/** * @file llplane.h * * Copyright (c) 2001-$CurrentYear$, Linden Research, Inc. * $License$ */ #ifndef LL_LLPLANE_H #define LL_LLPLANE_H #include "v3math.h" #include "v4math.h" // A simple way to specify a plane is to give its normal, // and it's nearest approach to the origin. // // Given the equation for a plane : A*x + B*y + C*z + D = 0 // The plane normal = [A, B, C] // The closest approach = D / sqrt(A*A + B*B + C*C) class LLPlane : public LLVector4 { public: LLPlane() {}; // no default constructor LLPlane(const LLVector3 &p0, F32 d) { setVec(p0, d); } LLPlane(const LLVector3 &p0, const LLVector3 &n) { setVec(p0, n); } void setVec(const LLVector3 &p0, F32 d) { LLVector4::setVec(p0[0], p0[1], p0[2], d); } void setVec(const LLVector3 &p0, const LLVector3 &n) { F32 d = -(p0 * n); setVec(n, d); } void setVec(const LLVector3 &p0, const LLVector3 &p1, const LLVector3 &p2) { LLVector3 u, v, w; u = p1 - p0; v = p2 - p0; w = u % v; w.normVec(); F32 d = -(w * p0); setVec(w, d); } LLPlane& operator=(const LLVector4& v2) { LLVector4::setVec(v2[0],v2[1],v2[2],v2[3]); return *this;} F32 dist(const LLVector3 &v2) const { return mV[0]*v2[0] + mV[1]*v2[1] + mV[2]*v2[2] + mV[3]; } }; #endif // LL_LLPLANE_H