/** * @file llmath.h * @brief Useful math constants and macros. * * $LicenseInfo:firstyear=2000&license=viewergpl$ * * Copyright (c) 2000-2009, Linden Research, Inc. * * Second Life Viewer Source Code * The source code in this file ("Source Code") is provided by Linden Lab * to you under the terms of the GNU General Public License, version 2.0 * ("GPL"), unless you have obtained a separate licensing agreement * ("Other License"), formally executed by you and Linden Lab. Terms of * the GPL can be found in doc/GPL-license.txt in this distribution, or * online at http://secondlifegrid.net/programs/open_source/licensing/gplv2 * * There are special exceptions to the terms and conditions of the GPL as * it is applied to this Source Code. View the full text of the exception * in the file doc/FLOSS-exception.txt in this software distribution, or * online at * http://secondlifegrid.net/programs/open_source/licensing/flossexception * * By copying, modifying or distributing this software, you acknowledge * that you have read and understood your obligations described above, * and agree to abide by those obligations. * * ALL LINDEN LAB SOURCE CODE IS PROVIDED "AS IS." LINDEN LAB MAKES NO * WARRANTIES, EXPRESS, IMPLIED OR OTHERWISE, REGARDING ITS ACCURACY, * COMPLETENESS OR PERFORMANCE. * $/LicenseInfo$ */ #ifndef LLMATH_H #define LLMATH_H #include <cmath> #include <cstdlib> #include <complex> #include "lldefs.h" //#include "llstl.h" // *TODO: Remove when LLString is gone //#include "llstring.h" // *TODO: Remove when LLString is gone // lltut.h uses is_approx_equal_fraction(). This was moved to its own header // file in llcommon so we can use lltut.h for llcommon tests without making // llcommon depend on llmath. #include "is_approx_equal_fraction.h" // work around for Windows & older gcc non-standard function names. #if LL_WINDOWS #include <float.h> #define llisnan(val) _isnan(val) #define llfinite(val) _finite(val) #elif (LL_LINUX && __GNUC__ <= 2) #define llisnan(val) isnan(val) #define llfinite(val) isfinite(val) #elif LL_SOLARIS #define llisnan(val) isnan(val) #define llfinite(val) (val <= std::numeric_limits<double>::max()) #else #define llisnan(val) std::isnan(val) #define llfinite(val) std::isfinite(val) #endif // Single Precision Floating Point Routines #ifndef fsqrtf #define fsqrtf(x) ((F32)sqrt((F64)(x))) #endif #ifndef sqrtf #define sqrtf(x) ((F32)sqrt((F64)(x))) #endif #ifndef cosf #define cosf(x) ((F32)cos((F64)(x))) #endif #ifndef sinf #define sinf(x) ((F32)sin((F64)(x))) #endif #ifndef tanf #define tanf(x) ((F32)tan((F64)(x))) #endif #ifndef acosf #define acosf(x) ((F32)acos((F64)(x))) #endif #ifndef powf #define powf(x,y) ((F32)pow((F64)(x),(F64)(y))) #endif const F32 GRAVITY = -9.8f; // mathematical constants const F32 F_PI = 3.1415926535897932384626433832795f; const F32 F_TWO_PI = 6.283185307179586476925286766559f; const F32 F_PI_BY_TWO = 1.5707963267948966192313216916398f; const F32 F_SQRT_TWO_PI = 2.506628274631000502415765284811f; const F32 F_E = 2.71828182845904523536f; const F32 F_SQRT2 = 1.4142135623730950488016887242097f; const F32 F_SQRT3 = 1.73205080756888288657986402541f; const F32 OO_SQRT2 = 0.7071067811865475244008443621049f; const F32 DEG_TO_RAD = 0.017453292519943295769236907684886f; const F32 RAD_TO_DEG = 57.295779513082320876798154814105f; const F32 F_APPROXIMATELY_ZERO = 0.00001f; const F32 F_LN2 = 0.69314718056f; const F32 OO_LN2 = 1.4426950408889634073599246810019f; const F32 F_ALMOST_ZERO = 0.0001f; const F32 F_ALMOST_ONE = 1.0f - F_ALMOST_ZERO; // BUG: Eliminate in favor of F_APPROXIMATELY_ZERO above? const F32 FP_MAG_THRESHOLD = 0.0000001f; // TODO: Replace with logic like is_approx_equal inline BOOL is_approx_zero( F32 f ) { return (-F_APPROXIMATELY_ZERO < f) && (f < F_APPROXIMATELY_ZERO); } // These functions work by interpreting sign+exp+mantissa as an unsigned // integer. // For example: // x = <sign>1 <exponent>00000010 <mantissa>00000000000000000000000 // y = <sign>1 <exponent>00000001 <mantissa>11111111111111111111111 // // interpreted as ints = // x = 10000001000000000000000000000000 // y = 10000000111111111111111111111111 // which is clearly a different of 1 in the least significant bit // Values with the same exponent can be trivially shown to work. // // WARNING: Denormals of opposite sign do not work // x = <sign>1 <exponent>00000000 <mantissa>00000000000000000000001 // y = <sign>0 <exponent>00000000 <mantissa>00000000000000000000001 // Although these values differ by 2 in the LSB, the sign bit makes // the int comparison fail. // // WARNING: NaNs can compare equal // There is no special treatment of exceptional values like NaNs // // WARNING: Infinity is comparable with F32_MAX and negative // infinity is comparable with F32_MIN inline BOOL is_approx_equal(F32 x, F32 y) { const S32 COMPARE_MANTISSA_UP_TO_BIT = 0x02; return (std::abs((S32) ((U32&)x - (U32&)y) ) < COMPARE_MANTISSA_UP_TO_BIT); } inline BOOL is_approx_equal(F64 x, F64 y) { const S64 COMPARE_MANTISSA_UP_TO_BIT = 0x02; return (std::abs((S32) ((U64&)x - (U64&)y) ) < COMPARE_MANTISSA_UP_TO_BIT); } inline S32 llabs(const S32 a) { return S32(std::labs(a)); } inline F32 llabs(const F32 a) { return F32(std::fabs(a)); } inline F64 llabs(const F64 a) { return F64(std::fabs(a)); } inline S32 lltrunc( F32 f ) { #if LL_WINDOWS && !defined( __INTEL_COMPILER ) // Avoids changing the floating point control word. // Add or subtract 0.5 - epsilon and then round const static U32 zpfp[] = { 0xBEFFFFFF, 0x3EFFFFFF }; S32 result; __asm { fld f mov eax, f shr eax, 29 and eax, 4 fadd dword ptr [zpfp + eax] fistp result } return result; #else return (S32)f; #endif } inline S32 lltrunc( F64 f ) { return (S32)f; } inline S32 llfloor( F32 f ) { #if LL_WINDOWS && !defined( __INTEL_COMPILER ) // Avoids changing the floating point control word. // Accurate (unlike Stereopsis version) for all values between S32_MIN and S32_MAX and slightly faster than Stereopsis version. // Add -(0.5 - epsilon) and then round const U32 zpfp = 0xBEFFFFFF; S32 result; __asm { fld f fadd dword ptr [zpfp] fistp result } return result; #else return (S32)floor(f); #endif } inline S32 llceil( F32 f ) { // This could probably be optimized, but this works. return (S32)ceil(f); } #ifndef BOGUS_ROUND // Use this round. Does an arithmetic round (0.5 always rounds up) inline S32 llround(const F32 val) { return llfloor(val + 0.5f); } #else // BOGUS_ROUND // Old llround implementation - does banker's round (toward nearest even in the case of a 0.5. // Not using this because we don't have a consistent implementation on both platforms, use // llfloor(val + 0.5f), which is consistent on all platforms. inline S32 llround(const F32 val) { #if LL_WINDOWS // Note: assumes that the floating point control word is set to rounding mode (the default) S32 ret_val; _asm fld val _asm fistp ret_val; return ret_val; #elif LL_LINUX // Note: assumes that the floating point control word is set // to rounding mode (the default) S32 ret_val; __asm__ __volatile__( "flds %1 \n\t" "fistpl %0 \n\t" : "=m" (ret_val) : "m" (val) ); return ret_val; #else return llfloor(val + 0.5f); #endif } // A fast arithmentic round on intel, from Laurent de Soras http://ldesoras.free.fr inline int round_int(double x) { const float round_to_nearest = 0.5f; int i; __asm { fld x fadd st, st (0) fadd round_to_nearest fistp i sar i, 1 } return (i); } #endif // BOGUS_ROUND inline F32 llround( F32 val, F32 nearest ) { return F32(floor(val * (1.0f / nearest) + 0.5f)) * nearest; } inline F64 llround( F64 val, F64 nearest ) { return F64(floor(val * (1.0 / nearest) + 0.5)) * nearest; } // these provide minimum peak error // // avg error = -0.013049 // peak error = -31.4 dB // RMS error = -28.1 dB const F32 FAST_MAG_ALPHA = 0.960433870103f; const F32 FAST_MAG_BETA = 0.397824734759f; // these provide minimum RMS error // // avg error = 0.000003 // peak error = -32.6 dB // RMS error = -25.7 dB // //const F32 FAST_MAG_ALPHA = 0.948059448969f; //const F32 FAST_MAG_BETA = 0.392699081699f; inline F32 fastMagnitude(F32 a, F32 b) { a = (a > 0) ? a : -a; b = (b > 0) ? b : -b; return(FAST_MAG_ALPHA * llmax(a,b) + FAST_MAG_BETA * llmin(a,b)); } //////////////////// // // Fast F32/S32 conversions // // Culled from www.stereopsis.com/FPU.html const F64 LL_DOUBLE_TO_FIX_MAGIC = 68719476736.0*1.5; //2^36 * 1.5, (52-_shiftamt=36) uses limited precisicion to floor const S32 LL_SHIFT_AMOUNT = 16; //16.16 fixed point representation, // Endian dependent code #ifdef LL_LITTLE_ENDIAN #define LL_EXP_INDEX 1 #define LL_MAN_INDEX 0 #else #define LL_EXP_INDEX 0 #define LL_MAN_INDEX 1 #endif /* Deprecated: use llround(), lltrunc(), or llfloor() instead // ================================================================================================ // Real2Int // ================================================================================================ inline S32 F64toS32(F64 val) { val = val + LL_DOUBLE_TO_FIX_MAGIC; return ((S32*)&val)[LL_MAN_INDEX] >> LL_SHIFT_AMOUNT; } // ================================================================================================ // Real2Int // ================================================================================================ inline S32 F32toS32(F32 val) { return F64toS32 ((F64)val); } */ //////////////////////////////////////////////// // // Fast exp and log // // Implementation of fast exp() approximation (from a paper by Nicol N. Schraudolph // http://www.inf.ethz.ch/~schraudo/pubs/exp.pdf static union { double d; struct { #ifdef LL_LITTLE_ENDIAN S32 j, i; #else S32 i, j; #endif } n; } LLECO; // not sure what the name means #define LL_EXP_A (1048576 * OO_LN2) // use 1512775 for integer #define LL_EXP_C (60801) // this value of C good for -4 < y < 4 #define LL_FAST_EXP(y) (LLECO.n.i = llround(F32(LL_EXP_A*(y))) + (1072693248 - LL_EXP_C), LLECO.d) inline F32 llfastpow(const F32 x, const F32 y) { return (F32)(LL_FAST_EXP(y * log(x))); } inline F32 snap_to_sig_figs(F32 foo, S32 sig_figs) { // compute the power of ten F32 bar = 1.f; for (S32 i = 0; i < sig_figs; i++) { bar *= 10.f; } foo = (F32)llround(foo * bar); // shift back foo /= bar; return foo; } inline F32 lerp(F32 a, F32 b, F32 u) { return a + ((b - a) * u); } inline F32 lerp2d(F32 x00, F32 x01, F32 x10, F32 x11, F32 u, F32 v) { F32 a = x00 + (x01-x00)*u; F32 b = x10 + (x11-x10)*u; F32 r = a + (b-a)*v; return r; } inline F32 ramp(F32 x, F32 a, F32 b) { return (a == b) ? 0.0f : ((a - x) / (a - b)); } inline F32 rescale(F32 x, F32 x1, F32 x2, F32 y1, F32 y2) { return lerp(y1, y2, ramp(x, x1, x2)); } inline F32 clamp_rescale(F32 x, F32 x1, F32 x2, F32 y1, F32 y2) { if (y1 < y2) { return llclamp(rescale(x,x1,x2,y1,y2),y1,y2); } else { return llclamp(rescale(x,x1,x2,y1,y2),y2,y1); } } inline F32 cubic_step( F32 x, F32 x0, F32 x1, F32 s0, F32 s1 ) { if (x <= x0) return s0; if (x >= x1) return s1; F32 f = (x - x0) / (x1 - x0); return s0 + (s1 - s0) * (f * f) * (3.0f - 2.0f * f); } inline F32 cubic_step( F32 x ) { x = llclampf(x); return (x * x) * (3.0f - 2.0f * x); } inline F32 quadratic_step( F32 x, F32 x0, F32 x1, F32 s0, F32 s1 ) { if (x <= x0) return s0; if (x >= x1) return s1; F32 f = (x - x0) / (x1 - x0); F32 f_squared = f * f; return (s0 * (1.f - f_squared)) + ((s1 - s0) * f_squared); } inline F32 llsimple_angle(F32 angle) { while(angle <= -F_PI) angle += F_TWO_PI; while(angle > F_PI) angle -= F_TWO_PI; return angle; } //SDK - Renamed this to get_lower_power_two, since this is what this actually does. inline U32 get_lower_power_two(U32 val, U32 max_power_two) { if(!max_power_two) { max_power_two = 1 << 31 ; } if(max_power_two & (max_power_two - 1)) { return 0 ; } for(; val < max_power_two ; max_power_two >>= 1) ; return max_power_two ; } // calculate next highest power of two, limited by max_power_two // This is taken from a brilliant little code snipped on http://acius2.blogspot.com/2007/11/calculating-next-power-of-2.html // Basically we convert the binary to a solid string of 1's with the same // number of digits, then add one. We subtract 1 initially to handle // the case where the number passed in is actually a power of two. // WARNING: this only works with 32 bit ints. inline U32 get_next_power_two(U32 val, U32 max_power_two) { if(!max_power_two) { max_power_two = 1 << 31 ; } if(val >= max_power_two) { return max_power_two; } val--; val = (val >> 1) | val; val = (val >> 2) | val; val = (val >> 4) | val; val = (val >> 8) | val; val = (val >> 16) | val; val++; return val; } //get the gaussian value given the linear distance from axis x and guassian value o inline F32 llgaussian(F32 x, F32 o) { return 1.f/(F_SQRT_TWO_PI*o)*powf(F_E, -(x*x)/(2*o*o)); } #endif