/** * @file llplane.h * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #ifndef LL_LLPLANE_H #define LL_LLPLANE_H #include "v3math.h" #include "v4math.h" // A simple way to specify a plane is to give its normal, // and it's nearest approach to the origin. // // Given the equation for a plane : A*x + B*y + C*z + D = 0 // The plane normal = [A, B, C] // The closest approach = D / sqrt(A*A + B*B + C*C) class LLPlane { public: // Constructors LLPlane() {}; // no default constructor LLPlane(const LLVector3 &p0, F32 d) { setVec(p0, d); } LLPlane(const LLVector3 &p0, const LLVector3 &n) { setVec(p0, n); } inline void setVec(const LLVector3 &p0, F32 d) { mV.set(p0[0], p0[1], p0[2], d); } // Set inline void setVec(const LLVector3 &p0, const LLVector3 &n) { F32 d = -(p0 * n); setVec(n, d); } inline void setVec(const LLVector3 &p0, const LLVector3 &p1, const LLVector3 &p2) { LLVector3 u, v, w; u = p1 - p0; v = p2 - p0; w = u % v; w.normVec(); F32 d = -(w * p0); setVec(w, d); } inline LLPlane& operator=(const LLVector4& v2) { mV.set(v2[0],v2[1],v2[2],v2[3]); return *this;} inline LLPlane& operator=(const LLVector4a& v2) { mV.set(v2[0],v2[1],v2[2],v2[3]); return *this;} inline void set(const LLPlane& p2) { mV = p2.mV; } // F32 dist(const LLVector3 &v2) const { return mV[0]*v2[0] + mV[1]*v2[1] + mV[2]*v2[2] + mV[3]; } inline LLSimdScalar dot3(const LLVector4a& b) const { return mV.dot3(b); } // Read-only access a single float in this vector. Do not use in proximity to any function call that manipulates // the data at the whole vector level or you will incur a substantial penalty. Consider using the splat functions instead inline F32 operator[](const S32 idx) const { return mV[idx]; } // preferable when index is known at compile time template <int N> LL_FORCE_INLINE void getAt(LLSimdScalar& v) const { v = mV.getScalarAt<N>(); } // reset the vector to 0, 0, 0, 1 inline void clear() { mV.set(0, 0, 0, 1); } inline void getVector3(LLVector3& vec) const { vec.set(mV[0], mV[1], mV[2]); } // Retrieve the mask indicating which of the x, y, or z axis are greater or equal to zero. inline U8 calcPlaneMask() { return mV.greaterEqual(LLVector4a::getZero()).getGatheredBits() & LLVector4Logical::MASK_XYZ; } private: LLVector4a mV; }; #endif // LL_LLPLANE_H