/** * @file llsdserialize_test.cpp * @date 2006-04 * @brief LLSDSerialize unit tests * * $LicenseInfo:firstyear=2006&license=viewerlgpl$ * Second Life Viewer Source Code * Copyright (C) 2010, Linden Research, Inc. * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; * version 2.1 of the License only. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA * * Linden Research, Inc., 945 Battery Street, San Francisco, CA 94111 USA * $/LicenseInfo$ */ #include "linden_common.h" #if LL_WINDOWS #include typedef U32 uint32_t; #include #include #else #include #include #include #include #include #include #include "llprocesslauncher.h" #endif #include /*==========================================================================*| // Whoops, seems Linden's Boost package and the viewer are built with // different settings of VC's /Zc:wchar_t switch! Using Boost.Filesystem // pathname operations produces Windows link errors: // unresolved external symbol "private: static class std::codecvt const * & __cdecl boost::filesystem3::path::wchar_t_codecvt_facet()" // unresolved external symbol "void __cdecl boost::filesystem3::path_traits::convert()" // See: // http://boost.2283326.n4.nabble.com/filesystem-v3-unicode-and-std-codecvt-linker-error-td3455549.html // which points to: // http://msdn.microsoft.com/en-us/library/dh8che7s%28v=VS.100%29.aspx // As we're not trying to preserve compatibility with old Boost.Filesystem // code, but rather writing brand-new code, use the newest available // Filesystem API. #define BOOST_FILESYSTEM_VERSION 3 #include "boost/filesystem.hpp" #include "boost/filesystem/v3/fstream.hpp" |*==========================================================================*/ #include "boost/range.hpp" #include "boost/foreach.hpp" #include "boost/function.hpp" #include "boost/lambda/lambda.hpp" #include "boost/lambda/bind.hpp" namespace lambda = boost::lambda; /*==========================================================================*| // Aaaarrgh, Linden's Boost package doesn't even include Boost.Iostreams! #include "boost/iostreams/stream.hpp" #include "boost/iostreams/device/file_descriptor.hpp" |*==========================================================================*/ #include "../llsd.h" #include "../llsdserialize.h" #include "llsdutil.h" #include "../llformat.h" #include "../test/lltut.h" #include "stringize.h" std::vector string_to_vector(const std::string& str) { return std::vector(str.begin(), str.end()); } #if ! LL_WINDOWS // We want to call strerror_r(), but alarmingly, there are two different // variants. The one that returns int always populates the passed buffer // (except in case of error), whereas the other one always returns a valid // char* but might or might not populate the passed buffer. How do we know // which one we're getting? Define adapters for each and let the compiler // select the applicable adapter. // strerror_r() returns char* std::string message_from(int /*orig_errno*/, const char* /*buffer*/, const char* strerror_ret) { return strerror_ret; } // strerror_r() returns int std::string message_from(int orig_errno, const char* buffer, int strerror_ret) { if (strerror_ret == 0) { return buffer; } // Here strerror_r() has set errno. Since strerror_r() has already failed, // seems like a poor bet to call it again to diagnose its own error... int stre_errno = errno; if (stre_errno == ERANGE) { return STRINGIZE("strerror_r() can't explain errno " << orig_errno << " (buffer too small)"); } if (stre_errno == EINVAL) { return STRINGIZE("unknown errno " << orig_errno); } // Here we don't even understand the errno from strerror_r()! return STRINGIZE("strerror_r() can't explain errno " << orig_errno << " (error " << stre_errno << ')'); } #endif // ! LL_WINDOWS // boost::filesystem::temp_directory_path() isn't yet in Boost 1.45! :-( std::string temp_directory_path() { #if LL_WINDOWS char buffer[4096]; GetTempPathA(sizeof(buffer), buffer); return buffer; #else // LL_DARWIN, LL_LINUX static const char* vars[] = { "TMPDIR", "TMP", "TEMP", "TEMPDIR" }; BOOST_FOREACH(const char* var, vars) { const char* found = getenv(var); if (found) return found; } return "/tmp"; #endif // LL_DARWIN, LL_LINUX } // Windows presents a kinda sorta compatibility layer. Code to the yucky // Windows names because they're less likely than the Posix names to collide // with any other names in this source. #if LL_WINDOWS #define _remove DeleteFileA #else // ! LL_WINDOWS #define _open open #define _write write #define _close close #define _remove remove #endif // ! LL_WINDOWS // Create a text file with specified content "somewhere in the // filesystem," cleaning up when it goes out of scope. class NamedTempFile { public: // Function that accepts an ostream ref and (presumably) writes stuff to // it, e.g.: // (lambda::_1 << "the value is " << 17 << '\n') typedef boost::function Streamer; NamedTempFile(const std::string& ext, const std::string& content): mPath(temp_directory_path()) { createFile(ext, lambda::_1 << content); } // Disambiguate when passing string literal NamedTempFile(const std::string& ext, const char* content): mPath(temp_directory_path()) { createFile(ext, lambda::_1 << content); } NamedTempFile(const std::string& ext, const Streamer& func): mPath(temp_directory_path()) { createFile(ext, func); } ~NamedTempFile() { _remove(mPath.c_str()); } std::string getName() const { return mPath; } private: void createFile(const std::string& ext, const Streamer& func) { // Silly maybe, but use 'ext' as the name prefix. Strip off a leading // '.' if present. int pfx_offset = ((! ext.empty()) && ext[0] == '.')? 1 : 0; #if ! LL_WINDOWS // Make sure mPath ends with a directory separator, if it doesn't already. if (mPath.empty() || ! (mPath[mPath.length() - 1] == '\\' || mPath[mPath.length() - 1] == '/')) { mPath.append("/"); } // mkstemp() accepts and modifies a char* template string. Generate // the template string, then copy to modifiable storage. // mkstemp() requires its template string to end in six X's. mPath += ext.substr(pfx_offset) + "XXXXXX"; // Copy to vector std::vector pathtemplate(mPath.begin(), mPath.end()); // append a nul byte for classic-C semantics pathtemplate.push_back('\0'); // std::vector promises that a pointer to the 0th element is the same // as a pointer to a contiguous classic-C array int fd(mkstemp(&pathtemplate[0])); if (fd == -1) { // The documented errno values (http://linux.die.net/man/3/mkstemp) // are used in a somewhat unusual way, so provide context-specific // errors. if (errno == EEXIST) { LL_ERRS("NamedTempFile") << "mkstemp(\"" << mPath << "\") could not create unique file " << LL_ENDL; } if (errno == EINVAL) { LL_ERRS("NamedTempFile") << "bad mkstemp() file path template '" << mPath << "'" << LL_ENDL; } // Shrug, something else int mkst_errno = errno; char buffer[256]; LL_ERRS("NamedTempFile") << "mkstemp(\"" << mPath << "\") failed: " << message_from(mkst_errno, buffer, strerror_r(mkst_errno, buffer, sizeof(buffer))) << LL_ENDL; } // mkstemp() seems to have worked! Capture the modified filename. // Avoid the nul byte we appended. mPath.assign(pathtemplate.begin(), (pathtemplate.end()-1)); /*==========================================================================*| // Define an ostream on the open fd. Tell it to close fd on destruction. boost::iostreams::stream out(fd, boost::iostreams::close_handle); |*==========================================================================*/ // Write desired content. std::ostringstream out; // Stream stuff to it. func(out); std::string data(out.str()); int written(_write(fd, data.c_str(), data.length())); int closed(_close(fd)); llassert_always(written == data.length() && closed == 0); #else // LL_WINDOWS // GetTempFileName() is documented to require a MAX_PATH buffer. char tempname[MAX_PATH]; // Use 'ext' as filename prefix, but skip leading '.' if any. // The 0 param is very important: requests iterating until we get a // unique name. if (0 == GetTempFileNameA(mPath.c_str(), ext.c_str() + pfx_offset, 0, tempname)) { // I always have to look up this call... :-P LPVOID msgptr; FormatMessageA( FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL, GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), LPTSTR(&msgptr), 0, NULL ); LL_ERRS("NamedTempFile") << "GetTempFileName(\"" << mPath << "\", \"" << (ext.c_str() + pfx_offset) << "\") failed: " << msgptr << LL_ENDL; LocalFree(msgptr); } // GetTempFileName() appears to have worked! Capture the actual // filename. mPath = tempname; // Open the file and stream content to it. Destructor will close. std::ofstream out(tempname); func(out); #endif // LL_WINDOWS } void peep() { std::cout << "File '" << mPath << "' contains:\n"; std::ifstream reader(mPath.c_str()); std::string line; while (std::getline(reader, line)) std::cout << line << '\n'; std::cout << "---\n"; } std::string mPath; }; namespace tut { struct sd_xml_data { sd_xml_data() { mFormatter = new LLSDXMLFormatter; } LLSD mSD; LLPointer mFormatter; void xml_test(const char* name, const std::string& expected) { std::ostringstream ostr; mFormatter->format(mSD, ostr); ensure_equals(name, ostr.str(), expected); } }; typedef test_group sd_xml_test; typedef sd_xml_test::object sd_xml_object; tut::sd_xml_test sd_xml_stream("LLSDXMLFormatter"); template<> template<> void sd_xml_object::test<1>() { // random atomic tests std::string expected; expected = "\n"; xml_test("undef", expected); mSD = 3463; expected = "3463\n"; xml_test("integer", expected); mSD = ""; expected = "\n"; xml_test("empty string", expected); mSD = "foobar"; expected = "foobar\n"; xml_test("string", expected); mSD = LLUUID::null; expected = "\n"; xml_test("null uuid", expected); mSD = LLUUID("c96f9b1e-f589-4100-9774-d98643ce0bed"); expected = "c96f9b1e-f589-4100-9774-d98643ce0bed\n"; xml_test("uuid", expected); mSD = LLURI("https://secondlife.com/login"); expected = "https://secondlife.com/login\n"; xml_test("uri", expected); mSD = LLDate("2006-04-24T16:11:33Z"); expected = "2006-04-24T16:11:33Z\n"; xml_test("date", expected); // Generated by: echo -n 'hello' | openssl enc -e -base64 std::vector hello; hello.push_back('h'); hello.push_back('e'); hello.push_back('l'); hello.push_back('l'); hello.push_back('o'); mSD = hello; expected = "aGVsbG8=\n"; xml_test("binary", expected); } template<> template<> void sd_xml_object::test<2>() { // tests with boolean values. std::string expected; mFormatter->boolalpha(true); mSD = true; expected = "true\n"; xml_test("bool alpha true", expected); mSD = false; expected = "false\n"; xml_test("bool alpha false", expected); mFormatter->boolalpha(false); mSD = true; expected = "1\n"; xml_test("bool true", expected); mSD = false; expected = "0\n"; xml_test("bool false", expected); } template<> template<> void sd_xml_object::test<3>() { // tests with real values. std::string expected; mFormatter->realFormat("%.2f"); mSD = 1.0; expected = "1.00\n"; xml_test("real 1", expected); mSD = -34379.0438; expected = "-34379.04\n"; xml_test("real reduced precision", expected); mFormatter->realFormat("%.4f"); expected = "-34379.0438\n"; xml_test("higher precision", expected); mFormatter->realFormat("%.0f"); mSD = 0.0; expected = "0\n"; xml_test("no decimal 0", expected); mSD = 3287.4387; expected = "3287\n"; xml_test("no decimal real number", expected); } template<> template<> void sd_xml_object::test<4>() { // tests with arrays std::string expected; mSD = LLSD::emptyArray(); expected = "\n"; xml_test("empty array", expected); mSD.append(LLSD()); expected = "\n"; xml_test("1 element array", expected); mSD.append(1); expected = "1\n"; xml_test("2 element array", expected); } template<> template<> void sd_xml_object::test<5>() { // tests with arrays std::string expected; mSD = LLSD::emptyMap(); expected = "\n"; xml_test("empty map", expected); mSD["foo"] = "bar"; expected = "foobar\n"; xml_test("1 element map", expected); mSD["baz"] = LLSD(); expected = "bazfoobar\n"; xml_test("2 element map", expected); } template<> template<> void sd_xml_object::test<6>() { // tests with binary std::string expected; // Generated by: echo -n 'hello' | openssl enc -e -base64 mSD = string_to_vector("hello"); expected = "aGVsbG8=\n"; xml_test("binary", expected); mSD = string_to_vector("6|6|asdfhappybox|60e44ec5-305c-43c2-9a19-b4b89b1ae2a6|60e44ec5-305c-43c2-9a19-b4b89b1ae2a6|60e44ec5-305c-43c2-9a19-b4b89b1ae2a6|00000000-0000-0000-0000-000000000000|7fffffff|7fffffff|0|0|82000|450fe394-2904-c9ad-214c-a07eb7feec29|(No Description)|0|10|0"); expected = "Nnw2fGFzZGZoYXBweWJveHw2MGU0NGVjNS0zMDVjLTQzYzItOWExOS1iNGI4OWIxYWUyYTZ8NjBlNDRlYzUtMzA1Yy00M2MyLTlhMTktYjRiODliMWFlMmE2fDYwZTQ0ZWM1LTMwNWMtNDNjMi05YTE5LWI0Yjg5YjFhZTJhNnwwMDAwMDAwMC0wMDAwLTAwMDAtMDAwMC0wMDAwMDAwMDAwMDB8N2ZmZmZmZmZ8N2ZmZmZmZmZ8MHwwfDgyMDAwfDQ1MGZlMzk0LTI5MDQtYzlhZC0yMTRjLWEwN2ViN2ZlZWMyOXwoTm8gRGVzY3JpcHRpb24pfDB8MTB8MA==\n"; xml_test("binary", expected); } class TestLLSDSerializeData { public: TestLLSDSerializeData(); ~TestLLSDSerializeData(); void doRoundTripTests(const std::string&); void checkRoundTrip(const std::string&, const LLSD& v); LLPointer mFormatter; LLPointer mParser; }; TestLLSDSerializeData::TestLLSDSerializeData() { } TestLLSDSerializeData::~TestLLSDSerializeData() { } void TestLLSDSerializeData::checkRoundTrip(const std::string& msg, const LLSD& v) { std::stringstream stream; mFormatter->format(v, stream); //llinfos << "checkRoundTrip: length " << stream.str().length() << llendl; LLSD w; mParser->reset(); // reset() call is needed since test code re-uses mParser mParser->parse(stream, w, stream.str().size()); try { ensure_equals(msg.c_str(), w, v); } catch (...) { std::cerr << "the serialized string was:" << std::endl; std::cerr << stream.str() << std::endl; throw; } } static void fillmap(LLSD& root, U32 width, U32 depth) { if(depth == 0) { root["foo"] = "bar"; return; } for(U32 i = 0; i < width; ++i) { std::string key = llformat("child %d", i); root[key] = LLSD::emptyMap(); fillmap(root[key], width, depth - 1); } } void TestLLSDSerializeData::doRoundTripTests(const std::string& msg) { LLSD v; checkRoundTrip(msg + " undefined", v); v = true; checkRoundTrip(msg + " true bool", v); v = false; checkRoundTrip(msg + " false bool", v); v = 1; checkRoundTrip(msg + " positive int", v); v = 0; checkRoundTrip(msg + " zero int", v); v = -1; checkRoundTrip(msg + " negative int", v); v = 1234.5f; checkRoundTrip(msg + " positive float", v); v = 0.0f; checkRoundTrip(msg + " zero float", v); v = -1234.5f; checkRoundTrip(msg + " negative float", v); // FIXME: need a NaN test v = LLUUID::null; checkRoundTrip(msg + " null uuid", v); LLUUID newUUID; newUUID.generate(); v = newUUID; checkRoundTrip(msg + " new uuid", v); v = ""; checkRoundTrip(msg + " empty string", v); v = "some string"; checkRoundTrip(msg + " non-empty string", v); v = "Second Life is a 3-D virtual world entirely built and owned by its residents. " "Since opening to the public in 2003, it has grown explosively and today is " "inhabited by nearly 100,000 people from around the globe.\n" "\n" "From the moment you enter the World you'll discover a vast digital continent, " "teeming with people, entertainment, experiences and opportunity. Once you've " "explored a bit, perhaps you'll find a perfect parcel of land to build your " "house or business.\n" "\n" "You'll also be surrounded by the Creations of your fellow residents. Because " "residents retain the rights to their digital creations, they can buy, sell " "and trade with other residents.\n" "\n" "The Marketplace currently supports millions of US dollars in monthly " "transactions. This commerce is handled with the in-world currency, the Linden " "dollar, which can be converted to US dollars at several thriving online " "currency exchanges.\n" "\n" "Welcome to Second Life. We look forward to seeing you in-world!\n" ; checkRoundTrip(msg + " long string", v); static const U32 block_size = 0x000020; for (U32 block = 0x000000; block <= 0x10ffff; block += block_size) { std::ostringstream out; for (U32 c = block; c < block + block_size; ++c) { if (c <= 0x000001f && c != 0x000009 && c != 0x00000a) { // see XML standard, sections 2.2 and 4.1 continue; } if (0x00d800 <= c && c <= 0x00dfff) { continue; } if (0x00fdd0 <= c && c <= 0x00fdef) { continue; } if ((c & 0x00fffe) == 0x00fffe) { continue; } // see Unicode standard, section 15.8 if (c <= 0x00007f) { out << (char)(c & 0x7f); } else if (c <= 0x0007ff) { out << (char)(0xc0 | ((c >> 6) & 0x1f)); out << (char)(0x80 | ((c >> 0) & 0x3f)); } else if (c <= 0x00ffff) { out << (char)(0xe0 | ((c >> 12) & 0x0f)); out << (char)(0x80 | ((c >> 6) & 0x3f)); out << (char)(0x80 | ((c >> 0) & 0x3f)); } else { out << (char)(0xf0 | ((c >> 18) & 0x07)); out << (char)(0x80 | ((c >> 12) & 0x3f)); out << (char)(0x80 | ((c >> 6) & 0x3f)); out << (char)(0x80 | ((c >> 0) & 0x3f)); } } v = out.str(); std::ostringstream blockmsg; blockmsg << msg << " unicode string block 0x" << std::hex << block; checkRoundTrip(blockmsg.str(), v); } LLDate epoch; v = epoch; checkRoundTrip(msg + " epoch date", v); LLDate aDay("2002-12-07T05:07:15.00Z"); v = aDay; checkRoundTrip(msg + " date", v); LLURI path("http://slurl.com/secondlife/Ambleside/57/104/26/"); v = path; checkRoundTrip(msg + " url", v); const char source[] = "it must be a blue moon again"; std::vector data; copy(&source[0], &source[sizeof(source)], back_inserter(data)); v = data; checkRoundTrip(msg + " binary", v); v = LLSD::emptyMap(); checkRoundTrip(msg + " empty map", v); v = LLSD::emptyMap(); v["name"] = "luke"; //v.insert("name", "luke"); v["age"] = 3; //v.insert("age", 3); checkRoundTrip(msg + " map", v); v.clear(); v["a"]["1"] = true; v["b"]["0"] = false; checkRoundTrip(msg + " nested maps", v); v = LLSD::emptyArray(); checkRoundTrip(msg + " empty array", v); v = LLSD::emptyArray(); v.append("ali"); v.append(28); checkRoundTrip(msg + " array", v); v.clear(); v[0][0] = true; v[1][0] = false; checkRoundTrip(msg + " nested arrays", v); v = LLSD::emptyMap(); fillmap(v, 10, 3); // 10^6 maps checkRoundTrip(msg + " many nested maps", v); } typedef tut::test_group TestLLSDSerialzeGroup; typedef TestLLSDSerialzeGroup::object TestLLSDSerializeObject; TestLLSDSerialzeGroup gTestLLSDSerializeGroup("llsd serialization"); template<> template<> void TestLLSDSerializeObject::test<1>() { mFormatter = new LLSDNotationFormatter(); mParser = new LLSDNotationParser(); doRoundTripTests("notation serialization"); } template<> template<> void TestLLSDSerializeObject::test<2>() { mFormatter = new LLSDXMLFormatter(); mParser = new LLSDXMLParser(); doRoundTripTests("xml serialization"); } template<> template<> void TestLLSDSerializeObject::test<3>() { mFormatter = new LLSDBinaryFormatter(); mParser = new LLSDBinaryParser(); doRoundTripTests("binary serialization"); } /** * @class TestLLSDParsing * @brief Base class for of a parse tester. */ template class TestLLSDParsing { public: TestLLSDParsing() { mParser = new parser_t; } void ensureParse( const std::string& msg, const std::string& in, const LLSD& expected_value, S32 expected_count) { std::stringstream input; input.str(in); LLSD parsed_result; mParser->reset(); // reset() call is needed since test code re-uses mParser S32 parsed_count = mParser->parse(input, parsed_result, in.size()); ensure_equals(msg.c_str(), parsed_result, expected_value); // This count check is really only useful for expected // parse failures, since the ensures equal will already // require eqality. std::string count_msg(msg); count_msg += " (count)"; ensure_equals(count_msg, parsed_count, expected_count); } LLPointer mParser; }; /** * @class TestLLSDXMLParsing * @brief Concrete instance of a parse tester. */ class TestLLSDXMLParsing : public TestLLSDParsing { public: TestLLSDXMLParsing() {} }; typedef tut::test_group TestLLSDXMLParsingGroup; typedef TestLLSDXMLParsingGroup::object TestLLSDXMLParsingObject; TestLLSDXMLParsingGroup gTestLLSDXMLParsingGroup("llsd XML parsing"); template<> template<> void TestLLSDXMLParsingObject::test<1>() { // test handling of xml not recognized as llsd results in an // LLSD Undefined ensureParse( "malformed xml", "ha ha", LLSD(), LLSDParser::PARSE_FAILURE); ensureParse( "not llsd", "

ha ha

", LLSD(), LLSDParser::PARSE_FAILURE); ensureParse( "value without llsd", "ha ha", LLSD(), LLSDParser::PARSE_FAILURE); ensureParse( "key without llsd", "ha ha", LLSD(), LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDXMLParsingObject::test<2>() { // test handling of unrecognized or unparseable llsd values LLSD v; v["amy"] = 23; v["bob"] = LLSD(); v["cam"] = 1.23; ensureParse( "unknown data type", "" "amy23" "bob99999999999999999" "cam1.23" "", v, v.size() + 1); } template<> template<> void TestLLSDXMLParsingObject::test<3>() { // test handling of nested bad data LLSD v; v["amy"] = 23; v["cam"] = 1.23; ensureParse( "map with html", "" "amy23" "ha ha" "cam1.23" "", v, v.size() + 1); v.clear(); v["amy"] = 23; v["cam"] = 1.23; ensureParse( "map with value for key", "" "amy23" "ha ha" "cam1.23" "", v, v.size() + 1); v.clear(); v["amy"] = 23; v["bob"] = LLSD::emptyMap(); v["cam"] = 1.23; ensureParse( "map with map of html", "" "amy23" "bob" "" "ha ha" "" "cam1.23" "", v, v.size() + 1); v.clear(); v[0] = 23; v[1] = LLSD(); v[2] = 1.23; ensureParse( "array value of html", "" "23" "ha ha" "1.23" "", v, v.size() + 1); v.clear(); v[0] = 23; v[1] = LLSD::emptyMap(); v[2] = 1.23; ensureParse( "array with map of html", "" "23" "" "ha ha" "" "1.23" "", v, v.size() + 1); } template<> template<> void TestLLSDXMLParsingObject::test<4>() { // test handling of binary object in XML std::string xml; LLSD expected; // Generated by: echo -n 'hello' | openssl enc -e -base64 expected = string_to_vector("hello"); xml = "aGVsbG8=\n"; ensureParse( "the word 'hello' packed in binary encoded base64", xml, expected, 1); expected = string_to_vector("6|6|asdfhappybox|60e44ec5-305c-43c2-9a19-b4b89b1ae2a6|60e44ec5-305c-43c2-9a19-b4b89b1ae2a6|60e44ec5-305c-43c2-9a19-b4b89b1ae2a6|00000000-0000-0000-0000-000000000000|7fffffff|7fffffff|0|0|82000|450fe394-2904-c9ad-214c-a07eb7feec29|(No Description)|0|10|0"); xml = "Nnw2fGFzZGZoYXBweWJveHw2MGU0NGVjNS0zMDVjLTQzYzItOWExOS1iNGI4OWIxYWUyYTZ8NjBlNDRlYzUtMzA1Yy00M2MyLTlhMTktYjRiODliMWFlMmE2fDYwZTQ0ZWM1LTMwNWMtNDNjMi05YTE5LWI0Yjg5YjFhZTJhNnwwMDAwMDAwMC0wMDAwLTAwMDAtMDAwMC0wMDAwMDAwMDAwMDB8N2ZmZmZmZmZ8N2ZmZmZmZmZ8MHwwfDgyMDAwfDQ1MGZlMzk0LTI5MDQtYzlhZC0yMTRjLWEwN2ViN2ZlZWMyOXwoTm8gRGVzY3JpcHRpb24pfDB8MTB8MA==\n"; ensureParse( "a common binary blob for object -> agent offline inv transfer", xml, expected, 1); expected = string_to_vector("6|6|asdfhappybox|60e44ec5-305c-43c2-9a19-b4b89b1ae2a6|60e44ec5-305c-43c2-9a19-b4b89b1ae2a6|60e44ec5-305c-43c2-9a19-b4b89b1ae2a6|00000000-0000-0000-0000-000000000000|7fffffff|7fffffff|0|0|82000|450fe394-2904-c9ad-214c-a07eb7feec29|(No Description)|0|10|0"); xml = "Nnw2fGFzZGZoYXBweWJveHw2MGU0NGVjNS0zMDVjLTQzYzItOWExOS1iNGI4OWIxYWUyYTZ8NjBl\n"; xml += "NDRlYzUtMzA1Yy00M2MyLTlhMTktYjRiODliMWFlMmE2fDYwZTQ0ZWM1LTMwNWMtNDNjMi05YTE5\n"; xml += "LWI0Yjg5YjFhZTJhNnwwMDAwMDAwMC0wMDAwLTAwMDAtMDAwMC0wMDAwMDAwMDAwMDB8N2ZmZmZm\n"; xml += "ZmZ8N2ZmZmZmZmZ8MHwwfDgyMDAwfDQ1MGZlMzk0LTI5MDQtYzlhZC0yMTRjLWEwN2ViN2ZlZWMy\n"; xml += "OXwoTm8gRGVzY3JpcHRpb24pfDB8MTB8MA==\n"; ensureParse( "a common binary blob for object -> agent offline inv transfer", xml, expected, 1); } /* TODO: test XML parsing binary with unrecognized encoding nested LLSD tags multiple values inside an LLSD */ /** * @class TestLLSDNotationParsing * @brief Concrete instance of a parse tester. */ class TestLLSDNotationParsing : public TestLLSDParsing { public: TestLLSDNotationParsing() {} }; typedef tut::test_group TestLLSDNotationParsingGroup; typedef TestLLSDNotationParsingGroup::object TestLLSDNotationParsingObject; TestLLSDNotationParsingGroup gTestLLSDNotationParsingGroup( "llsd notation parsing"); template<> template<> void TestLLSDNotationParsingObject::test<1>() { // test handling of xml not recognized as llsd results in an // LLSD Undefined ensureParse( "malformed notation map", "{'ha ha'", LLSD(), LLSDParser::PARSE_FAILURE); ensureParse( "malformed notation array", "['ha ha'", LLSD(), LLSDParser::PARSE_FAILURE); ensureParse( "malformed notation string", "'ha ha", LLSD(), LLSDParser::PARSE_FAILURE); ensureParse( "bad notation noise", "g48ejlnfr", LLSD(), LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDNotationParsingObject::test<2>() { ensureParse("valid undef", "!", LLSD(), 1); } template<> template<> void TestLLSDNotationParsingObject::test<3>() { LLSD val = false; ensureParse("valid boolean false 0", "false", val, 1); ensureParse("valid boolean false 1", "f", val, 1); ensureParse("valid boolean false 2", "0", val, 1); ensureParse("valid boolean false 3", "F", val, 1); ensureParse("valid boolean false 4", "FALSE", val, 1); val = true; ensureParse("valid boolean true 0", "true", val, 1); ensureParse("valid boolean true 1", "t", val, 1); ensureParse("valid boolean true 2", "1", val, 1); ensureParse("valid boolean true 3", "T", val, 1); ensureParse("valid boolean true 4", "TRUE", val, 1); val.clear(); ensureParse("invalid true", "TR", val, LLSDParser::PARSE_FAILURE); ensureParse("invalid false", "FAL", val, LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDNotationParsingObject::test<4>() { LLSD val = 123; ensureParse("valid integer", "i123", val, 1); val.clear(); ensureParse("invalid integer", "421", val, LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDNotationParsingObject::test<5>() { LLSD val = 456.7; ensureParse("valid real", "r456.7", val, 1); val.clear(); ensureParse("invalid real", "456.7", val, LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDNotationParsingObject::test<6>() { LLUUID id; LLSD val = id; ensureParse( "unparseable uuid", "u123", LLSD(), LLSDParser::PARSE_FAILURE); id.generate(); val = id; std::string uuid_str("u"); uuid_str += id.asString(); ensureParse("valid uuid", uuid_str.c_str(), val, 1); } template<> template<> void TestLLSDNotationParsingObject::test<7>() { LLSD val = std::string("foolish"); ensureParse("valid string 1", "\"foolish\"", val, 1); val = std::string("g'day"); ensureParse("valid string 2", "\"g'day\"", val, 1); val = std::string("have a \"nice\" day"); ensureParse("valid string 3", "'have a \"nice\" day'", val, 1); val = std::string("whatever"); ensureParse("valid string 4", "s(8)\"whatever\"", val, 1); } template<> template<> void TestLLSDNotationParsingObject::test<8>() { ensureParse( "invalid string 1", "s(7)\"whatever\"", LLSD(), LLSDParser::PARSE_FAILURE); ensureParse( "invalid string 2", "s(9)\"whatever\"", LLSD(), LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDNotationParsingObject::test<9>() { LLSD val = LLURI("http://www.google.com"); ensureParse("valid uri", "l\"http://www.google.com\"", val, 1); } template<> template<> void TestLLSDNotationParsingObject::test<10>() { LLSD val = LLDate("2007-12-28T09:22:53.10Z"); ensureParse("valid date", "d\"2007-12-28T09:22:53.10Z\"", val, 1); } template<> template<> void TestLLSDNotationParsingObject::test<11>() { std::vector vec; vec.push_back((U8)'a'); vec.push_back((U8)'b'); vec.push_back((U8)'c'); vec.push_back((U8)'3'); vec.push_back((U8)'2'); vec.push_back((U8)'1'); LLSD val = vec; ensureParse("valid binary b64", "b64\"YWJjMzIx\"", val, 1); ensureParse("valid bainry b16", "b16\"616263333231\"", val, 1); ensureParse("valid bainry raw", "b(6)\"abc321\"", val, 1); } template<> template<> void TestLLSDNotationParsingObject::test<12>() { ensureParse( "invalid -- binary length specified too long", "b(7)\"abc321\"", LLSD(), LLSDParser::PARSE_FAILURE); ensureParse( "invalid -- binary length specified way too long", "b(1000000)\"abc321\"", LLSD(), LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDNotationParsingObject::test<13>() { LLSD val; val["amy"] = 23; val["bob"] = LLSD(); val["cam"] = 1.23; ensureParse("simple map", "{'amy':i23,'bob':!,'cam':r1.23}", val, 4); val["bob"] = LLSD::emptyMap(); val["bob"]["vehicle"] = std::string("bicycle"); ensureParse( "nested map", "{'amy':i23,'bob':{'vehicle':'bicycle'},'cam':r1.23}", val, 5); } template<> template<> void TestLLSDNotationParsingObject::test<14>() { LLSD val; val.append(23); val.append(LLSD()); val.append(1.23); ensureParse("simple array", "[i23,!,r1.23]", val, 4); val[1] = LLSD::emptyArray(); val[1].append("bicycle"); ensureParse("nested array", "[i23,['bicycle'],r1.23]", val, 5); } template<> template<> void TestLLSDNotationParsingObject::test<15>() { LLSD val; val["amy"] = 23; val["bob"]["dogs"] = LLSD::emptyArray(); val["bob"]["dogs"].append(LLSD::emptyMap()); val["bob"]["dogs"][0]["name"] = std::string("groove"); val["bob"]["dogs"][0]["breed"] = std::string("samoyed"); val["bob"]["dogs"].append(LLSD::emptyMap()); val["bob"]["dogs"][1]["name"] = std::string("greyley"); val["bob"]["dogs"][1]["breed"] = std::string("chow/husky"); val["cam"] = 1.23; ensureParse( "nested notation", "{'amy':i23," " 'bob':{'dogs':[" "{'name':'groove', 'breed':'samoyed'}," "{'name':'greyley', 'breed':'chow/husky'}]}," " 'cam':r1.23}", val, 11); } template<> template<> void TestLLSDNotationParsingObject::test<16>() { // text to make sure that incorrect sizes bail because std::string bad_str("s(5)\"hi\""); ensureParse( "size longer than bytes left", bad_str, LLSD(), LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDNotationParsingObject::test<17>() { // text to make sure that incorrect sizes bail because std::string bad_bin("b(5)\"hi\""); ensureParse( "size longer than bytes left", bad_bin, LLSD(), LLSDParser::PARSE_FAILURE); } /** * @class TestLLSDBinaryParsing * @brief Concrete instance of a parse tester. */ class TestLLSDBinaryParsing : public TestLLSDParsing { public: TestLLSDBinaryParsing() {} }; typedef tut::test_group TestLLSDBinaryParsingGroup; typedef TestLLSDBinaryParsingGroup::object TestLLSDBinaryParsingObject; TestLLSDBinaryParsingGroup gTestLLSDBinaryParsingGroup( "llsd binary parsing"); template<> template<> void TestLLSDBinaryParsingObject::test<1>() { std::vector vec; vec.resize(6); vec[0] = 'a'; vec[1] = 'b'; vec[2] = 'c'; vec[3] = '3'; vec[4] = '2'; vec[5] = '1'; std::string string_expected((char*)&vec[0], vec.size()); LLSD value = string_expected; vec.resize(11); vec[0] = 's'; // for string vec[5] = 'a'; vec[6] = 'b'; vec[7] = 'c'; vec[8] = '3'; vec[9] = '2'; vec[10] = '1'; uint32_t size = htonl(6); memcpy(&vec[1], &size, sizeof(uint32_t)); std::string str_good((char*)&vec[0], vec.size()); ensureParse("correct string parse", str_good, value, 1); size = htonl(7); memcpy(&vec[1], &size, sizeof(uint32_t)); std::string str_bad_1((char*)&vec[0], vec.size()); ensureParse( "incorrect size string parse", str_bad_1, LLSD(), LLSDParser::PARSE_FAILURE); size = htonl(100000); memcpy(&vec[1], &size, sizeof(uint32_t)); std::string str_bad_2((char*)&vec[0], vec.size()); ensureParse( "incorrect size string parse", str_bad_2, LLSD(), LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDBinaryParsingObject::test<2>() { std::vector vec; vec.resize(6); vec[0] = 'a'; vec[1] = 'b'; vec[2] = 'c'; vec[3] = '3'; vec[4] = '2'; vec[5] = '1'; LLSD value = vec; vec.resize(11); vec[0] = 'b'; // for binary vec[5] = 'a'; vec[6] = 'b'; vec[7] = 'c'; vec[8] = '3'; vec[9] = '2'; vec[10] = '1'; uint32_t size = htonl(6); memcpy(&vec[1], &size, sizeof(uint32_t)); std::string str_good((char*)&vec[0], vec.size()); ensureParse("correct binary parse", str_good, value, 1); size = htonl(7); memcpy(&vec[1], &size, sizeof(uint32_t)); std::string str_bad_1((char*)&vec[0], vec.size()); ensureParse( "incorrect size binary parse 1", str_bad_1, LLSD(), LLSDParser::PARSE_FAILURE); size = htonl(100000); memcpy(&vec[1], &size, sizeof(uint32_t)); std::string str_bad_2((char*)&vec[0], vec.size()); ensureParse( "incorrect size binary parse 2", str_bad_2, LLSD(), LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDBinaryParsingObject::test<3>() { // test handling of xml not recognized as llsd results in an // LLSD Undefined ensureParse( "malformed binary map", "{'ha ha'", LLSD(), LLSDParser::PARSE_FAILURE); ensureParse( "malformed binary array", "['ha ha'", LLSD(), LLSDParser::PARSE_FAILURE); ensureParse( "malformed binary string", "'ha ha", LLSD(), LLSDParser::PARSE_FAILURE); ensureParse( "bad noise", "g48ejlnfr", LLSD(), LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDBinaryParsingObject::test<4>() { ensureParse("valid undef", "!", LLSD(), 1); } template<> template<> void TestLLSDBinaryParsingObject::test<5>() { LLSD val = false; ensureParse("valid boolean false 2", "0", val, 1); val = true; ensureParse("valid boolean true 2", "1", val, 1); val.clear(); ensureParse("invalid true", "t", val, LLSDParser::PARSE_FAILURE); ensureParse("invalid false", "f", val, LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDBinaryParsingObject::test<6>() { std::vector vec; vec.push_back('{'); vec.resize(vec.size() + 4); uint32_t size = htonl(1); memcpy(&vec[1], &size, sizeof(uint32_t)); vec.push_back('k'); int key_size_loc = vec.size(); size = htonl(1); // 1 too short vec.resize(vec.size() + 4); memcpy(&vec[key_size_loc], &size, sizeof(uint32_t)); vec.push_back('a'); vec.push_back('m'); vec.push_back('y'); vec.push_back('i'); int integer_loc = vec.size(); vec.resize(vec.size() + 4); uint32_t val_int = htonl(23); memcpy(&vec[integer_loc], &val_int, sizeof(uint32_t)); std::string str_bad_1((char*)&vec[0], vec.size()); ensureParse( "invalid key size", str_bad_1, LLSD(), LLSDParser::PARSE_FAILURE); // check with correct size, but unterminated map (missing '}') size = htonl(3); // correct size memcpy(&vec[key_size_loc], &size, sizeof(uint32_t)); std::string str_bad_2((char*)&vec[0], vec.size()); ensureParse( "valid key size, unterminated map", str_bad_2, LLSD(), LLSDParser::PARSE_FAILURE); // check w/ correct size and correct map termination LLSD val; val["amy"] = 23; vec.push_back('}'); std::string str_good((char*)&vec[0], vec.size()); ensureParse( "valid map", str_good, val, 2); // check w/ incorrect sizes and correct map termination size = htonl(0); // 1 too few (for the map entry) memcpy(&vec[1], &size, sizeof(uint32_t)); std::string str_bad_3((char*)&vec[0], vec.size()); ensureParse( "invalid map too long", str_bad_3, LLSD(), LLSDParser::PARSE_FAILURE); size = htonl(2); // 1 too many memcpy(&vec[1], &size, sizeof(uint32_t)); std::string str_bad_4((char*)&vec[0], vec.size()); ensureParse( "invalid map too short", str_bad_4, LLSD(), LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDBinaryParsingObject::test<7>() { std::vector vec; vec.push_back('['); vec.resize(vec.size() + 4); uint32_t size = htonl(1); // 1 too short memcpy(&vec[1], &size, sizeof(uint32_t)); vec.push_back('"'); vec.push_back('a'); vec.push_back('m'); vec.push_back('y'); vec.push_back('"'); vec.push_back('i'); int integer_loc = vec.size(); vec.resize(vec.size() + 4); uint32_t val_int = htonl(23); memcpy(&vec[integer_loc], &val_int, sizeof(uint32_t)); std::string str_bad_1((char*)&vec[0], vec.size()); ensureParse( "invalid array size", str_bad_1, LLSD(), LLSDParser::PARSE_FAILURE); // check with correct size, but unterminated map (missing ']') size = htonl(2); // correct size memcpy(&vec[1], &size, sizeof(uint32_t)); std::string str_bad_2((char*)&vec[0], vec.size()); ensureParse( "unterminated array", str_bad_2, LLSD(), LLSDParser::PARSE_FAILURE); // check w/ correct size and correct map termination LLSD val; val.append("amy"); val.append(23); vec.push_back(']'); std::string str_good((char*)&vec[0], vec.size()); ensureParse( "valid array", str_good, val, 3); // check with too many elements size = htonl(3); // 1 too long memcpy(&vec[1], &size, sizeof(uint32_t)); std::string str_bad_3((char*)&vec[0], vec.size()); ensureParse( "array too short", str_bad_3, LLSD(), LLSDParser::PARSE_FAILURE); } template<> template<> void TestLLSDBinaryParsingObject::test<8>() { std::vector vec; vec.push_back('{'); vec.resize(vec.size() + 4); memset(&vec[1], 0, 4); vec.push_back('}'); std::string str_good((char*)&vec[0], vec.size()); LLSD val = LLSD::emptyMap(); ensureParse( "empty map", str_good, val, 1); } template<> template<> void TestLLSDBinaryParsingObject::test<9>() { std::vector vec; vec.push_back('['); vec.resize(vec.size() + 4); memset(&vec[1], 0, 4); vec.push_back(']'); std::string str_good((char*)&vec[0], vec.size()); LLSD val = LLSD::emptyArray(); ensureParse( "empty array", str_good, val, 1); } template<> template<> void TestLLSDBinaryParsingObject::test<10>() { std::vector vec; vec.push_back('l'); vec.resize(vec.size() + 4); uint32_t size = htonl(14); // 1 too long memcpy(&vec[1], &size, sizeof(uint32_t)); vec.push_back('h'); vec.push_back('t'); vec.push_back('t'); vec.push_back('p'); vec.push_back(':'); vec.push_back('/'); vec.push_back('/'); vec.push_back('s'); vec.push_back('l'); vec.push_back('.'); vec.push_back('c'); vec.push_back('o'); vec.push_back('m'); std::string str_bad((char*)&vec[0], vec.size()); ensureParse( "invalid uri length size", str_bad, LLSD(), LLSDParser::PARSE_FAILURE); LLSD val; val = LLURI("http://sl.com"); size = htonl(13); // correct length memcpy(&vec[1], &size, sizeof(uint32_t)); std::string str_good((char*)&vec[0], vec.size()); ensureParse( "valid key size", str_good, val, 1); } /* template<> template<> void TestLLSDBinaryParsingObject::test<11>() { } */ /** * @class TestLLSDCrossCompatible * @brief Miscellaneous serialization and parsing tests */ class TestLLSDCrossCompatible { public: TestLLSDCrossCompatible() {} void ensureBinaryAndNotation( const std::string& msg, const LLSD& input) { // to binary, and back again std::stringstream str1; S32 count1 = LLSDSerialize::toBinary(input, str1); LLSD actual_value_bin; S32 count2 = LLSDSerialize::fromBinary( actual_value_bin, str1, LLSDSerialize::SIZE_UNLIMITED); ensure_equals( "ensureBinaryAndNotation binary count", count2, count1); // to notation and back again std::stringstream str2; S32 count3 = LLSDSerialize::toNotation(actual_value_bin, str2); ensure_equals( "ensureBinaryAndNotation notation count1", count3, count2); LLSD actual_value_notation; S32 count4 = LLSDSerialize::fromNotation( actual_value_notation, str2, LLSDSerialize::SIZE_UNLIMITED); ensure_equals( "ensureBinaryAndNotation notation count2", count4, count3); ensure_equals( (msg + " (binaryandnotation)").c_str(), actual_value_notation, input); } void ensureBinaryAndXML( const std::string& msg, const LLSD& input) { // to binary, and back again std::stringstream str1; S32 count1 = LLSDSerialize::toBinary(input, str1); LLSD actual_value_bin; S32 count2 = LLSDSerialize::fromBinary( actual_value_bin, str1, LLSDSerialize::SIZE_UNLIMITED); ensure_equals( "ensureBinaryAndXML binary count", count2, count1); // to xml and back again std::stringstream str2; S32 count3 = LLSDSerialize::toXML(actual_value_bin, str2); ensure_equals( "ensureBinaryAndXML xml count1", count3, count2); LLSD actual_value_xml; S32 count4 = LLSDSerialize::fromXML(actual_value_xml, str2); ensure_equals( "ensureBinaryAndXML xml count2", count4, count3); ensure_equals((msg + " (binaryandxml)").c_str(), actual_value_xml, input); } }; typedef tut::test_group TestLLSDCompatibleGroup; typedef TestLLSDCompatibleGroup::object TestLLSDCompatibleObject; TestLLSDCompatibleGroup gTestLLSDCompatibleGroup( "llsd serialize compatible"); template<> template<> void TestLLSDCompatibleObject::test<1>() { LLSD test; ensureBinaryAndNotation("undef", test); ensureBinaryAndXML("undef", test); test = true; ensureBinaryAndNotation("boolean true", test); ensureBinaryAndXML("boolean true", test); test = false; ensureBinaryAndNotation("boolean false", test); ensureBinaryAndXML("boolean false", test); test = 0; ensureBinaryAndNotation("integer zero", test); ensureBinaryAndXML("integer zero", test); test = 1; ensureBinaryAndNotation("integer positive", test); ensureBinaryAndXML("integer positive", test); test = -234567; ensureBinaryAndNotation("integer negative", test); ensureBinaryAndXML("integer negative", test); test = 0.0; ensureBinaryAndNotation("real zero", test); ensureBinaryAndXML("real zero", test); test = 1.0; ensureBinaryAndNotation("real positive", test); ensureBinaryAndXML("real positive", test); test = -1.0; ensureBinaryAndNotation("real negative", test); ensureBinaryAndXML("real negative", test); } template<> template<> void TestLLSDCompatibleObject::test<2>() { LLSD test; test = "foobar"; ensureBinaryAndNotation("string", test); ensureBinaryAndXML("string", test); } template<> template<> void TestLLSDCompatibleObject::test<3>() { LLSD test; LLUUID id; id.generate(); test = id; ensureBinaryAndNotation("uuid", test); ensureBinaryAndXML("uuid", test); } template<> template<> void TestLLSDCompatibleObject::test<4>() { LLSD test; test = LLDate(12345.0); ensureBinaryAndNotation("date", test); ensureBinaryAndXML("date", test); } template<> template<> void TestLLSDCompatibleObject::test<5>() { LLSD test; test = LLURI("http://www.secondlife.com/"); ensureBinaryAndNotation("uri", test); ensureBinaryAndXML("uri", test); } template<> template<> void TestLLSDCompatibleObject::test<6>() { LLSD test; typedef std::vector buf_t; buf_t val; for(int ii = 0; ii < 100; ++ii) { srand(ii); /* Flawfinder: ignore */ S32 size = rand() % 100 + 10; std::generate_n( std::back_insert_iterator(val), size, rand); } test = val; ensureBinaryAndNotation("binary", test); ensureBinaryAndXML("binary", test); } template<> template<> void TestLLSDCompatibleObject::test<7>() { LLSD test; test = LLSD::emptyArray(); test.append(1); test.append("hello"); ensureBinaryAndNotation("array", test); ensureBinaryAndXML("array", test); } template<> template<> void TestLLSDCompatibleObject::test<8>() { LLSD test; test = LLSD::emptyArray(); test["foo"] = "bar"; test["baz"] = 100; ensureBinaryAndNotation("map", test); ensureBinaryAndXML("map", test); } struct TestPythonCompatible { TestPythonCompatible(): // Note the peculiar insertion of __FILE__ into this string. Since // this script is being written into a platform-dependent temp // directory, we can't locate indra/lib/python relative to // Python's __file__. Use __FILE__ instead, navigating relative // to this C++ source file. Use Python raw-string syntax so // Windows pathname backslashes won't mislead Python's string // scanner. import_llsd("import os.path\n" "import sys\n" "sys.path.insert(0,\n" " os.path.join(os.path.dirname(r'" __FILE__ "'),\n" " os.pardir, os.pardir, 'lib', 'python'))\n" "try:\n" " from llbase import llsd\n" "except ImportError:\n" " from indra.base import llsd\n") {} ~TestPythonCompatible() {} std::string import_llsd; template void python(const std::string& desc, const CONTENT& script, int expect=0) { const char* PYTHON(getenv("PYTHON")); ensure("Set $PYTHON to the Python interpreter", PYTHON); NamedTempFile scriptfile(".py", script); #if LL_WINDOWS std::string q("\""); std::string qPYTHON(q + PYTHON + q); std::string qscript(q + scriptfile.getName() + q); int rc = _spawnl(_P_WAIT, PYTHON, qPYTHON.c_str(), qscript.c_str(), NULL); if (rc == -1) { char buffer[256]; strerror_s(buffer, errno); // C++ can infer the buffer size! :-O ensure(STRINGIZE("Couldn't run Python " << desc << "script: " << buffer), false); } else { ensure_equals(STRINGIZE(desc << " script terminated with rc " << rc), rc, expect); } #else // LL_DARWIN, LL_LINUX LLProcessLauncher py; py.setExecutable(PYTHON); py.addArgument(scriptfile.getName()); ensure_equals(STRINGIZE("Couldn't launch " << desc << " script"), py.launch(), 0); // Implementing timeout would mean messing with alarm() and // catching SIGALRM... later maybe... int status(0); if (waitpid(py.getProcessID(), &status, 0) == -1) { int waitpid_errno(errno); ensure_equals(STRINGIZE("Couldn't retrieve rc from " << desc << " script: " "waitpid() errno " << waitpid_errno), waitpid_errno, ECHILD); } else { if (WIFEXITED(status)) { int rc(WEXITSTATUS(status)); ensure_equals(STRINGIZE(desc << " script terminated with rc " << rc), rc, expect); } else if (WIFSIGNALED(status)) { ensure(STRINGIZE(desc << " script terminated by signal " << WTERMSIG(status)), false); } else { ensure(STRINGIZE(desc << " script produced impossible status " << status), false); } } #endif } }; typedef tut::test_group TestPythonCompatibleGroup; typedef TestPythonCompatibleGroup::object TestPythonCompatibleObject; TestPythonCompatibleGroup pycompat("LLSD serialize Python compatibility"); template<> template<> void TestPythonCompatibleObject::test<1>() { set_test_name("verify python()"); python("hello", "import sys\n" "sys.exit(17)\n", 17); // expect nonzero rc } template<> template<> void TestPythonCompatibleObject::test<2>() { set_test_name("verify NamedTempFile"); python("platform", "import sys\n" "print 'Running on', sys.platform\n"); } template<> template<> void TestPythonCompatibleObject::test<3>() { set_test_name("verify sequence to Python"); LLSD cdata(LLSDArray(17)(3.14) ("This string\n" "has several\n" "lines.")); const char pydata[] = "def verify(iterable):\n" " it = iter(iterable)\n" " assert it.next() == 17\n" " assert abs(it.next() - 3.14) < 0.01\n" " assert it.next() == '''\\\n" "This string\n" "has several\n" "lines.'''\n" " try:\n" " it.next()\n" " except StopIteration:\n" " pass\n" " else:\n" " assert False, 'Too many data items'\n"; // Create a something.llsd file containing 'data' serialized to // notation. It's important to separate with newlines because Python's // llsd module doesn't support parsing from a file stream, only from a // string, so we have to know how much of the file to read into a // string. NamedTempFile file(".llsd", // NamedTempFile's boost::function constructor // takes a callable. To this callable it passes the // std::ostream with which it's writing the // NamedTempFile. This lambda-based expression // first calls LLSD::Serialize() with that ostream, // then streams a newline to it, etc. (lambda::bind(LLSDSerialize::toNotation, cdata[0], lambda::_1), lambda::_1 << '\n', lambda::bind(LLSDSerialize::toNotation, cdata[1], lambda::_1), lambda::_1 << '\n', lambda::bind(LLSDSerialize::toNotation, cdata[2], lambda::_1), lambda::_1 << '\n')); python("read C++ notation", lambda::_1 << import_llsd << "def parse_each(iterable):\n" " for item in iterable:\n" " yield llsd.parse(item)\n" << pydata << // Don't forget raw-string syntax for Windows pathnames. "verify(parse_each(open(r'" << file.getName() << "')))\n"); } template<> template<> void TestPythonCompatibleObject::test<4>() { set_test_name("verify sequence from Python"); // Create an empty data file. This is just a placeholder for our // script to write into. Create it to establish a unique name that // we know. NamedTempFile file(".llsd", ""); python("write Python notation", lambda::_1 << "from __future__ import with_statement\n" << import_llsd << "DATA = [\n" " 17,\n" " 3.14,\n" " '''\\\n" "This string\n" "has several\n" "lines.''',\n" "]\n" // Don't forget raw-string syntax for Windows pathnames. // N.B. Using 'print' implicitly adds newlines. "with open(r'" << file.getName() << "', 'w') as f:\n" " for item in DATA:\n" " print >>f, llsd.format_notation(item)\n"); std::ifstream inf(file.getName().c_str()); LLSD item; // Notice that we're not doing anything special to parse out the // newlines: LLSDSerialize::fromNotation ignores them. While it would // seem they're not strictly necessary, going in this direction, we // want to ensure that notation-separated-by-newlines works in both // directions -- since in practice, a given file might be read by // either language. ensure_equals("Failed to read LLSD::Integer from Python", LLSDSerialize::fromNotation(item, inf, LLSDSerialize::SIZE_UNLIMITED), 1); ensure_equals(item.asInteger(), 17); ensure_equals("Failed to read LLSD::Real from Python", LLSDSerialize::fromNotation(item, inf, LLSDSerialize::SIZE_UNLIMITED), 1); ensure_approximately_equals("Bad LLSD::Real value from Python", item.asReal(), 3.14, 7); // 7 bits ~= 0.01 ensure_equals("Failed to read LLSD::String from Python", LLSDSerialize::fromNotation(item, inf, LLSDSerialize::SIZE_UNLIMITED), 1); ensure_equals(item.asString(), "This string\n" "has several\n" "lines."); } }