/** * @file llline.cpp * @author Andrew Meadows * @brief Simple line class that can compute nearest approach between two lines * * Copyright (c) 2001-$CurrentYear$, Linden Research, Inc. * $License$ */ #include "llline.h" #include "llrand.h" const F32 SOME_SMALL_NUMBER = 1.0e-5f; const F32 SOME_VERY_SMALL_NUMBER = 1.0e-8f; LLLine::LLLine() : mPoint(0.f, 0.f, 0.f), mDirection(1.f, 0.f, 0.f) { } LLLine::LLLine( const LLVector3& first_point, const LLVector3& second_point ) { setPoints(first_point, second_point); } void LLLine::setPoints( const LLVector3& first_point, const LLVector3& second_point ) { mPoint = first_point; mDirection = second_point - first_point; mDirection.normalize(); } void LLLine::setPointDirection( const LLVector3& first_point, const LLVector3& second_point ) { setPoints(first_point, first_point + second_point); } bool LLLine::intersects( const LLVector3& point, F32 radius ) const { LLVector3 other_direction = point - mPoint; LLVector3 nearest_point = mPoint + mDirection * (other_direction * mDirection); F32 nearest_approach = (nearest_point - point).length(); return (nearest_approach <= radius); } // returns the point on this line that is closest to some_point LLVector3 LLLine::nearestApproach( const LLVector3& some_point ) const { return (mPoint + mDirection * ((some_point - mPoint) * mDirection)); } // the accuracy of this method sucks when you give it two nearly // parallel lines, so you should probably check for parallelism // before you call this // // returns the point on this line that is closest to other_line LLVector3 LLLine::nearestApproach( const LLLine& other_line ) const { LLVector3 between_points = other_line.mPoint - mPoint; F32 dir_dot_dir = mDirection * other_line.mDirection; F32 one_minus_dir_dot_dir = 1.0f - fabs(dir_dot_dir); if ( one_minus_dir_dot_dir < SOME_VERY_SMALL_NUMBER ) { #ifdef LL_DEBUG llwarns << "LLLine::nearestApproach() was given two very " << "nearly parallel lines dir1 = " << mDirection << " dir2 = " << other_line.mDirection << " with 1-dot_product = " << one_minus_dir_dot_dir << llendl; #endif // the lines are approximately parallel // We shouldn't fall in here because this check should have been made // BEFORE this function was called. We dare not continue with the // computations for fear of division by zero, but we have to return // something so we return a bogus point -- caller beware. return 0.5f * (mPoint + other_line.mPoint); } F32 odir_dot_bp = other_line.mDirection * between_points; F32 numerator = 0; F32 denominator = 0; for (S32 i=0; i<3; i++) { F32 factor = dir_dot_dir * other_line.mDirection.mV[i] - mDirection.mV[i]; numerator += ( between_points.mV[i] - odir_dot_bp * other_line.mDirection.mV[i] ) * factor; denominator -= factor * factor; } F32 length_to_nearest_approach = numerator / denominator; return mPoint + length_to_nearest_approach * mDirection; } std::ostream& operator<<( std::ostream& output_stream, const LLLine& line ) { output_stream << "{point=" << line.mPoint << "," << "dir=" << line.mDirection << "}"; return output_stream; } F32 ALMOST_PARALLEL = 0.99f; F32 TOO_SMALL_FOR_DIVISION = 0.0001f; // returns 'true' if this line intersects the plane // on success stores the intersection point in 'result' bool LLLine::intersectsPlane( LLVector3& result, const LLLine& plane ) const { // p = P + l * d equation for a line // // N * p = D equation for a point // // N * (P + l * d) = D // N*P + l * (N*d) = D // l * (N*d) = D - N*P // l = ( D - N*P ) / ( N*d ) // F32 dot = plane.mDirection * mDirection; if (fabs(dot) < TOO_SMALL_FOR_DIVISION) { return false; } F32 plane_dot = plane.mDirection * plane.mPoint; F32 length = ( plane_dot - (plane.mDirection * mPoint) ) / dot; result = mPoint + length * mDirection; return true; } //static // returns 'true' if planes intersect, and stores the result // the second and third arguments are treated as planes // where mPoint is on the plane and mDirection is the normal // result.mPoint will be the intersection line's closest approach // to first_plane.mPoint bool LLLine::getIntersectionBetweenTwoPlanes( LLLine& result, const LLLine& first_plane, const LLLine& second_plane ) { // TODO -- if we ever get some generic matrix solving code in our libs // then we should just use that, since this problem is really just // linear algebra. F32 dot = fabs(first_plane.mDirection * second_plane.mDirection); if (dot > ALMOST_PARALLEL) { // the planes are nearly parallel return false; } LLVector3 direction = first_plane.mDirection % second_plane.mDirection; direction.normalize(); LLVector3 first_intersection; { LLLine intersection_line(first_plane); intersection_line.mDirection = direction % first_plane.mDirection; intersection_line.mDirection.normalize(); intersection_line.intersectsPlane(first_intersection, second_plane); } /* LLVector3 second_intersection; { LLLine intersection_line(second_plane); intersection_line.mDirection = direction % second_plane.mDirection; intersection_line.mDirection.normalize(); intersection_line.intersectsPlane(second_intersection, first_plane); } */ result.mPoint = first_intersection; result.mDirection = direction; return true; }