/** * @file llimagej2c.cpp * * $LicenseInfo:firstyear=2001&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" #include "lldir.h" #include "llimagej2c.h" #include "llmemtype.h" #include "lltimer.h" #include "llmath.h" typedef LLImageJ2CImpl* (*CreateLLImageJ2CFunction)(); typedef void (*DestroyLLImageJ2CFunction)(LLImageJ2CImpl*); typedef const char* (*EngineInfoLLImageJ2CFunction)(); // Declare the prototype for theses functions here. Their functionality // will be implemented in other files which define a derived LLImageJ2CImpl // but only ONE static library which has the implementation for these // functions should ever be included. LLImageJ2CImpl* fallbackCreateLLImageJ2CImpl(); void fallbackDestroyLLImageJ2CImpl(LLImageJ2CImpl* impl); const char* fallbackEngineInfoLLImageJ2CImpl(); // Test data gathering handle LLImageCompressionTester* LLImageJ2C::sTesterp = NULL ; const std::string sTesterName("ImageCompressionTester"); //static std::string LLImageJ2C::getEngineInfo() { return fallbackEngineInfoLLImageJ2CImpl(); } LLImageJ2C::LLImageJ2C() : LLImageFormatted(IMG_CODEC_J2C), mMaxBytes(0), mRawDiscardLevel(-1), mRate(0.0f), mReversible(FALSE), mAreaUsedForDataSizeCalcs(0) { mImpl = fallbackCreateLLImageJ2CImpl(); // Clear data size table for( S32 i = 0; i <= MAX_DISCARD_LEVEL; i++) { // Array size is MAX_DISCARD_LEVEL+1 mDataSizes[i] = 0; } // If that test log has ben requested but not yet created, create it if (LLMetricPerformanceTesterBasic::isMetricLogRequested(sTesterName) && !LLMetricPerformanceTesterBasic::getTester(sTesterName)) { sTesterp = new LLImageCompressionTester() ; if (!sTesterp->isValid()) { delete sTesterp; sTesterp = NULL; } } } // virtual LLImageJ2C::~LLImageJ2C() { if ( mImpl ) { fallbackDestroyLLImageJ2CImpl(mImpl); } } // virtual void LLImageJ2C::resetLastError() { mLastError.clear(); } //virtual void LLImageJ2C::setLastError(const std::string& message, const std::string& filename) { mLastError = message; if (!filename.empty()) mLastError += std::string(" FILE: ") + filename; } // virtual S8 LLImageJ2C::getRawDiscardLevel() { return mRawDiscardLevel; } BOOL LLImageJ2C::updateData() { BOOL res = TRUE; resetLastError(); // Check to make sure that this instance has been initialized with data if (!getData() || (getDataSize() < 16)) { setLastError("LLImageJ2C uninitialized"); res = FALSE; } else { res = mImpl->getMetadata(*this); } if (res) { // SJB: override discard based on mMaxBytes elsewhere S32 max_bytes = getDataSize(); // mMaxBytes ? mMaxBytes : getDataSize(); S32 discard = calcDiscardLevelBytes(max_bytes); setDiscardLevel(discard); } if (!mLastError.empty()) { LLImage::setLastError(mLastError); } return res; } BOOL LLImageJ2C::decode(LLImageRaw *raw_imagep, F32 decode_time) { return decodeChannels(raw_imagep, decode_time, 0, 4); } // Returns TRUE to mean done, whether successful or not. BOOL LLImageJ2C::decodeChannels(LLImageRaw *raw_imagep, F32 decode_time, S32 first_channel, S32 max_channel_count ) { LLTimer elapsed; LLMemType mt1(mMemType); BOOL res = TRUE; resetLastError(); // Check to make sure that this instance has been initialized with data if (!getData() || (getDataSize() < 16)) { setLastError("LLImageJ2C uninitialized"); res = TRUE; // done } else { // Update the raw discard level updateRawDiscardLevel(); mDecoding = TRUE; res = mImpl->decodeImpl(*this, *raw_imagep, decode_time, first_channel, max_channel_count); } if (res) { if (!mDecoding) { // Failed raw_imagep->deleteData(); } else { mDecoding = FALSE; } } if (!mLastError.empty()) { LLImage::setLastError(mLastError); } LLImageCompressionTester* tester = (LLImageCompressionTester*)LLMetricPerformanceTesterBasic::getTester(sTesterName); if (tester) { // Decompression stat gathering // Note that we *do not* take into account the decompression failures data so we might overestimate the time spent processing // Always add the decompression time to the stat tester->updateDecompressionStats(elapsed.getElapsedTimeF32()) ; if (res) { // The whole data stream is finally decompressed when res is returned as TRUE tester->updateDecompressionStats(this->getDataSize(), raw_imagep->getDataSize()) ; } } return res; } BOOL LLImageJ2C::encode(const LLImageRaw *raw_imagep, F32 encode_time) { return encode(raw_imagep, NULL, encode_time); } BOOL LLImageJ2C::encode(const LLImageRaw *raw_imagep, const char* comment_text, F32 encode_time) { LLTimer elapsed; LLMemType mt1(mMemType); resetLastError(); BOOL res = mImpl->encodeImpl(*this, *raw_imagep, comment_text, encode_time, mReversible); if (!mLastError.empty()) { LLImage::setLastError(mLastError); } LLImageCompressionTester* tester = (LLImageCompressionTester*)LLMetricPerformanceTesterBasic::getTester(sTesterName); if (tester) { // Compression stat gathering // Note that we *do not* take into account the compression failures cases so we night overestimate the time spent processing // Always add the compression time to the stat tester->updateCompressionStats(elapsed.getElapsedTimeF32()) ; if (res) { // The whole data stream is finally compressed when res is returned as TRUE tester->updateCompressionStats(this->getDataSize(), raw_imagep->getDataSize()) ; } } return res; } //static S32 LLImageJ2C::calcHeaderSizeJ2C() { return FIRST_PACKET_SIZE; // Hack. just needs to be >= actual header size... } //static S32 LLImageJ2C::calcDataSizeJ2C(S32 w, S32 h, S32 comp, S32 discard_level, F32 rate) { if (rate <= 0.f) rate = .125f; while (discard_level > 0) { if (w < 1 || h < 1) break; w >>= 1; h >>= 1; discard_level--; } S32 bytes = (S32)((F32)(w*h*comp)*rate); bytes = llmax(bytes, calcHeaderSizeJ2C()); return bytes; } S32 LLImageJ2C::calcHeaderSize() { return calcHeaderSizeJ2C(); } // calcDataSize() returns how many bytes to read // to load discard_level (including header and higher discard levels) S32 LLImageJ2C::calcDataSize(S32 discard_level) { discard_level = llclamp(discard_level, 0, MAX_DISCARD_LEVEL); if ( mAreaUsedForDataSizeCalcs != (getHeight() * getWidth()) || mDataSizes[0] == 0) { mAreaUsedForDataSizeCalcs = getHeight() * getWidth(); S32 level = MAX_DISCARD_LEVEL; // Start at the highest discard while ( level >= 0 ) { mDataSizes[level] = calcDataSizeJ2C(getWidth(), getHeight(), getComponents(), level, mRate); level--; } /* This is technically a more correct way to calculate the size required for each discard level, since they should include the size needed for lower levels. Unfortunately, this doesn't work well and will lead to download stalls. The true correct way is to parse the header. This will all go away with http textures at some point. // Calculate the size for each discard level. Lower levels (higher quality) // contain the cumulative size of higher levels S32 total_size = calcHeaderSizeJ2C(); S32 level = MAX_DISCARD_LEVEL; // Start at the highest discard while ( level >= 0 ) { // Add in this discard level and all before it total_size += calcDataSizeJ2C(getWidth(), getHeight(), getComponents(), level, mRate); mDataSizes[level] = total_size; level--; } */ } return mDataSizes[discard_level]; } S32 LLImageJ2C::calcDiscardLevelBytes(S32 bytes) { llassert(bytes >= 0); S32 discard_level = 0; if (bytes == 0) { return MAX_DISCARD_LEVEL; } while (1) { S32 bytes_needed = calcDataSize(discard_level); // virtual if (bytes >= bytes_needed - (bytes_needed>>2)) // For J2c, up the res at 75% of the optimal number of bytes { break; } discard_level++; if (discard_level >= MAX_DISCARD_LEVEL) { break; } } return discard_level; } void LLImageJ2C::setRate(F32 rate) { mRate = rate; } void LLImageJ2C::setMaxBytes(S32 max_bytes) { mMaxBytes = max_bytes; } void LLImageJ2C::setReversible(const BOOL reversible) { mReversible = reversible; } BOOL LLImageJ2C::loadAndValidate(const std::string &filename) { BOOL res = TRUE; resetLastError(); S32 file_size = 0; LLAPRFile infile(filename, LL_APR_RB, &file_size); apr_file_t* apr_file = infile.getFileHandle() ; if (!apr_file) { setLastError("Unable to open file for reading", filename); res = FALSE; } else if (file_size == 0) { setLastError("File is empty",filename); res = FALSE; } else { U8 *data = (U8*)allocateMemory(file_size); apr_size_t bytes_read = file_size; apr_status_t s = apr_file_read(apr_file, data, &bytes_read); // modifies bytes_read infile.close() ; if (s != APR_SUCCESS || (S32)bytes_read != file_size) { deleteMemory(data); setLastError("Unable to read entire file"); res = FALSE; } else { res = validate(data, file_size); } } if (!mLastError.empty()) { LLImage::setLastError(mLastError); } return res; } BOOL LLImageJ2C::validate(U8 *data, U32 file_size) { LLMemType mt1(mMemType); resetLastError(); setData(data, file_size); BOOL res = updateData(); if ( res ) { // Check to make sure that this instance has been initialized with data if (!getData() || (0 == getDataSize())) { setLastError("LLImageJ2C uninitialized"); res = FALSE; } else { res = mImpl->getMetadata(*this); } } if (!mLastError.empty()) { LLImage::setLastError(mLastError); } return res; } void LLImageJ2C::decodeFailed() { mDecoding = FALSE; } void LLImageJ2C::updateRawDiscardLevel() { mRawDiscardLevel = mMaxBytes ? calcDiscardLevelBytes(mMaxBytes) : mDiscardLevel; } LLImageJ2CImpl::~LLImageJ2CImpl() { } //---------------------------------------------------------------------------------------------- // Start of LLImageCompressionTester //---------------------------------------------------------------------------------------------- LLImageCompressionTester::LLImageCompressionTester() : LLMetricPerformanceTesterBasic(sTesterName) { addMetric("Time Decompression (s)"); addMetric("Volume In Decompression (kB)"); addMetric("Volume Out Decompression (kB)"); addMetric("Decompression Ratio (x:1)"); addMetric("Perf Decompression (kB/s)"); addMetric("Time Compression (s)"); addMetric("Volume In Compression (kB)"); addMetric("Volume Out Compression (kB)"); addMetric("Compression Ratio (x:1)"); addMetric("Perf Compression (kB/s)"); mRunBytesInDecompression = 0; mRunBytesInCompression = 0; mTotalBytesInDecompression = 0; mTotalBytesOutDecompression = 0; mTotalBytesInCompression = 0; mTotalBytesOutCompression = 0; mTotalTimeDecompression = 0.0f; mTotalTimeCompression = 0.0f; } LLImageCompressionTester::~LLImageCompressionTester() { LLImageJ2C::sTesterp = NULL; } //virtual void LLImageCompressionTester::outputTestRecord(LLSD *sd) { std::string currentLabel = getCurrentLabelName(); F32 decompressionPerf = 0.0f; F32 compressionPerf = 0.0f; F32 decompressionRate = 0.0f; F32 compressionRate = 0.0f; F32 totalkBInDecompression = (F32)(mTotalBytesInDecompression) / 1000.0; F32 totalkBOutDecompression = (F32)(mTotalBytesOutDecompression) / 1000.0; F32 totalkBInCompression = (F32)(mTotalBytesInCompression) / 1000.0; F32 totalkBOutCompression = (F32)(mTotalBytesOutCompression) / 1000.0; if (!is_approx_zero(mTotalTimeDecompression)) { decompressionPerf = totalkBInDecompression / mTotalTimeDecompression; } if (!is_approx_zero(totalkBInDecompression)) { decompressionRate = totalkBOutDecompression / totalkBInDecompression; } if (!is_approx_zero(mTotalTimeCompression)) { compressionPerf = totalkBInCompression / mTotalTimeCompression; } if (!is_approx_zero(totalkBOutCompression)) { compressionRate = totalkBInCompression / totalkBOutCompression; } (*sd)[currentLabel]["Time Decompression (s)"] = (LLSD::Real)mTotalTimeDecompression; (*sd)[currentLabel]["Volume In Decompression (kB)"] = (LLSD::Real)totalkBInDecompression; (*sd)[currentLabel]["Volume Out Decompression (kB)"]= (LLSD::Real)totalkBOutDecompression; (*sd)[currentLabel]["Decompression Ratio (x:1)"] = (LLSD::Real)decompressionRate; (*sd)[currentLabel]["Perf Decompression (kB/s)"] = (LLSD::Real)decompressionPerf; (*sd)[currentLabel]["Time Compression (s)"] = (LLSD::Real)mTotalTimeCompression; (*sd)[currentLabel]["Volume In Compression (kB)"] = (LLSD::Real)totalkBInCompression; (*sd)[currentLabel]["Volume Out Compression (kB)"] = (LLSD::Real)totalkBOutCompression; (*sd)[currentLabel]["Compression Ratio (x:1)"] = (LLSD::Real)compressionRate; (*sd)[currentLabel]["Perf Compression (kB/s)"] = (LLSD::Real)compressionPerf; } void LLImageCompressionTester::updateCompressionStats(const F32 deltaTime) { mTotalTimeCompression += deltaTime; } void LLImageCompressionTester::updateCompressionStats(const S32 bytesCompress, const S32 bytesRaw) { mTotalBytesInCompression += bytesRaw; mRunBytesInCompression += bytesRaw; mTotalBytesOutCompression += bytesCompress; if (mRunBytesInCompression > (1000000)) { // Output everything outputTestResults(); // Reset the compression data of the run mRunBytesInCompression = 0; } } void LLImageCompressionTester::updateDecompressionStats(const F32 deltaTime) { mTotalTimeDecompression += deltaTime; } void LLImageCompressionTester::updateDecompressionStats(const S32 bytesIn, const S32 bytesOut) { mTotalBytesInDecompression += bytesIn; mRunBytesInDecompression += bytesIn; mTotalBytesOutDecompression += bytesOut; if (mRunBytesInDecompression > (1000000)) { // Output everything outputTestResults(); // Reset the decompression data of the run mRunBytesInDecompression = 0; } } //---------------------------------------------------------------------------------------------- // End of LLTexturePipelineTester //----------------------------------------------------------------------------------------------