logicly stored (non-transposed) matrix; // Our matrices are stored transposed, OpenGL style, so this generates the // INVERSE matrix, or the CORRECT matrix form an INVERSE quaternion. // Because we use similar logic in LLMatrix3::quaternion(), // we are internally consistant so everything works OK :) LLMatrix3 LLQuaternion::getMatrix3(void) const { LLMatrix3 mat; F32 xx, xy, xz, xw, yy, yz, yw, zz, zw; xx = mQ[VX] * mQ[VX]; xy = mQ[VX] * mQ[VY]; xz = mQ[VX] * mQ[VZ]; xw = mQ[VX] * mQ[VW]; yy = mQ[VY] * mQ[VY]; yz = mQ[VY] * mQ[VZ]; yw = mQ[VY] * mQ[VW]; zz = mQ[VZ] * mQ[VZ]; zw = mQ[VZ] * mQ[VW]; mat.mMatrix[0][0] = 1.f - 2.f * ( yy + zz ); mat.mMatrix[0][1] = 2.f * ( xy + zw ); mat.mMatrix[0][2] = 2.f * ( xz - yw ); mat.mMatrix[1][0] = 2.f * ( xy - zw ); mat.mMatrix[1][1] = 1.f - 2.f * ( xx + zz ); mat.mMatrix[1][2] = 2.f * ( yz + xw ); mat.mMatrix[2][0] = 2.f * ( xz + yw ); mat.mMatrix[2][1] = 2.f * ( yz - xw ); mat.mMatrix[2][2] = 1.f - 2.f * ( xx + yy ); return mat; } LLMatrix4 LLQuaternion::getMatrix4(void) const { LLMatrix4 mat; F32 xx, xy, xz, xw, yy, yz, yw, zz, zw; xx = mQ[VX] * mQ[VX]; xy = mQ[VX] * mQ[VY]; xz = mQ[VX] * mQ[VZ]; xw = mQ[VX] * mQ[VW]; yy = mQ[VY] * mQ[VY]; yz = mQ[VY] * mQ[VZ]; yw = mQ[VY] * mQ[VW]; zz = mQ[VZ] * mQ[VZ]; zw = mQ[VZ] * mQ[VW]; mat.mMatrix[0][0] = 1.f - 2.f * ( yy + zz ); mat.mMatrix[0][1] = 2.f * ( xy + zw ); mat.mMatrix[0][2] = 2.f * ( xz - yw ); mat.mMatrix[1][0] = 2.f * ( xy - zw ); mat.mMatrix[1][1] = 1.f - 2.f * ( xx + zz ); mat.mMatrix[1][2] = 2.f * ( yz + xw ); mat.mMatrix[2][0] = 2.f * ( xz + yw ); mat.mMatrix[2][1] = 2.f * ( yz - xw ); mat.mMatrix[2][2] = 1.f - 2.f * ( xx + yy ); // TODO -- should we set the translation portion to zero? return mat; } // Other useful methods // calculate the shortest rotation from a to b void LLQuaternion::shortestArc(const LLVector3 &a, const LLVector3 &b) { // Make a local copy of both vectors. LLVector3 vec_a = a; LLVector3 vec_b = b; // Make sure neither vector is zero length. Also normalize // the vectors while we are at it. F32 vec_a_mag = vec_a.normVec(); F32 vec_b_mag = vec_b.normVec(); if (vec_a_mag < F_APPROXIMATELY_ZERO || vec_b_mag < F_APPROXIMATELY_ZERO) { // Can't calculate a rotation from this. // Just return ZERO_ROTATION instead. loadIdentity(); return; } // Create an axis to rotate around, and the cos of the angle to rotate. LLVector3 axis = vec_a % vec_b; F32 cos_theta = vec_a * vec_b; // Check the angle between the vectors to see if they are parallel or anti-parallel. if (cos_theta > 1.0 - F_APPROXIMATELY_ZERO) { // a and b are parallel. No rotation is necessary. loadIdentity(); } else if (cos_theta < -1.0 + F_APPROXIMATELY_ZERO) { // a and b are anti-parallel. // Rotate 180 degrees around some orthogonal axis. // Find the projection of the x-axis onto a, and try // using the vector between the projection and the x-axis // as the orthogonal axis. LLVector3 proj = vec_a.mV[VX] / (vec_a * vec_a) * vec_a; LLVector3 ortho_axis(1.f, 0.f, 0.f); ortho_axis -= proj; // Turn this into an orthonormal axis. F32 ortho_length = ortho_axis.normVec(); // If the axis' length is 0, then our guess at an orthogonal axis // was wrong (a is parallel to the x-axis). if (ortho_length < F_APPROXIMATELY_ZERO) { // Use the z-axis instead. ortho_axis.setVec(0.f, 0.f, 1.f); } // Construct a quaternion from this orthonormal axis. mQ[VX] = ortho_axis.mV[VX]; mQ[VY] = ortho_axis.mV[VY]; mQ[VZ] = ortho_axis.mV[VZ]; mQ[VW] = 0.f; } else { // a and b are NOT parallel or anti-parallel. // Return the rotation between these vectors. F32 theta = (F32)acos(cos_theta); setQuat(theta, axis); } } // constrains rotation to a cone angle specified in radians const LLQuaternion &LLQuaternion::constrain(F32 radians) { const F32 cos_angle_lim = cosf( radians/2 ); // mQ[VW] limit const F32 sin_angle_lim = sinf( radians/2 ); // rotation axis length limit if (mQ[VW] < 0.f) { mQ[VX] *= -1.f; mQ[VY] *= -1.f; mQ[VZ] *= -1.f; mQ[VW] *= -1.f; } // if rotation angle is greater than limit (cos is less than limit) if( mQ[VW] < cos_angle_lim ) { mQ[VW] = cos_angle_lim; F32 axis_len = sqrtf( mQ[VX]*mQ[VX] + mQ[VY]*mQ[VY] + mQ[VZ]*mQ[VZ] ); // sin(theta/2) F32 axis_mult_fact = sin_angle_lim / axis_len; mQ[VX] *= axis_mult_fact; mQ[VY] *= axis_mult_fact; mQ[VZ] *= axis_mult_fact; } return *this; } // Operators std::ostream& operator<<(std::ostream &s, const LLQuaternion &a) { s << "{ " << a.mQ[VX] << ", " << a.mQ[VY] << ", " << a.mQ[VZ] << ", " << a.mQ[VW] << " }"; return s; } // Does NOT renormalize the result LLQuaternion operator*(const LLQuaternion &a, const LLQuaternion &b) { // LLQuaternion::mMultCount++; LLQuaternion q( b.mQ[3] * a.mQ[0] + b.mQ[0] * a.mQ[3] + b.mQ[1] * a.mQ[2] - b.mQ[2] * a.mQ[1], b.mQ[3] * a.mQ[1] + b.mQ[1] * a.mQ[3] + b.mQ[2] * a.mQ[0] - b.mQ[0] * a.mQ[2], b.mQ[3] * a.mQ[2] + b.mQ[2] * a.mQ[3] + b.mQ[0] * a.mQ[1] - b.mQ[1] * a.mQ[0], b.mQ[3] * a.mQ[3] - b.mQ[0] * a.mQ[0] - b.mQ[1] * a.mQ[1] - b.mQ[2] * a.mQ[2] ); return q; } /* LLMatrix4 operator*(const LLMatrix4 &m, const LLQuaternion &q) { LLMatrix4 qmat(q); return (m*qmat); } */ LLVector4 operator*(const LLVector4 &a, const LLQuaternion &rot) { F32 rw = - rot.mQ[VX] * a.mV[VX] - rot.mQ[VY] * a.mV[VY] - rot.mQ[VZ] * a.mV[VZ]; F32 rx = rot.mQ[VW] * a.mV[VX] + rot.mQ[VY] * a.mV[VZ] - rot.mQ[VZ] * a.mV[VY]; F32 ry = rot.mQ[VW] * a.mV[VY] + rot.mQ[VZ] * a.mV[VX] - rot.mQ[VX] * a.mV[VZ]; F32 rz = rot.mQ[VW] * a.mV[VZ] + rot.mQ[VX] * a.mV[VY] - rot.mQ[VY] * a.mV[VX]; F32 nx = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY]; F32 ny = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ]; F32 nz = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX]; return LLVector4(nx, ny, nz, a.mV[VW]); } LLVector3 operator*(const LLVector3 &a, const LLQuaternion &rot) { F32 rw = - rot.mQ[VX] * a.mV[VX] - rot.mQ[VY] * a.mV[VY] - rot.mQ[VZ] * a.mV[VZ]; F32 rx = rot.mQ[VW] * a.mV[VX] + rot.mQ[VY] * a.mV[VZ] - rot.mQ[VZ] * a.mV[VY]; F32 ry = rot.mQ[VW] * a.mV[VY] + rot.mQ[VZ] * a.mV[VX] - rot.mQ[VX] * a.mV[VZ]; F32 rz = rot.mQ[VW] * a.mV[VZ] + rot.mQ[VX] * a.mV[VY] - rot.mQ[VY] * a.mV[VX]; F32 nx = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY]; F32 ny = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ]; F32 nz = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX]; return LLVector3(nx, ny, nz); } LLVector3d operator*(const LLVector3d &a, const LLQuaternion &rot) { F64 rw = - rot.mQ[VX] * a.mdV[VX] - rot.mQ[VY] * a.mdV[VY] - rot.mQ[VZ] * a.mdV[VZ]; F64 rx = rot.mQ[VW] * a.mdV[VX] + rot.mQ[VY] * a.mdV[VZ] - rot.mQ[VZ] * a.mdV[VY]; F64 ry = rot.mQ[VW] * a.mdV[VY] + rot.mQ[VZ] * a.mdV[VX] - rot.mQ[VX] * a.mdV[VZ]; F64 rz = rot.mQ[VW] * a.mdV[VZ] + rot.mQ[VX] * a.mdV[VY] - rot.mQ[VY] * a.mdV[VX]; F64 nx = - rw * rot.mQ[VX] + rx * rot.mQ[VW] - ry * rot.mQ[VZ] + rz * rot.mQ[VY]; F64 ny = - rw * rot.mQ[VY] + ry * rot.mQ[VW] - rz * rot.mQ[VX] + rx * rot.mQ[VZ]; F64 nz = - rw * rot.mQ[VZ] + rz * rot.mQ[VW] - rx * rot.mQ[VY] + ry * rot.mQ[VX]; return LLVector3d(nx, ny, nz); } F32 dot(const LLQuaternion &a, const LLQuaternion &b) { return a.mQ[VX] * b.mQ[VX] + a.mQ[VY] * b.mQ[VY] + a.mQ[VZ] * b.mQ[VZ] + a.mQ[VW] * b.mQ[VW]; } // DEMO HACK: This lerp is probably inocrrect now due intermediate normalization // it should look more like the lerp below #if 0 // linear interpolation LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q) { LLQuaternion r; r = t * (q - p) + p; r.normQuat(); return r; } #endif // lerp from identity to q LLQuaternion lerp(F32 t, const LLQuaternion &q) { LLQuaternion r; r.mQ[VX] = t * q.mQ[VX]; r.mQ[VY] = t * q.mQ[VY]; r.mQ[VZ] = t * q.mQ[VZ]; r.mQ[VW] = t * (q.mQ[VZ] - 1.f) + 1.f; r.normQuat(); return r; } LLQuaternion lerp(F32 t, const LLQuaternion &p, const LLQuaternion &q) { LLQuaternion r; F32 inv_t; inv_t = 1.f - t; r.mQ[VX] = t * q.mQ[VX] + (inv_t * p.mQ[VX]); r.mQ[VY] = t * q.mQ[VY] + (inv_t * p.mQ[VY]); r.mQ[VZ] = t * q.mQ[VZ] + (inv_t * p.mQ[VZ]); r.mQ[VW] = t * q.mQ[VW] + (inv_t * p.mQ[VW]); r.normQuat(); return r; } // spherical linear interpolation LLQuaternion slerp( F32 u, const LLQuaternion &a, const LLQuaternion &b ) { // cosine theta = dot product of a and b F32 cos_t = a.mQ[0]*b.mQ[0] + a.mQ[1]*b.mQ[1] + a.mQ[2]*b.mQ[2] + a.mQ[3]*b.mQ[3]; // if b is on opposite hemisphere from a, use -a instead int bflip; if (cos_t < 0.0f) { cos_t = -cos_t; bflip = TRUE; } else bflip = FALSE; // if B is (within precision limits) the same as A, // just linear interpolate between A and B. F32 alpha; // interpolant F32 beta; // 1 - interpolant if (1.0f - cos_t < 0.00001f) { beta = 1.0f - u; alpha = u; } else { F32 theta = acosf(cos_t); F32 sin_t = sinf(theta); beta = sinf(theta - u*theta) / sin_t; alpha = sinf(u*theta) / sin_t; } if (bflip) beta = -beta; // interpolate LLQuaternion ret; ret.mQ[0] = beta*a.mQ[0] + alpha*b.mQ[0]; ret.mQ[1] = beta*a.mQ[1] + alpha*b.mQ[1]; ret.mQ[2] = beta*a.mQ[2] + alpha*b.mQ[2]; ret.mQ[3] = beta*a.mQ[3] + alpha*b.mQ[3]; return ret; } // lerp whenever possible LLQuaternion nlerp(F32 t, const LLQuaternion &a, const LLQuaternion &b) { if (dot(a, b) < 0.f) { return slerp(t, a, b); } else { return lerp(t, a, b); } } LLQuaternion nlerp(F32 t, const LLQuaternion &q) { if (q.mQ[VW] < 0.f) { return slerp(t, q); } else { return lerp(t, q); } } // slerp from identity quaternion to another quaternion LLQuaternion slerp(F32 t, const LLQuaternion &q) { F32 c = q.mQ[VW]; if (1.0f == t || 1.0f == c) { // the trivial cases return q; } LLQuaternion r; F32 s, angle, stq, stp; s = (F32) sqrt(1.f - c*c); if (c < 0.0f) { // when c < 0.0 then theta > PI/2 // since quat and -quat are the same rotation we invert one of // p or q to reduce unecessary spins // A equivalent way to do it is to convert acos(c) as if it had been negative, // and to negate stp angle = (F32) acos(-c); stp = -(F32) sin(angle * (1.f - t)); stq = (F32) sin(angle * t); } else { angle = (F32) acos(c); stp = (F32) sin(angle * (1.f - t)); stq = (F32) sin(angle * t); } r.mQ[VX] = (q.mQ[VX] * stq) / s; r.mQ[VY] = (q.mQ[VY] * stq) / s; r.mQ[VZ] = (q.mQ[VZ] * stq) / s; r.mQ[VW] = (stp + q.mQ[VW] * stq) / s; return r; } LLQuaternion mayaQ(F32 xRot, F32 yRot, F32 zRot, LLQuaternion::Order order) { LLQuaternion xQ( xRot*DEG_TO_RAD, LLVector3(1.0f, 0.0f, 0.0f) ); LLQuaternion yQ( yRot*DEG_TO_RAD, LLVector3(0.0f, 1.0f, 0.0f) ); LLQuaternion zQ( zRot*DEG_TO_RAD, LLVector3(0.0f, 0.0f, 1.0f) ); LLQuaternion ret; switch( order ) { case LLQuaternion::XYZ: ret = xQ * yQ * zQ; break; case LLQuaternion::YZX: ret = yQ * zQ * xQ; break; case LLQuaternion::ZXY: ret = zQ * xQ * yQ; break; case LLQuaternion::XZY: ret = xQ * zQ * yQ; break; case LLQuaternion::YXZ: ret = yQ * xQ * zQ; break; case LLQuaternion::ZYX: ret = zQ * yQ * xQ; break; } return ret; } const char *OrderToString( const LLQuaternion::Order order ) { char *p = NULL; switch( order ) { default: case LLQuaternion::XYZ: p = "XYZ"; break; case LLQuaternion::YZX: p = "YZX"; break; case LLQuaternion::ZXY: p = "ZXY"; break; case LLQuaternion::XZY: p = "XZY"; break; case LLQuaternion::YXZ: p = "YXZ"; break; case LLQuaternion::ZYX: p = "ZYX"; break; } return p; } LLQuaternion::Order StringToOrder( const char *str ) { if (strncmp(str, "XYZ", 3)==0 || strncmp(str, "xyz", 3)==0) return LLQuaternion::XYZ; if (strncmp(str, "YZX", 3)==0 || strncmp(str, "yzx", 3)==0) return LLQuaternion::YZX; if (strncmp(str, "ZXY", 3)==0 || strncmp(str, "zxy", 3)==0) return LLQuaternion::ZXY; if (strncmp(str, "XZY", 3)==0 || strncmp(str, "xzy", 3)==0) return LLQuaternion::XZY; if (strncmp(str, "YXZ", 3)==0 || strncmp(str, "yxz", 3)==0) return LLQuaternion::YXZ; if (strncmp(str, "ZYX", 3)==0 || strncmp(str, "zyx", 3)==0) return LLQuaternion::ZYX; return LLQuaternion::XYZ; } const LLQuaternion& LLQuaternion::setQuat(const LLMatrix3 &mat) { *this = mat.quaternion(); normQuat(); return (*this); } const LLQuaternion& LLQuaternion::setQuat(const LLMatrix4 &mat) { *this = mat.quaternion(); normQuat(); return (*this); } void LLQuaternion::getAngleAxis(F32* angle, LLVector3 &vec) const { F32 cos_a = mQ[VW]; if (cos_a > 1.0f) cos_a = 1.0f; if (cos_a < -1.0f) cos_a = -1.0f; F32 sin_a = (F32) sqrt( 1.0f - cos_a * cos_a ); if ( fabs( sin_a ) < 0.0005f ) sin_a = 1.0f; else sin_a = 1.f/sin_a; *angle = 2.0f * (F32) acos( cos_a ); vec.mV[VX] = mQ[VX] * sin_a; vec.mV[VY] = mQ[VY] * sin_a; vec.mV[VZ] = mQ[VZ] * sin_a; } // quaternion does not need to be normalized void LLQuaternion::getEulerAngles(F32 *roll, F32 *pitch, F32 *yaw) const { LLMatrix3 rot_mat(*this); rot_mat.orthogonalize(); rot_mat.getEulerAngles(roll, pitch, yaw); // // NOTE: LLQuaternion's are actually inverted with respect to // // the matrices, so this code also assumes inverted quaternions // // (-x, -y, -z, w). The result is that roll,pitch,yaw are applied // // in reverse order (yaw,pitch,roll). // F32 x = -mQ[VX], y = -mQ[VY], z = -mQ[VZ], w = mQ[VW]; // F64 m20 = 2.0*(x*z-y*w); // if (1.0f - fabsf(m20) < F_APPROXIMATELY_ZERO) // { // *roll = 0.0f; // *pitch = (F32)asin(m20); // *yaw = (F32)atan2(2.0*(x*y-z*w), 1.0 - 2.0*(x*x+z*z)); // } // else // { // *roll = (F32)atan2(-2.0*(y*z+x*w), 1.0-2.0*(x*x+y*y)); // *pitch = (F32)asin(m20); // *yaw = (F32)atan2(-2.0*(x*y+z*w), 1.0-2.0*(y*y+z*z)); // } } // Saves space by using the fact that our quaternions are normalized LLVector3 LLQuaternion::packToVector3() const { if( mQ[VW] >= 0 ) { return LLVector3( mQ[VX], mQ[VY], mQ[VZ] ); } else { return LLVector3( -mQ[VX], -mQ[VY], -mQ[VZ] ); } } // Saves space by using the fact that our quaternions are normalized void LLQuaternion::unpackFromVector3( const LLVector3& vec ) { mQ[VX] = vec.mV[VX]; mQ[VY] = vec.mV[VY]; mQ[VZ] = vec.mV[VZ]; F32 t = 1.f - vec.magVecSquared(); if( t > 0 ) { mQ[VW] = sqrt( t ); } else { // Need this to avoid trying to find the square root of a negative number due // to floating point error. mQ[VW] = 0; } } BOOL LLQuaternion::parseQuat(const char* buf, LLQuaternion* value) { if( buf == NULL || buf[0] == '\0' || value == NULL) { return FALSE; } LLQuaternion quat; S32 count = sscanf( buf, "%f %f %f %f", quat.mQ + 0, quat.mQ + 1, quat.mQ + 2, quat.mQ + 3 ); if( 4 == count ) { value->setQuat( quat ); return TRUE; } return FALSE; } // End